UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" PROGRAMA ESPECIAL DE TITULACIÓN CARRERA DE INGENIERÍA CIVIL

TRABAJO DIRIGIDO

"ESTUDIO DE UN PUENTE PRETENSADO REALIZANDO LA VARIACIÓN DEL NÚMERO DE TRAMOS Y PILAS APLICACIÓN PUENTE CAMACHO"

Postulante:

Nilton Enrique Puma Ortega

Tutor:

Abraham Ceferino Fuentes Urzagaste

Trabajo Dirigido, presentado a consideración de la UNIVERSIDAD AUTÓNOMA "JUAN MISAEL SARACHO" PROGRAMA ESPECIAL DE TITULACIÓN, como requisito para optar el Grado Académico de Licenciatura en Ingeniería Civil.

Noviembre de 2012

TARIJA – BOLIVIA

Ing. Abraham Ceferin	o Fuentes Urzagaste	
TUTOR GUÍA		
Ing. Luis Alberto Yurquina F. DECANO FACULTAD DE CIENCIAS Y TECNOLOGÍA	Msc. Lic. Marlene Hoyos DIRECTORA DEL PET	
APROBADO POR:		
TRIBUNAL:		
Ing. Mabel Zam	brana Velasco	
Ing. Ricardo N. M	orales Retamozo	

El tribunal calificador del presente Trabajo Dirigido, no se solidariza con la forma, términos, modos y expresiones vertidas en el trabajo, siendo las mismas únicamente responsabilidad del autor

DEDICATORIA:

El presente Trabajo Dirigido está dedicado a:

Mis padres Santos y Julia, a mi esposa Helen Asucena que a pesar de los momentos difíciles de la vida siempre supieron llevarnos por en alto.

AGRADECIMIENTOS:

Agradezco a Dios sobre todas las cosas, también a quien me tuvo paciencia durante todo el trabajo, mis padres Santos y Julia, a mi esposa Helen, mis hermanos Adalid, Paty, Erik, Yudhit, a mi suegra Carmen y mi tutor guía, Ing. Abraham Fuentes y amigos en Gral.

¿Comenzamos de nuevo a recomendarnos a nosotros mismos? ¿O acaso necesitamos, como algunos hombres, cartas de recomendación para ustedes o de ustedes?

Ustedes mismos son nuestra carta, inscrita en nuestros corazones y conocida y leída por toda la humanidad.

³ Porque queda mostrado que ustedes son carta de Cristo escrita por nosotros como ministros, no inscrita con tinta, sino con espíritu de un Dios vivo, no en tablas de piedra, sino en tablas de carne, en corazones.

INDICE

CAPÍTULO I

INTRODUCCIÓN 1.1 ANTECEDENTES 1 1.2. JUSTIFICACIÓN. 2 1.3. OBJETIVO GENERAL 3 1.4. OBJETIVOS ESPECÍFICOS. 3 1.5. ALCANCE 1.6. METODOLOGÍA. 5 **CAPÍTULO II FUNDAMENTO TEÓRICO** 2.1. METODOLOGÍA DE ANÁLISIS Y DISEÑO 6 2.1.3. CONCEPTOS Y NORMAS PARA LAS CARGAS. 6 7 2.1.3.1 Infraestructura. 2.1.3.2 Superestructura. 7 2.1.3.3 Cargas en la Superestructuras 7 2.1.4. DISEÑO DE LOSA DE HORMIGÓN ARMADO.-9 2.1.4.1 Losa Interior. 9 2.1.4.2 Losa Exterior. 11 2.1.5. VIGAS MAESTRAS. 11 2.1.5.1. Longitud del voladizo y separación entre vigas maestras 11 2.1.5.2.Influencia de la carga viva 14 2.2.- HORMIGÓN PRETENSADO 17 2.2.1 VARIEDADES DEL HORMIGÓN PRETENSADO. 18 2.2.2. MATERIALES 21 2.2.2.1. Acero 21 2.2.2.2 Hormigón 24 2.2.2.1 Propiedades deseadas y normas generales 24 2.2.2.2. Análisis Por flexión. 27 2.2.2.3 Esfuerzos Elásticos: 30 2.2.2.4 Factor de eficiencia a la flexión: 31 2.2.2.5 Esfuerzos Permisibles de Flexión 32

34

2.2.3 INECUACIONES EN ETAPA INICIAL Y FINAL.

2.2.4 PREDIMENS	SIONAMIENTO DE LA SECCIÓN	34
2.2.5 NÚCLEO DE	LA SECCIÓN TRANSVERSAL.	37
2.2.6. VARIACIÓN	DE LA EXCENTRICIDAD A LO LARGO DEL CLARO.	38
2.2.7. VIGAS COM	IPUESTAS.	40
	2.2.7.1 Tipos de construcción compuesta	40
	2.2.7.2 Estados de Carga.	41
	2.2.7.3. Propiedades de la sección y esfuerzos elásticos de flexión.	43
	2.2.7.4 Núcleo Límite y Zona Límite de Cables	46
2.2.8 PÉRDIDA DI	E LA FUERZA DE PRETENSADO.	49
	2.2.8.1 Pérdidas por Retracción:	50
	2.2.8.2 Pérdida por Fluencia del Hormigón.	51
	2.2.8.3 Pérdida por Fricción.	52
	2.2.8.4 Pérdidas por Relajación del Acero.	54
	2.2.8.5 Pérdida por Deslizamiento de Anclajes (DA).	55
	2.2.8.6 Pérdida total en elementos pre-tensados	59
	2.2.8.7 Pérdida total en elementos pos-tensados	59
	R CORTANTE DEL ACI.	60
2.2.10 VERIFICAC ROTURA.	IÓN A LA FLEXIÓN EN EL ESTADO ÚLTIMO O DE	63
2.2.11 CURVAS D	E ESFUERZO DEFORMACIÓN.	64
2.2.12 DISTRIBUC	CIÓN SUCESIVA DE ESFUERZOS EN EL CONCRETO	66
	A MEDIDA QUE LA VIGA ES SOBRECARGADA.	
	DEL HORMIGÓN PRETENSADO	71
2.3. HORMIGÓN	ARMADO.	72
2.3.1. ACERO PARA HORMIGÓN		72
2.3.2. CARACTER	RÍSTICAS DEL HORMIGÓN	73
CAPÍTULO III ESTUDIOS REQU	ERIDOS PARA EL DISEÑO DE UN PUENTE	
	3.1. HIDROLOGÍA DEL ÁREA DE EMPLAZAMIENTO DEL PUENTE	74
	1. INTRODUCCIÓN.	
	2. CARACTERÍSTICAS DE LA CUENCA.	
	3. PRECIPITACIONES DE CORTA DURACIÓN Y GRAN	
	INTENSIDAD	
	4. CRECIDAS	
	5. NIVELES DE LAS CRECIDAS Y ALTURA LIBRE DEL PUENTE	

	3.2. CONDICIONES GEOLÓGICAS Y MECÁNICAS DEL SUELO	102
	1. GENERALIDADES	
	2. RECONOCIMIENTO GEOLÓGICO	
	3. SONDEOS MECÁNICOS	
	4. MECÁNICA DE SUELOS	
	5. CORRELACION LITOLÓGICA	
	6. CONCLUSIONES Y RECOMENDACIÓN	
	7. ANEXOS	
	3.3. ESTUDIO GRANULOMÉTRICO DE LECHO DEL RÍO	117
	1. OBJETIVO	
	2. UBICACIÓN	
	3. METODOLOGÍA EMPLEADA EN EL ESTUDIO DE SUELOS	
	4. CLASIFICACION DE SUELOS BASADOS EN CRITERIOS	
	GRANULOMETRICOS	
	5. ANEXOS	
CAPÍTULO IV		
CÁLCULO ESTRU	JCTURAL DEL PUENTE	
	4.2. PUENTE DE VIGAS L=30.4 MT	
	4.2.1. DISEÑO DE LA SUPERESTRUCTURA.	134
	4.2.2. DISEÑO DE LA SUBESTRUCTURA.	177
_		
CAPÍTULO V		
ANÁLISIS COMP	ARATIVO	
5.1. COMPARA	CIÓN DE ALTERNATIVAS.	200
	4.1.1 RESUMEN DE COSTOS EN DIFERENTES ALTERNATIVAS	
	4.1.1 COMPARACIÓN DE ALTERNATIVAS DESDE EL PUNTO	206
	DE VISTA ECONÓMICO.	
	4.1.2. COMPARACIÓN DE ALTERNATIVAS DESDE EL PUNTO	209
	DE VISTA TÉCNICO.	
5.2. SELECCIÓN	DE LA ALTERNATIVA MÁS FAVORABLE Y FACTIBLE.	211

6. NIVELES DE FUNDACIÓN

7. HIDROGRAMAS

CAPÍTULO VI CONCLUSIONES Y RECOMENDACIONES

6.1.	EVALUACIÓN DE RESULTADO	212
6.2.	RECOMENDACIONES.	213

BIBLIOGRAFÍA

ANEXOS

ANEXO Nº 1

COMPUTOS METRICOS, ANALISIS DE PRECIOS UNITARIOS Y PRESUPUESTO GENERAL DE PUENTE DE 30.4 M

ANEXO Nº 2

CALCULO, COMPUTOS METRICOS, Y PRESUPUESTO GENERAL DE PUENTE DE 26.0 M

ANEXO № 3

CALCULO, COMPUTOS METRICOS, Y PRESUPUESTO GENERAL DE PUENTE DE 36.5 M

ANEXO Nº 4

PLANOS DE DETALLE DE PUENTE DE 30.4 M