UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL

"ANÁLISIS DEL CONTACTO AGREGADO – AGREGADO EN MEZCLAS DRENANTES EMPLEANDO TOMOGRAFÍA COMPUTARIZADA CON RAYOS X"

Realizado Por:

MARCOS FIGUEROA

Gestión 2014 TARIJA – BOLIVIA

DEDICATORIA

A Dios quien ha guiado mis pasos con amor, fortaleza y fe para cumplir uno de mis más anhelados sueños.

A mi madre Emma Figueroa Gómez por ser la razón de mi existencia, que gracias a sus consejos, cariño, esfuerzo diario y apoyo incondicional, hicieron posible que culminara con éxito una etapa más de mi vida.

A mi hermana Miriam Susana Figueroa, por la confianza que ha depositado en mí, por todo su apoyo brindado durante el tiempo que implica labrarse una profesión.

AGRADECIMIENTOS

A Dios por estar en cada momento de mi vida, por permitirme concluir esta etapa y compartirla con las personas que quiero y aprecio.

A la Universidad Autónoma Juan Misael Saracho, en especial a la facultad de Ciencias y Tecnología.

Al laboratorio de Suelos y Pavimentos del consorcio VIAL COPACABANA, a todo su personal en especial al Ing. Juan Carlos Robledo y al señor Melean Camacho por su colaboración activa en el desarrollo de la presente investigación y la supervisión en los ensayos realizados en el laboratorio, ya que sus comentarios y sugerencias contribuyeron a enriquecer y complementar este trabajo.

"Los hombres y pueblos en decadencia viven acordándose de dónde vienen; los hombres geniales y pueblos fuertes sólo necesitan saber a dónde van." (Anónimo)

ÍNDICE

CA	P. J	LINI	I KODUCCION	І
1.	1	ANTEC	CEDENTES	1
1.	2	JUSTIF	FICACIÓN	3
1.	3	DISEÑ	TEÓRICO	4
	1.3	3.1	Planteamiento del Problema	4
		1.3.1.	.1 Situación Problemica	4
		1.3.1.	.2 Formulación del Problema	5
	1.3	3.2	Objetivos	5
		1.3.2.	.1 Objetivo General	5
		1.3.2.	.2 Objetivos Específicos	5
	1.3	3.3	Hipótesis	6
	1.3	3.4	Variables	6
	1.3	3.5	Alcance	6
1.	4	DISEÑ	TO METODOLÓGICO	8
	1.4	4.1	Población	8
	1.4	4.2	Muestra	8
	1.4	4.3	Procesos y Medios	8
	1.4	4.4	Procesamiento Estadístico	9
CA.	D 1	п БС	STADO DE CONOCIMIENTO SOBRE MEZCLAS DRENANTES Y	STI
			CIÓN DEL CONTACTO AGREGADO-AGREGADO POR RAYOS-X	
2.	1	DESAR	RROLLO DE CONCEPTOS BÁSICOS DE PAVIMENTOS FLEXIBLES	
	2.:	1.1	Definición de Pavimento	.3
	2.:	1.2	Tipos de Pavimento	4
		2.1.2.	.1 Pavimento Rígido	4
		2.1.2.	.2 Pavimento Flexible	.5
		2.1.2.	.3 Pavimentos Articulados	.5
2.	2	Conc	EPTOS BÁSICOS DE ASFALTO	6

2.2.1	Definición de Asfalto	16
2.2.2	Propiedades Físicas del Asfalto	17
2.2.2	.1 Adhesión y Cohesión	18
2.2.2	.2 Durabilidad	18
2.2.2	.3 Propiedades Químicas del Asfalto	19
2.2.3	Sistemas de Clasificación del Cemento Asfáltico	21
2.2.3	.1 Sistema de Clasificación por Penetración	21
2.2.3	.2 Sistema de Clasificación por Viscosidad	22
2.3 CON	EPTOS BÁSICOS DE MEZCLAS ASFÁLTICAS	23
2.3.1	Definición de Mezclas Asfálticas	23
2.3.2	Clasificación de las Mezclas Asfálticas	24
2.3.2	.1 Por Fracciones de Agregado Pétreo Empleado	24
2.3.2	.2 Por la Temperatura de Puesta en Obra	24
2.3.2	.3 Por la Proporción de Vacios en la Mezcla Asfáltica	24
2.3.2	.4 Por el Tamaño Máximo del Agregado Pétreo	25
2.3.2	.5 Por la Estructura del Agregado Pétreo	25
2.3.2	.6 Por la Granulometría	25
2.3.3	Tipología de las Mezclas Asfálticas	26
2.3.3	.1 Mezcla Asfáltica en Caliente	26
2.3.3	.2 Mezcla Asfáltica en Frio	27
2.3.3	.3 Mezcla Porosa o Drenante	27
2.4 CARA	CTERÍSTICAS Y METODOLOGÍAS DE DISEÑO DE MEZCLAS ASFÁLTICAS DRENANTES	28
2.4.1	Definición de Mezclas Asfálticas Drenantes	28
2.4.2	Historia de los Pavimentos Drenantes	29
2.4.3	Aplicaciones, Ventajas y Desventajas de las Mezclas Asfálticas Drenantes	
		31
2.4.3	.1 Ventajas de las Mezclas Asfálticas Drenantes	31
2.4.3	.2 Desventajas de las Mezclas Drenantes	32
2.4.4	Conservación y Vida Útil de Mezclas Drenantes	33
2.4.5	Especificaciones Técnicas para el Ligante de una Mezcla Drenante	34
246	Especificaciones Técnicas para los Agregados de Mezclas Drenantes	35

	2.4.6	.1	Agregado Grueso	35
	2.4.6	.2	Agregado Fino	36
	2.4.6	.3	Relleno Mineral (FILLER)	36
	2.4.6	.4	Mezcla de Agregados	36
2	.4.7	Meto	odologías de Diseño de Mezclas Asfálticas Porosas o Drenantes	38
	2.4.7	.1	RP (Origen Chile)	38
	2.4.7	.2	Cántabro (Origen España)	39
	2.4.7	.3	Descripción del Método Marshall	43
2	.4.8	Com	portamiento de las Mezclas Asfálticas.	44
2.5	CARA	CTERIZA	ACIÓN DE MATERIALES GRANULARES	48
2	.5.1	Ensa	yos a los Agregados	48
	2.5.1	.1	Método para extraer y preparar muestras (ASTM C 75 AASHTO T2-	
	91)		48	
	2.5.1	.2	Ensayo para tamizar y determinar la granulometría (ASTM D-422)	48
	2.5.1	.3	Gravedad Específica en Agregados Finos, AASTHO T-84.	49
	2.5.1	.4	Gravedad específica en agregados gruesos, AASHTO T-85.	50
	2.5.1	.5	Ensayo para determinar el desgaste mediante la máquina de los Ángeles (ASTM E 131	AASHTO
	T96-9	99).	51	
2.6	CARA	CTERIZA	ACIÓN DEL CEMENTO ASFALTICO	52
2	.6.1	Ensa	yos del asfalto	52
	2.6.1	1	Ensayo de penetración (ASTM D-5)	52
	2.6.1	.2	Ensayo para determinar la ductilidad (ASTM D- 113)	53
	2.6.1	.3	Ensayo para determinar la viscosidad cinemática (ASTM E-102)	54
	2.6.1	.4	Punto de inflamación (ASTM D-92).	54
2.7	Том	OGRAFÍA	A COMPUTARIZADA CON RAYOS-X	55
2	.7.1	Defin	nición	55
2	.7.2	Utiliz	ación en la Ingeniería	56
2	73	Desc	rinción de la Técnica de Rayos-x para Caracterizar Mezclas Drenantes	57

CAP.	шп	NVESTIGACIÓN SOBRE EL ANÁLISIS DE CONTACTO A	AGREGADO-
AGR	EGA	DO EN MEZCLAS DRENANTES EMPLEANDO TOMOGR	AFÍA
COM	PUT.	ARIZADA CON RAYOS-X	61
3.1	PROC	EDENCIA DE LOS MATERIALES EMPLEADOS	61
3.2		CTERÍSTICAS DE LOS MATERIALES EMPLEADOS	
3	3.2.1	Ensayos en Ligante Asfaltico	
	3.2.1		
	3.2.1		
	3.2.1		
	3.2.1		
	3.2.1		
	3.2.2	Ensayos en los Agregados	
	3.2.2		
	3.2.2		
	3.2.2		
		YOS SOBRE LA MEZCLA ASFÁLTICA.	
	ENSA 3.3.1	Granulometría y Mezcla de Agregados.	
-			
	3.3.1		
	3.3.1		
3.4		O DE LA MEZCIA ASFÁLTICA DRENANTE O POROSA	
3.5	PREP	ARACIÓN Y FABRICACIÓN DE BRIQUETAS	
3	3.5.1	Preparación de las Muestras	
	3.5.1		
	3.5.1		
3	3.5.2	Peso y Volumen de las Briquetas	
3	3.5.3	Densidad Bulk	
3	3.5.4	Gravedad Específica Máxima Teórica	
3	3.5.5	Calculo de Vacíos	
3	3.5.6	Pruebas de estabilidad y fluencia	
3	3.5.7	Desgaste en la Maquina de los Ángeles	100
3	3.5.8	Permeabilidad	103

3.6	CALCULO DE VACÍOS EMPLEANDO TOMOGRAFÍA COMPUTARIZADA	104
3	.6.1 Cuantificación del Contacto Agregado-Agregado	114
3.7	RESUMEN Y ANÁLISIS DE RESULTADOS	116
CAPI	TULO IV CONCLUSIONES Y RECOMENDACIONES	136
CAPI	TULO IV CONCLUSIONES Y RECOMENDACIONES	

ÍNDICE DE FIGURAS

FIGURA Nº 2-1 PAVIMENTO RÍGIDO (HORMIGÓN)	14
FIGURA Nº 2-2 PAVIMENTO FLEXIBLE (ASFALTO)	15
FIGURA Nº 2-3 PAVIMENTO ARTICULADO	15
FIGURA Nº 2-4 ACCIÓN DE DESENVUELTA DEL AGUA	18
FIGURA Nº 2-5 COMPOSICIÓN DEL ASFALTO	19
FIGURA Nº 2-6 ESTRUCTURA COLOIDAL DEL ASFALTO	20
FIGURA Nº 2-7 ESQUEMA MEZCLA DRENANTE	29
FIGURA № 2-8 ESPECIFICACIÓN GRANULOMÉTRICA MD-1	37
Figura № 2-9 Representación de los Volúmenes en una Briqueta Compactada de Mezcla Asfá	LTICA.
	46
FIGURA Nº 2-10 ENSAYO NORMAL DE PENETRACIÓN	53
FIGURA Nº 2-11 ENSAYO DE DUCTILIDAD	54
FIGURA Nº 2-12 ENSAYO DEL PUNTO DE INFLAMACIÓN	55
FIGURA Nº 2-13 SISTEMA DE RAYOS-X: VISTA EN PLANTA DE LOS PRINCIPALES COMPONENTES	58
FIGURA № 2-14 EQUIPO TÍPICO DE RAYOS-X (TEXAS A&M UNIVERSITY)	58
Figura Nº 2-15 Ejemplos de secciones de mezclas asfálticas: (a) de gradación densa, (b) de gra	DACIÓN
ABIERTA	59
Figura № 3-1 Acopio de material pétreo en la planta de asfaltos El Molino a} agregado de ¾	″в)
AGREGADO 3/8" C) AGREGADO FINO D) ASFALTO BETUPEN PLUS 85-100	61
FIGURA Nº 3-2 ENSAYO DE PENETRACIÓN EN MUESTRAS DE ASFALTO.	63
FIGURA Nº 3-3 PENETRACIÓN EN MUESTRAS	64
FIGURA Nº 3-4 MUESTRAS ESTIRADAS ANTES DE QUE SE ROMPAN.	66
FIGURA № 3-5 EJECUCIÓN DEL ENSAYO PUNTO DE INFLAMACIÓN	67
FIGURA Nº 3-6 EJECUCIÓN DEL ENSAYO PESO ESPECÍFICO DEL LIGANTE	72
FIGURA Nº 3-7 DESGASTE EN LA MÁQUINA DE LOS ÁNGELES	74
FIGURA Nº 3-8 MUESTRA SATURADA Y PESO SUMERGIDO DE LA MUESTRA	79
FIGURA № 3-9 CUARTEADOR DE MUESTRAS	80
FIGURA № 3-10 SERIE DE TAMICES UTILIZADOS	81
FIGURA Nº 3-11 BRIQUETAS DE ESTUDIO	85

INDICE DE TABLAS

TABLA 2-1 REQUISITOS PARA CLASIFICAR EL ASFALTO	22
TABLA 2-2 REQUISITOS PARA CLASIFICAR EL ASFALTO	23
TABLA 2-3 CLASIFICACIÓN DE LAS MEZCLAS ASFÁLTICAS	26
TABLA 2-4 PORCENTAJE DE VACÍOS	28
TABLA 2-5 USO DE MEZCLAS DRENANTES EN PAÍSES EN EL 2001	30
TABLA 2-6 REQUISITOS DEL CEMENTO ASFALTICO	34
TABLA 2-7 REQUISITOS DEL AGREGADO GRUESO	35
TABLA 2-8 REQUISITOS DEL AGREGADO FINO	36
TABLA 2-9 FRANJA GRANULOMÉTRICA PARA MEZCLAS DRENANTES	37
TABLA 2-10 FRANJA GRANULOMÉTRICA PARA MEZCLAS ASFÁLTICAS DRENANTES	49
TABLA 3-1 RESULTADOS DE ENSAYO DE PENETRACIÓN	64
TABLA 3-2 RESULTADOS DE ENSAYO DE DUCTILIDAD	66
TABLA 3-3 RESULTADO DE ENSAYO DE PUNTO DE INFLAMACIÓN	68
TABLA 3-4 GRAVEDAD ESPECIFICA DEL LIGANTE ASFALTICO	72
TABLA 3-5 RESULTADOS OBTENIDOS COMPARACIÓN CON ESPECIFICACIONES	73
TABLA 3-6 PORCENTAJE DE DESGASTE EN LA MAQUINA DE LOS ÁNGELES	75
TABLA 3-7 DETERMINACIÓN DEL PESO ESPECÍFICO DEL AGREGADO FINO	77
TABLA 3-8 DETERMINACIÓN DEL PESO ESPECÍFICO Y ABSORCIÓN DEL AGREGADO	79
TABLA 3-9 GRANULOMETRÍAS INDIVIDUALES DE LOS AGREGADOS	81
TABLA 3-10 FRANJA GRANULOMÉTRICA PARA MEZCLAS DRENANTES	82
TABLA 3-11 GRANULOMETRÍA DEL MATERIAL COMBINADO	82
TABLA 3-12 CALCULO DE MATERIALES DISEÑO MARSHALL	86
TABLA 3-13 GRAVEDAD ESPECIFICA DE BULK "FAJA GRANULOMÉTRICA A"	94
TABLA 3-14 GRAVEDAD ESPECIFICA DE BULK "FAJA GRANULOMÉTRICA B"	95
TABLA 3-15 GRAVEDAD ESPECIFICA DE BULK "FAJA GRANULOMÉTRICA C"	96
TABLA 3-16 DENSIDAD MÁXIMA TEÓRICA FAJA A, B Y C	97
TABLA 3-17 VACÍOS EN LA MEZCLA (GRANULOMETRÍA "A")	98
TABLA 3-18 VACÍOS EN LA MEZCLA (GRANULOMETRÍA "B")	98
TABLA 3-19 VACÍOS EN LA MEZCLA (GRANULOMETRÍA "C")	99
TABLA 3-20 RESULTADO DE DESGASTE DE BRIQUETAS MÁQUINA DE LOS ÁNGELES	102

ÍNDICE DE GRÁFICOS

GRÁFICO 1 ANÁLISIS GRANULOMÉTRICO DE LA MEZCLA DE AGREGADOS	8 3
GRÁFICO 2 PORCENTAJE DE VACÍOS PARA LAS GRANULOMETRÍAS A, B Y C	118
GRÁFICO 3 % DE VACÍOS VS. % DE ASFALTO GRANULOMETRÍA "B"	118
GRÁFICO 4 DESGASTE CÁNTABRO VS. % DE ASFALTO	119
GRÁFICO 5 PERDIDA POR ENSAYO DE CÁNTABRO GRANULOMETRÍA "B"	120
GRÁFICO 6% DE VACÍOS VS. % DE ASFALTO GRANULOMETRÍA "B"	
GRÁFICO 7 PERMEABILIDAD	121
GRÁFICO 8 DENSIDAD VRS. % DE ASFALTO	124
GRÁFICO 9 ESTAB. MARSHALL VRS. %DE ASFALTO	125
GRÁFICO 10 % DE VACÍOS VRS. %DE ASFALTO	125
GRÁFICO 11 FLUJO VRS. %DE ASFALTO	126
GRÁFICO 12 DISTRIBUCIÓN VERTICAL DEL NÚMERO DE PUNTOS DE CONTACTO	127
GRÁFICO 13 DISTRIBUCIÓN VERTICAL DEL NÚMERO DE PARTÍCULAS	128
GRÁFICO 14 RELACIÓN DEL NÚMERO DE PUNTOS Y EL NÚMERO DE CONTACTOS	128
GRÁFICO 15 RELACIÓN DEL CONTENIDO DE VACÍOS Y EL NÚMERO DE PUNTOS DE CONTACTO	129
GRÁFICO 16 ANÁLISIS COMPARATIVO DE VACÍOS GRANULOMETRÍA A	131
GRÁFICO 17 ANÁLISIS COMPARATIVO GRANULOMETRÍA B	132
GRÁFICO 18 ANÁLISIS COMPARATIVO GRANULOMETRÍA C	133
GRÁFICO 19 ANÁLISIS COMPARATIVO GRANILI OMETRÍA SEMI-CERRADA	134