"UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO"

FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"EL EFECTO DE ARENAS NATURALES Y TRITURADAS EN LAS MEZCLAS ASFÁLTICAS CONVENCIONALES"

Por:

MADELIN CORINA QUIROGA CAYO

PROYECTO DE INVESTIGACIÓN presentado a consideración de la "UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO", como requisito para optar el grado académico de Licenciatura en, INGENIERÍA CIVIL.

GESTIÓN 2014 TARIJA – BOLIVI

UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE INGENIERÍA CIVIL DEPARTAMENTO DE TOPOGRAFÍA Y VÍAS DE COMUNICACIÓN

"EL EFECTO DE ARENAS NATURALES Y TRITURADAS EN LAS MEZCLAS ASFÁLTICAS CONVENCIONALES"

Por:

MADELIN CORINA QUIROGA CAYO

PROYECTO DE INVESTIGACIÓN presentado a consideración de la "UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO", como requisito para optar el grado académico de Licenciatura en, INGENIERÍA CIVIL.

PROYECTO ELABORADO EN LA ASIGNATURA CIV - 502

Gestión académica II/ Semestre 2014

TARIJA – BOLIVIA

M.sc.Ing. Ernesto R. Álvarez Gozalvez	M.Sc.Ing.Silvana S. Paz Ramírez
DECANO FACULTAD DE CIENCIAS Y TECNOLOGÍA	VICE DECANO FACULTAD DE CIENCIAS Y TECNOLOGÍA
RIBUNAL:	
M.Sc.Ing. Weimar Adol	lfo Mejía Mogrovejo
M.Sc.Ing. Ada Glad	

DEDICATORIA:

Este trabajo lo dedico a mis queridos padres, por su apoyo, esfuerzo y sacrificio, y a todos mis amigos que los llevo siempre en el corazón, y en especial a Dios por guiarme en el camino de la vida.

ÍNDICE

CAPITULOI

INTRODUCCION

1.1 Generalidades	1
1.2 Situación Problemática	2
1.2.1 Problema	2
1.3 Justificación	3
1.4. Objetivos	3
1.4.1. Objetivo General	3
1.4.2. Objetivos Específicos	4
1.5. Hipótesis.	4
1.6. Definición de variables conceptuales.	4
1.6.1. Variables Independientes o experimentales	4
1.6.2. Variable Dependiente	4
1.7. Diseño metodológico	4
1.7.1. Unidades de Estudio y Decisión muestral	
1.7.2. Alcance	5
CAPITULOII	
ESTADO DE CONOCIMIENTO SOBRE MEZLAS ASFALTICAS Y	
MATERIALES	
2.1. INTRODUCCION	
2.2. MEZCLAS ASFALTICAS	11
2.2.1.2. Obtención del Asfalto en Refinerías	11
2.2.1.2.1. Destilación Primaria	12
2.2.1.22 Destilación al Vacío	12
2.2.1.2.3. Desas faltización con propano o butano	12
2.2.1.3. Composición del Asfalto.	13
2.2.1.4. Propiedades y características del asfalto de pavimentación	14
2.2.1.4.1. Durabilidad	14

2.2.1.42. Adhesión y cohesión	15
2.2.1.43. Susceptibilidad a la temperatura	15
2.2.1.4.4. Endurecimiento y envejecimiento	16
2.2.1.5. Clasificación de los asfaltos de pavimentación	16
2.2.1.5.1. Cementos asfálticos.	16
2.2.1.5.2. Asfaltos rebajados	17
2.2.1.5.3. Asfaltos emulsificados	18
2.2.1.7. Control de calidad cementos asfálticos	19
2.2.2. AGREGADOS PETREOS	19
2.2.2.1 Importancia del agregado en mezcla asfáltica	19
2.2.2.2 Definición de agregado.	20
2.2.2.2.1 Tipos de agregado	20
2.2.2.2 Conceptos más frecuentes relacionados a los agregados	20
2.2.2.3 Clasificación de rocas	21
2.2.2.4 Clasificación y Producción de Agregados	23
2.2.2.4.1. Clasificación de los Agregados	23
2.2.2.4.2. Producción de Agregados	24
2.2.2.5 Importancia de la reducción de agregado	25
2.2.2.6 Propiedades de los agregados utilizados en Mezclas Asfálticas	25
2.2.2.6.1 Graduación y Tamaño Máximo de la Partícula	26
2.2.2.72. Agregado Fino.	31
2.2.2.7.3 Granulometría de agregados combinados (finos y gruesos)	32
2.2.2.8 Especificaciones sobre Agregados pétreos	33
2.2.3. DISENO DE MEZCLA ASFALTICA	34
2.2.3.1. Definición de mezcla asfáltica.	34
2.2.4.1. Propiedades físicas de las mezclas asfálticas	41
2.2.4.1.1. Estabilidad	41
2.2.4.12. Durabilidad	42
2.2.4.13 Flexibilidad	42
2.2.4.1.4. Resistencia a la fatiga	42

2.2.4.1.5. Resistencia al deslizamiento	43
2.2.4.1.6. Impermeabilidad	43
2.2.4.1.7. Trabajabilidad	43
2.2.4.2.1. Densidad	44
2.2.4.22. Vacíos de aire (V.T.M.)	45
2.2.4.23. Vacíos en el Agregado Mineral (VMA)	45
2.2.4.2.4. Vacíos Llenos de Asfalto VFA	46
2.2.4.2.5. Contenido de asfalto	46
2.2.4.3. Especificaciones de la metodología	46
CAPITULO III	
INVESTIGACION SOBRE EL EFECTO DE LAS ARENAS EN MEZ	CT AS
ASFALTICAS CONVENCIONALES	CLAS
3.1 PROGRAMA EXPERIMENTAL	
3.2.1 Materiales pétreos	
3.2.2 Materiales asfalticos.	
3.3 Caracterización de materiales pétreos.	
3.3.1 Angularidad del agregado grueso ASTM D 5821	
3.3.1.1 Objetivo	
3.3.1.2 Equipo y materiales	
3.3.1.3 Procedimiento	
3.3.1.4 Cálculo y resultados	
3.3.2 Partículas largas y achatadas ASTM D 4791	
3.3.2.1 Objetivo	
3.3.2.2 Equipo y materiales	
3.3.2.3 Procedimiento	
3.3.2.4 Cálculo y resultado	
3.3.3 Abrasión por medio de la Máquina de los Angeles ASTM C131	60
3.3.3.1 Objetivo	60
3.3.3.2 Equipo	60

3.3.3.3 Procedimiento:		60
3.3.3.4 Cálculo y resultado		63
3.3.5 Determinación gravedad específ	īca y absorción de agua en áridos grues	озб4
3.3.5.1Objetivo:		64
3.3.5.2 Equipo y materiales:		65
3.3.5.4 Cálculos y resultados		67
3.3.6 Gravedad Específica y absoro	ción en Agregados Finos ASTM C-128	68
3.3.6.1 Objetivo		68
3.3.6.2 Equipo y material		68
3.3.6.3 Procedimiento:		69
3.3.6.4 Cálculo y resultados		72
3.3.7 Determinación del peso unitario	de los agregados grueso y fmo	73
3.3.7.1 Objetivo		73
3.3.7.2 Equipo y material		73
3.3.7.3 Procedimiento:		74
3.3.7.4 Cálculo y resultados		76
3.3.8.1 Objetivo		78
3.3.8.2 Equipo y materiales:		78
3.3.8.3 Procedimiento		79
3.3.8.4 Cálculo y resultado:		80
3.3.9 Granulometría de agregados AS	IMC136	82
3.3.9.1 Objetivo		82
3.3.9.2 Equipos y materiales:		82
3.3.9.3 Procedimiento		82
3.3.9.4 Cálculo y resultado		84
3.3.10 Dosificación de agregados para	la granulometría combinada	90
3.3.10.1 Objetivo		90
3.3.102 Procedimiento		90
3.4 Caracterización de materiales asfaltic	03	96
3.4.1 Penetración ASTM D.5. AASHT	TA9	96

3.4.1.1 Objetivo	96
3.4.1.2 Equipo y material	96
3.4.1.3 Procedimiento	96
4.4.1.4 Cálculo y resultados	98
3.4.2 Ensayo de Viscosidad Saybolt Furolb ASTM D244	99
3.4.2.1 Objetivo	99
3.4.2.2 Equipo y materiales	99
3.4.2.3 Procesamiento.	100
3.4.2.4 Cálculo y resultados	102
3.4.3 Punto de reblandecimiento Anillo y Bola ASTM D 36	103
3.4.3.1 Objetivo	103
3.4.3.2 Procesamiento.	103
3.4.3.3 Cálculo y resultados	105
3.4.4 Ensayo de peso específico ASTM D-70	105
3.4.4.1 Objetivo	105
3.4.4.2 Procesamiento	105
3.4.4.3 Procesamiento	106
3.4.4.4 Cálculo y resultado	108
3.4.5 Puntos de inflamación copa abierta de Cleveland ASTM D-92	108
3.4.5.1 Objetivo	108
3.4.5.2 Procesamiento	108
3.4.5.3 Resultado	111
3.4.6 Ensayo de ductilidad en el asfalto ASTM 113	111
3.4.6.1 Objetivo	111
3.4.6.2 Equipo	112
3.4.6.3 Procedimiento	112
3.4.6.4 Cálculo y resultado	114
3.5 ELABORACION DE LA MEZCLA ASFALTICA	114
3.5.1 Método de Diseño Marshall Convencional AASHTO T 245	114
3.5.1.1Objetivo	114

	3.5.1.2 Resumen del metodo	114
	3.5.13 Equipo y materiales	115
	3.5.1.4 Evaluación de agregados	115
Pe	so unitario de los agregados gruesos (Suelto y Compactado)	116
	3.5.1.5. Evaluación del cemento asfáltico convencional	118
	3.5.1.6 Preparación de los Especímenes Marshall	118
	3.5.1.8 Compactación de Briquetas	127
	3.5.1.9 Gravedad Específica Bulk mezcla compactada (Gmb)	129
	3.5.1.10 Calculo de las Propiedades volumétricas	131
	3.5.1.11 Medición de la estabilidad y la fluencia	135
3.0	 Comparación de propiedades volumétricas de mezcla asfáltica 	a con asfalto
co	nvencional	146
3.0	6.2. Comparación de propiedades de mezcla asfáltica con arena tritu	ırada y arena
na	tural	156
	CAPITULO IV	
	CONCLUSIONES Y RECOMENDACIONES	
4.1.	CONCLUSIONES	162
4.2.	RECOMENDACIONES	164
	INDICE DE TABLAS	
Tabla	2.1 - Normas AASHTO v ASTM aplicables a asfaltos	19
Tabla	2.2 - Clasificación de Agregados	22
Tabla	2.3 - Requerimientos de Graduación para agregados Finos	32
Tabla	2.4 - Rango de Valores para Graduación de Agregados para Pavimentos	de Concreto
Asfal	tico en Caliente	32
Tabla	2.5 - Requisitos de la gradación de agregados	33
	2.6 - Normas AASHTO y ASTM aplicables para agregados	
	2.7 VACIOS EN EL AGREGADO MINERAL (Requisitos de VMA)	
	2.8 - Criterios del Instituto del Asfalto para el Diseño Marshall	
Tabla	2.9 - Porcentaje Minimo de VMA	48

Tabla-3.1 Granulometrías para en sayos de material pétreo triturado y porcentaje que pase	cade
tamiz	49
Tabla-3.2 - Granulometrías para ensayos de material pétreo natural y porcentaje que p	ase
cada tamiz.	50
Tabla-3.3 - Resultado de porcentaje de caras fracturadas grava 3/4" y grava3/8"	57
Tabla-3.4 - Porcentaje de partículas chatas alargadas grava ¾ y grava 3/8"	59
Tabla-3.5 - Grados de ensayo (Definidos por tipos y sus rangos de tamaños, en mm)	61
Tabla-3.6 - Resultados desgaste de los ángeles grava ¾"	63
Tabla-3.7 - Resultados desgaste de los ángeles grava 3/8"	63
Tabla-3.8 - Cantidad mínima de muestra según tamaño máximo nominal	66
Tabla-3.9 - Resultado de gravedades específicas y absorción de agregado grueso	68
Tabla-3.10 - Resultado de gravedades específicas y absorción de agregado fino	72
Tabla-3.11 - Resultados de peso unitario suelto de agregado grueso	76
Tabla-3.12 - Resultados de peso unitario compactado de agregado grueso	77
Tabla-3.13 - Resultados de peso unitario suelto de agregado fino	77
Tabla-3.14 - Resultados de peso unitario compactado de agregado fino	77
Tabla-3.15 - Resultado de Porcentaje de arena.	80
Tabla-3.16 - Resultado de Porcentaje de arena.	80
Tabla-3.17 - Resultado de Porcentaje de arena.	81
Tabla-3.18 - Resultado de Porcentaje de arena.	81
Tabla-3.19 - Resultado de Porcentaje de arena.	81
Tabla-3.20 - Resultado de Porcentaje de arena.	81
Tabla-3.21 - Serie de Tamices (* Tamices utilizados en el ensayo)	82
Tabla-3.22 - Cantidad mínima de muestra (* Utilizado)	83
Tabla-3.23 - Resultado de gramulometría de grava ¾"	85
Tabla-3.24 - Resultado de granulometría de grava 3/8"	86
Tabla-3.25 - Resultado de gramulometría de Arenas	87
Tabla-3.26 - Resultado de granulometría de Arenas.	89
Tabla-3.27 - Combinaciones Granulométricas – Convencional Tipo C	92
Tabla-3.28 - Combinaciones Granulométricas – Convencional Tipo C	94
Tabla-3.29 - Resultado de Ensayo de Penetración 85-100 Convencional	98
Tabla-3.30 — Resultado de Viscosidad Saybolt asfalto convencional	102
Tabla-3.31 - Viscosidad a diferente temperatura asfalto convencional	102

Tabla-3.32 Resultado del punto de ablandamiento	. 105
Tabla-3.33 - Resultado de la gravedad específica de asfalto convencional	. 108
Tabla-3.34 - Valores de corrección del punto de Inflamación	. 111
Tabla-3.35 - Resultado del punto de Inflamación asfalto convencional	. 111
Tabla-3.36- Resultado del ensayo de ductilidad as falto convencional	. 114
Tabla-3.37 - Resumen de los resultados de caracterización de materiales pétreos	. 116
Tabla-3.38 - Resultado de Gravedades específicas bulk de la combinación de los agreg	ados
	. 118
Tabla-3.39 - Resumen de control de calidad as falto convencional	
Tabla-3.40- Porcentaje calculado para cada fracción del agregado (Material Triturado)	. 120
Tabla-3.41 - Porcentaje calculado para cada fracción del agregado (Material Natural)	. 121
Tabla-3.42 - Porcentajes de Cemento Asfalticos de las granulometrías	. 122
Tabla-3.43- Dosificación para una briqueta de 1200 g de 5,5% de C.A	. 123
Tabla-3.44 – Dosificacione de agregados triturados y asfalto para una briqueta de 1200 g	<u> 124</u>
Tabla-3.45 - Dosificaciones de agregado natural y asfalto para una briqueta de 1200 g	. 124
Tabla-3.46 - Resultados de gravedades específicas (Gmb)	. 131
Tabla-3.47- Resultado de porcentaje de Vacíos en la Mezcla mat Triturado (VTM)	. 132
Tabla-3.48 - Resultado de porcentaje de Vacíos en el Agregado Mineral (VMA)	. 133
Tabla-3.49 - Resultado de porcentaje de Vacíos llenos de asfalto (R.B.V.)	. 134
Tabla-3.50 - Resultado de Estabílidad y flujo	. 138
Tabla-3.51 Cuadro resumen diseño de mezcla asfáltica, Granulometría material triturado	139
Tabla-3.52 Cuadro resumen diseño de mezcla as fáltica, Granulometría material natural.	. 140
Tabla-3.53 Resultado Relaciones volumétricas	. 141
Tabla-3.54- Resultado Relaciones volumétricas	. 144
Tabla-3.55 — Resumen de las propiedades de diseño mezclas asfáltica	. 155
ÍNDICE DE FIGURAS	
Figura 2.1 Obtención del Asfalto	13
Figura 2.2 Esquema coloidal de Pfeiffer	
Figura 2. 3 - Comportamiento del asfalto: Consistencia vrs. Temperatura	
Figura 2.4 - Representación de la composición típica de una mezcla as fáltica	

Figura-3.1 - Banco de material "VAFERCON"	52
Figura-3.2 - Banco de material "ERIKA".	52
Figura-3.3 - Banco de material "CHARAJA"	53
Figura- 3.4 - Banco de material "Rio Tolomosa"	53
Figura-3.5 - Banco de material "Rio Guadalquivir"	54
Figura- 3.6 - Banco de material "Rio Camacho"	54
Figura-3.7- Separando las partículas fracturadas y no fracturadas	56
Figura- 3.8- Inspección y detección de las partículas fracturadas	56
Figura- 3.9- Peso de partículas fracturadas	57
Figura- 3.10- Cuarteo de muestra representativa	58
Figura-3.11 — Separando las partículas planas o alargadas	59
Figura- 3.12— Cuarteo del material	61
Figura-3.13- Tamizado	62
Figura- 3.14— Esferas de acero.	62
Figura- 3.15 - Equipo de los Angeles	62
Figura- 3.16 Representación gráfica de los vacios en los agregados	64
Figura-3.17 – Muestra saturada	66
Figura- 3.18 - Secando la Muestra,	67
Figura- 3.19- Peso de muestra en agua	67
Figura- 3.20 – Muestra sumergida.	69
Figura-3.21 – Secado del material	70
Figura- 3.22— Usando el molde cónico	70
Figura- 3 23— Pesando la muestra - agua y matraz.	71
Figura- 3 24— Llenado de la muestra en su respectivo molde	75
Figura-3.25 – Enrase de la muestra	76
Figura-3.26 – Pesos registrados de los agregados	76
Figura-3.27 – Llenado de la probeta con solución	79
Figura- 3 28 – Tipos de muestra en reposo Figura-3 29 – Lecturamos h1 y h2	80
Figura- 3.30 — Cuarteo del material Figura- 3.31 — Pes o de la muestra	83
Figura- 3.32— Juego de tamices Figura-3.33— Pesando el Material tamizado	84
Figura- 3.34—Material sumergido en baño Figura- 3.35 — Lectura de penetración	98
Figura- 3.36— Limpieza del equipo Figura- 3.37— Vertido del material	101
Figura- 3.38—Retiro del tapón de corcho Figura-3.39 —Registro de tiempo e	n el101

Figura-3.40 – Colocación del betún	Figura-3.41— Colocación de esferas	104
Figura- 3.42- Aparato sumargido	Figura- 3.43 – Registro de temperatura	104
Figura-3.44- Muestras de asfalto		107
Figura- 3.45– Registro de peso Picnómetr	o + asfalto + agua	107
Figura-3.46 – Medición de la temperatura		110
Figura- 3.47- Punto de Combustión		110
Figura- 3.48 — Preparación de briquetas	Figura-3.49 -Briquetas con material	113
Figura- 3.50- Elongación del asfalto en el	l equip o ductilómetro	113
Figura-3.51- Paquetes de 1200 g para las	briquetas	125
Figura-3.52- Bandejas separadas para cad	a briqueta la cantidad necesaria	126
Figura- 3.53 – Muestra en el homo a una 7	Г 30°C	126
Figura- 3.54- Peso de muestra + asfalto		126
Figura- 3.55 – preparación de la mezcla		127
Figura-3.56 Preparación del molde	Figura-3.57- Disco de papel filtro	128
Figura-3.58 – Lectura de temperatura	Figura- 3.59- Llenado del molde	128
Figura-3.60- Compactación de 75 golpes	Figura-3.61 – Desmolde de la briqueta	128
Figura- 3.62- Peso seco		129
Figura-3.63 - Peso sat. Superf. Seco		129
Figura- 3.64- Peso sumergido en agua		130
Figura- 3.65- Briquetas en baño de María	L	135
Figura-3.66 – Determinación de Estabilid	ad y flujo	136
ÍNDICE	DE GRÁFICAS	
Grafica 3.1 - Granulometría experimental	de material pétreo triturado: Convencional	50
Grafica 3.2 - Granulometría experimental	de material pétreo natural: Convencional	51
Grafica 3.3 - Análisis de granulometría d	e grava ¾"	85
Grafica 3.4 - Análisis de granulometría de	e grava 3/8"	86
Grafica 3.5 - Análisis de granulometría d	e arenas	88
Grafica 3.6 - Análisis de granulometría d	e arenas	90
Grafica 3.7 - Combinaciones Granulomét	ricas —Convencional Tipo	93
Grafica 3.8 - Combinaciones Granulomét	ricas –Convencional Tipo C	95
Grafica 3.9 – Resultado de Penetración 85	-100 Convencional	99
Grafica3.10 - Temperatura vs viscosidad :	as falto convencional	102

Grafica 3.11 - Ensayo de Ablandamiento	105
Grafica 3.12 Relaciones volumetricas de granulometria convencional	141
Grafica 3.13 Relaciones volumetricas de granulometria convencional	144
Grafica 3.14 – Comparación densidad (gr/cm3).	147
Grafica 3.15— Comparación de porcentaje de vacíos en mezcla	147
Grafica 3.16 - Comparación porcentaje de vacíos de agregados mineral V.A.M	148
Grafica 3.17 - Comparación de porcentaje de vacíos llenos con asfalto	149
Grafica3.18 – Comparación de estabilidad en libras	150
Grafica 3.19 – Comparación de flujo	151
Grafica3 20 - Comparación densidad (gr/cm3)	152
Grafica 3.21 – Comparación de porcentaje de vacíos en mezcla	152
Grafica 3.22- Comparación porcentaje de vacíos de agregados mineral V.A.M	153
Grafica3 23 - Comparación de porcentaje de vacíos llenos con asfalto	153
Grafica3 24 — Comparación de estabilidad en libras	154
Grafica 3.25- Comparación de flujo.	154
Grafica3 26 – Gravedades especificas en mezclas asfálticas	156
Grafica 3.27 – Porcentajes de vacíos de aire en las mezclas asfálticas	157
Grafica3 28 - Porcentaje de Vacíos de Agregado Mineral en mezclas asfálticas	158
Grafica3 29 - Porcentaje de Vacíos Llenos de Asfalto en mezclas asfálticas	159
Grafica 3.30 - Estabilidades en mezclas asfálticas	160
Grafica 3.31 - Flujos en mezclas asfálticas	161

SIGLAS

ASTM : American Society for testing Materials (Sociedad Americana

para Pruebas y Materiales)

AASHTO : American Association of State Highway and Transportation

Officials (Asociación Americana de Funcionarios de

Carreteras Estatales y Transporte)

MAC : Mezcla Asfáltica en Caliente

NCHRP : National Cooperative Highway Research Program (Programa

Nacional Cooperativo para la Investigación de Carreteras)

PG : Performance Grade (Grado de desempeño)

SHRP : Strategic Highway Research Program

(Programa Estratégico para la Investigación de Carreteras)