UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL

"EVALUACIÓN DEL CONTACTO AGREGADO-AGREGADO Y VACÍOS EN HORMIGÓN POROSO DE PAVIMENTO APLICANDO RAYOS X"

Realizado por: MANCILLA VELASQUEZ, GILMAR HIBRAHIN

GESTIÓN ACADÉMICA 2014

TARIJA – BOLIVIA

DEDICATORIA

A mi hija Isabella que es el suministro de fuerza que me impulsa a esforzarme y luchar por mis metas y objetivos.

AGRADECIMIENTOS

A mi familia por la confianza, paciencia y amor entregados a mi persona.

A mi madre por el gran sacrificio e interminable apoyo que tuvo para con mi persona.

A mi hermana Pamela por estar siempre a mi lado y ofrecerme su indispensable colaboración.

A mi tío Juan Carlos por estar siempre pendiente y brindarme su apoyo y los mejores consejos.

ÍNDICE

CAPITULO I: INTRODUCCION1
1.1 Antecedentes
1.2 JUSTIFICACIÓN1
1.3 DISEÑO TEÓRICO4
1.3.1 PLANTEAMIENTO DEL PROBLEMA
1.3.1.1 SITUACIÓN PROBLÉMICA 4
1.3.1.2 PROBLEMA
1.3.2 Objetivos
1.3.2.1 Objetivo general
1.3.2.2 Objetivos específicos
1.3.3 HIPÓTESIS
1.3.4 Variables
1.3.4.1 Variable Independiente 6
1.3.4.2 Variable Dependiente
1.3.5 ALCANCE 6
1.4 DISEÑO METODOLÓGICO9
1.4.1 Unidad
1.4.2 POBLACIÓN9
1.4.3 Muestra
1.4.4 Medios
1.4.5 MÉTODOS

CAPÍTULO II: ESTADO DE CONOCIMIENTO DE CONOCIMIENTO SOBRE LA EVALUACIÓN DEL CONTENIDO DE VACÍOS Y CONTACTO AGREGADO-AGREGADO EN HORMIGONES POROSOS PARA PAVIMENTO11	
2.1 GENERALIDADES	11
2.2 CARACTERÍSTICAS DE LOS PAVIMENTOS RÍGIDOS	11
2.3 HORMIGONES EN PAVIMENTOS RÍGIDOS	11
2.3.1 HORMIGÓN POROSO	11
2.3.1.1 Propiedades en estado fresco	13
2.3.1.1.1 Consistencia (Revenimiento)	13
2.3.1.2 Propiedades en estado endurecido	15
2.3.1.2.1 RESISTENCIA A LA COMPRESIÓN	15
2.3.1.2.2 CONTENIDO DE VACÍOS	16
2.3.1.2.3 PESO UNITARIO	17
2.3.1.2.4 CAPACIDAD DE FILTRACIÓN O PERMEABILIDAD	17
2.4 APLICACIÓN DEL HORMIGÓN POROSO EN PAVIMENTOS	19
2.5 AGREGADOS PARA PAVIMENTO RÍGIDO	23
2.5.1 Propiedades físicas de los agregados y del cemento	24
2.5.1.1 Análisis granulométrico del agregado grueso	25
2.5.1.2 PESO ESPECÍFICO Y ABSORCIÓN DEL AGREGADO GRUESO	27
2.5.1.3 PESO UNITARIO DEL AGREGADO GRUESO	29
2.5.1.4 PORCENTAJE DE DESGASTE DEL AGREGADO GRUESO	31
2.5.1.5 PESO ESPECÍFICO Y ABSORCIÓN DEL AGREGADO FINO	33
2.5.1.6 MODULO DE FINURA DE LA ARENA	35
2.5.1.7 PESO ESPECÍFICO DEL CEMENTO	36

2.6 PORCENTAJE DE VACÍOS PRESENTE EN EL HORMIGÓN	37
2.7 DISEÑO DE MEZCLA PARA HORMIGÓN POROS DE PAVIMENTO	38
2.8 ELABORACIÓN DE ESPECÍMENES CILÍNDRICOS	40
2.9 RAYOS X EN MUESTRAS DE HORMIGÓN	42
2.9.1 TOMOGRAFÍA INDUSTRIAL COMPUTARIZADA DE RAYOS X	43
CAPÍTULO III: INVESTIGACIÓN	45
3.1 UBICACIÓN DEL ÁREA DE ESTUDIO	45
3.2 CARACTERÍSTICAS DE LOS BANCOS DE MATERIALES	45
3.3 CARACTERIZACIÓN DE MATERIALES	46
3.3.1 CARACTERIZACIÓN DE LA GRAVA REDONDEADA	47
3.3.2 CARACTERIZACIÓN DE LA GRAVA TRITURADA	53
3.3.3 CARACTERIZACIÓN DE LAS ARENAS	59
3.3.4 CARACTERIZACIÓN DEL CEMENTO	62
3.4 DOSIFICACIÓN	64
3.4.1 Dosificación de mezclas utilizando agregado grueso redondeado	64
3.4.2 Dosificación de mezclas utilizando agregado grueso triturado	77
3.5 ELABORACIÓN DE LAS MUESTRAS	88
3.6 CARACTERÍSTICAS DE LA CONSISTENCIA DE LAS MEZCLAS EN ESTADO FRESCO	88
3.7 CURADO DE LOS ESPECÍMENES	90
3.8 APLICACIÓN DE RAYOS X SOBRE LAS MUESTRAS DE HORMIGÓN POROSO	90
3.9 CARACTERÍSTICAS DE LAS PROPIEDADES DE LAS MEZCLAS EN ESTADO ENDURECIDO	93
3.9.1 RESISTENCIA A LA COMPRESIÓN	93

3.9.2 CAPACIDAD DE FILTRACIÓN O PERMEABILIDAD	104
3.9.3 PESO UNITARIO	107
3.10 DETERMINACIÓN DEL NÚMERO DE CONTACTO DE LOS	
DENTRO DE LA ESTRUCTURA INTERNA DEL HORMIGÓN PO	ROSO107
3.11 DETERMINACIÓN DEL PORCENTAJE DE VACÍOS PRESEN	
MUESTRAS DE HORMIGÓN POROSO DE PAVIMENTO MEDIA!	NTE LAS
IMÁGENES COMPUTARIZADAS DE RAYOS X	109
3.12 CONTRASTACIÓN DE LA DETERMINACIÓN DEL PORCEN	NTAJE DE
VACÍOS PRESENTES EN MEZCLAS DE HORMIGÓN POROSO D	E
PAVIMENTO MEDIANTE LA RELACIÓN DE GRAVEDAD ESPE	CÍFICA BULK
Y TEÓRICA	127
3.13 ANÁLISIS DE LOS RESULTADOS	133
CAPÍTULO IV: CONCLUSIONES Y RECOMENDACIONES	149
4.1 CONCLUSIONES	149
4.2 RECOMENDACIONES	152

ÍNDICE DE FIGURAS

FIGURAS CAPITULO II
Figura 2. 1 Curva de resistencia en función del tiempo
Figura 2. 2 Cono de Abrams
Figura 2. 3 Composición un sistema estructural de una superficie permeable2
Figura 2. 4 Elementos de un sistema estructural de superficies permeables
Figura 2. 5 Sistema permeable compuesto por diversos elementos porosos
Figura 2. 6 Constitución interna y externa de un agregado
Figura 2. 7 Esquema de la tomografía computarizada
FIGURAS CAPÍTULO III
Figura 3. 1 Área de estudio
Figura 3. 2 Ubicación del Banco de extracción del agregado grueso
Figura 3. 3 Ubicación del Banco de extracción del agregado fino
Figura 3. 4 Ensayo de consistencia sobre la mezcla dosificada con 15% de vacíos
Figura 3. 5 Ensayo de consistencia sobre la mezcla dosificada con 20% de vacíos
Figura 3. 6 Ensayo de consistencia sobre la mezcla dosificada con 25% de vacíos
Figura 3. 7 Pruebas de tomografía computarizada aplicando Rayos X sobre las Probetas de Hormigón Poroso
Figura 3. 8 Tomografía a probeta completa con 15% de vacíos
Figura 3. 9 Tomografía a probeta completa con 20% de vacíos
Figura 3. 10 Tomografía a probeta completa con 25% de vacíos
Figura 3. 11 Retenedores con base de neopreno
Figura 3. 12 Retenedores con base de Neopreno
Figura 3. 13 Ruptura de probeta utilizando los retenedores con base de Neopreno94
Figura 3. 14 Ensayo para la determinación de la tasa de infiltración
Figura 3. 15 Delimitación de área de vacíos sobre la imagen computarizada para una mezcla con 15% de vacíos
Figura 3. 16 Delimitación de área de vacíos sobre la imagen computarizada para una mezcla con 20% de vacíos

Figura 3. 17 Delimitación de área de vacíos sobre la imagen computarizada para una
mezcla con 15% de vacíos
Figura 3. 18 Curva granulométrica del agregado grueso
Figura 3. 19 Resultados de porcentaje de vacíos determinado por los 3 métodos
Figura 3. 20 Curva para la determinación del contenido de pasta
Figura 3. 21 Variación de porcentajes de vacíos para mezcla 1
Figura 3. 22 Variación de porcentajes de vacíos para mezcla 2
Figura 3. 23 Variación de porcentajes de vacíos para mezcla 3
Figura 3. 24 Variación de porcentajes de vacíos
Figura 3. 25 Variación del porcentaje de vacíos en diferentes secciones de cada probeta de las tres mezclas
Figura 3. 26 Relación resistencia en función del porcentajes de vacíos
Figura 3. 27 Resultados de resistencia a la compresión por probeta para las 3 mezclas 145
Figura 3. 28 Variación de la resistencia a la compresión de mezclas porosas con diferente tipo de agregado grueso (redondeado y triturado)
Figura 3. 29 Relación de la tasa de infiltración en relación al porcentaje de vacíos 147
Figura 3. 30 Relación de la tasa de infiltración en función de la resistencia a la compresión

ÍNDICE DE CUADROS

Cuadro Nº 1: Peso de la muestra para granulometría del agregado grueso25
Cuadro Nº 2: Número de esferas y peso de la muestra en función a la gradación para el ensayo de desgaste con la máquina de los ángeles
Cuadro Nº 3: Gradación de la muestra para el ensayo de desgaste con la máquina de los ángeles
Cuadro Nº 4: Volumen seco varillado de agregado en una unidad de volumen de hormigón
Cuadro Nº 5: Resumen de resultados de los ensayos realizados sobre el agregado grueso redondeado
Cuadro Nº 6 Resumen de resultados de los ensayos realizados sobre el agregado grueso triturado
Cuadro Nº 7: Resumen de resultados del ensayo realizado sobre el agregado fino
Cuadro Nº 8 Resumen de resultados del ensayo realizado sobre el cemento
Cuadro Nº 9: Proporción en peso de los materiales para elaborar 1m3 de HºPº con 15% de vacíos
Cuadro Nº 10: Proporción en volumen de los materiales para elaborar 1m3 de HºPº con 15% de vacíos
Cuadro Nº 11: Proporción en peso de los materiales para elaborar 1m3 de HºPº con 20% de vacíos
Cuadro Nº 12: Proporción en volumen de los materiales para elaborar 1m3 de HºPº con 20% de vacíos
Cuadro N° 13: Proporción en peso de los materiales para elaborar 1m3 de H°P° con 25% de vacíos
Cuadro Nº 14: Proporción en volumen de los materiales para elaborar 1m3 de HºPº con 25% de vacíos
Cuadro Nº 15: Proporción en peso de los materiales para elaborar 1m3 de HºPº con 15% de vacíos
Cuadro Nº 16: Proporción en volumen de los materiales para elaborar 1m3 de HºPº con 15% de vacíos
Cuadro Nº 17: Proporción en peso de los materiales para elaborar 1m3 de HºPº con 20% de vacíos

Cuadro Nº 18: Proporción en volumen de los materiales para elaborar 1m3 de HºPº con 20% de vacíos	86
Cuadro Nº 19: Proporción en peso de los materiales para elaborar 1m3 de HºPº con 25% vacíos	
Cuadro Nº 20: Proporción en volumen de los materiales para elaborar 1m3 de HºPº con 25% de vacíos	86
Cuadro Nº 21: Resultados del ensayo de la resistencia a la compresión para una mezcla cagregado grueso redondeado dosificada con 15% de vacíos	
Cuadro Nº 22: Resultados del ensayo de la resistencia a la compresión para una mezcla cagregado grueso redondeado dosificada con 20% de vacíos	
Cuadro Nº 23: Resultados del ensayo de la resistencia a la compresión para una mezcla cagregado grueso redondeado dosificada con 25% de vacíos	
Cuadro Nº 24: Resultados promedio para cada mezcla de resistencia a la compresión	.99
Cuadro Nº 25 Resultados del ensayo de la resistencia a la compresión para una mezcla co agregado grueso triturado dosificada con 15% de vacíos	
Cuadro Nº 26 Resultados del ensayo de la resistencia a la compresión para una mezcla co agregado grueso triturado dosificada con 20% de vacíos	
Cuadro Nº 27 Resultados del ensayo de la resistencia a la compresión para una mezcla co agregado grueso triturado dosificada con 25% de vacíos	
Cuadro Nº 28 Resultados promedio para cada mezcla de resistencia a la compresión	102
Cuadro Nº 29 Valores de las resistencias a la compresión promedio de cada mezcla utilizando diferentes tipos de agregado grueso (redondeado y triturado)	103
Cuadro Nº 30: Resultados de la determinación de la tasa de infiltración para una mezcla de HºP dosificada con 15% de vacíos	
Cuadro Nº 31: Resultados de la determinación de la tasa de infiltración para una mezcla HºP dosificada con 20% de vacíos	
Cuadro Nº 32 Resultados de la determinación de la tasa de infiltración para una mezcla de HºP dosificada con 25% de vacíos	
Cuadro Nº 33: Resultados de la tasa de infiltración promedio por mezcla	106
Cuadro Nº 34: Peso Unitario de cada probeta de las tres mezclas	107
Cuadro Nº 35: Número de contactos entre partículas de agregado grueso para cada probe de las tres mezclas	
Cuadro Nº 36 Cuantía de la cantidad de contactos promedio por mezcla	109

Cuadro Nº 37 Resultado de la cuantificación del porcentaje de vacíos para cada probeta de las tres mezclas
Cuadro Nº 38 Proporcionamiento de materiales para la elaboración de 1m3 de hormigón sin vacíos mediante el mismo método de dosificación
Cuadro Nº 39 Porcentajes de vacíos determinados mediante gravimetría para la mezcla 1
Cuadro Nº 40 Porcentajes de vacíos determinados mediante gravimetría para la mezcla 2
Cuadro Nº 41 Porcentajes de vacíos determinados mediante gravimetría para la mezcla 3
Cuadro Nº 42 Resultados promedios de porcentaje de vacíos obtenidos mediante las tres metodologías
Cuadro Nº 43 Cuadro comparativo del porcentaje de vacíos por probeta obtenido para la mezcla 1 mediante las tres metodologías
Cuadro Nº 44 Cuadro comparativo del porcentaje de vacíos por probeta obtenido para la mezcla 2 mediante las tres metodologías
Cuadro Nº 45 Cuadro comparativo del porcentaje de vacíos por probeta obtenido para la mezcla 3 mediante las tres metodologías