Moving to

Microsoft

Visual Studio
2010

— e
e
: —
iy . N —
\ |
g,
N,

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2011 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2010934433
Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions and Developmental Editor: Devon Musgrave

Project Editors: Roger LeBlanc and John Pierce

Editorial Production: MPS Limited, a Macmillan Company

Technical Reviewer: Todd Meister; Technical Review Services provided
by Content Master, a member of CM Group, Ltd.

Cover: Tom Draper Design

Body Part No. X17-13257

Table of Contents

INtrodUCHiON . ..ot e vii

Part| Moving from Microsoft Visual Studio 2003 to
Visual Studio 2010

1 From 2003 to 2010: Business Logicand Data................. 3
Application Architecture e 3
Plan My Night Data in Microsoft Visual Studio 2003.................... 5
Data with the Entity Framework in Visual Studio 2010 6

EF: Importing an Existing Database................... 7
EF: Model First o i i 16
POCO Templatescovitie i e et 22
Putting It All Together. 27
Getting Data from the Database 27
Getting Data from the Bing Maps Web Services.................. 32
Parallel Programming. i 35
AppFabricCaching i i i, 36
SUMMAAIY. .« ettt e ettt et et ettt et et 38

2 From 2003 to 2010: Designing the Look and Feel............ 39

Introducing the PlanMyNight.Web Project 39
Running the Project o i, 42
Creating the Account Controller i, 43
Implementing the Functionality.................... 44
Creating the Account Viewt 59
Using the Designer View to CreateaWeb Form....................... 66
Extending the Applicationwith MEF. 74
Print Itinerary Add-in Explained. o L. 77
SUMMAIY. . ettt et e et et ettt e e et 79

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Table of Contents

3 From 2003 to 2010: Debugging an Application.............. 81
Visual Studio 2010 Debugging Features......................coin.... 81
Managing Your Debugging Session. 82

New Threads Windowottt 100

Y 1414 o - T 78 P 101

4 From 2003 to 2010: Deploying an Application.............. 103
Visual Studio 2010 Web Deployment Packages 103

Visual Studio 2010 and Web Deployment Packages.............. 104

SUMIMATY. .« ettt ettt et ettt e e et e e 113

Part I Moving from Microsoft Visual Studio 2005 to
Visual Studio 2010

5 From 2005 to 2010: Business Logicand Data............... 117
Application Architecture......... 117

Plan My Night Data in Microsoft Visual Studio 2005.................. 119

Data with the Entity Framework in Visual Studio 2010 121

EF: Importing an Existing Database......................... ... 122

EF: Model First i 131

POCO Templatesoouriiiii it 138

Putting It All Together. i 142

Getting Data from the Database, 142

Getting Data from the Bing Maps Web Services. 146

Parallel Programming.ot 149
AppFabricCaching i 150

Y] 414 T 78 PP 152

6 From 2005 to 2010: Designing the Look and Feel........... 153
Introducing the PlanMyNight.Web Project 153

Running the Project i 156

Creating the Account Controller it 157
Implementing the Functionality............... 158

Creating the Account View o i 173

Using the Designer View to CreateaWeb Form...................... 180
Extending the Applicationwith MEF. 188

Print Itinerary Add-in Explained. 190

SUMIMAIY. . ¢ttt ettt et e et ettt et ettt 193

7 From 2005 to 2010: Debugging an Application............. 195

Visual Studio 2010 Debugging Features............................. 195

Table of Contents

Managing Your Debugging Session. 196
New Threads Window o it 213
SUMMAAIY. . ettt et ettt et e ettt ettt 214

Part I Moving from Microsoft Visual Studio 2008 to
Visual Studio 2010

8 From 2008 to 2010: Business Logicand Data............... 217
Application Architecture 217

Plan My Night Data in Microsoft Visual Studio 2008.................. 219

Data with the Entity Framework in Visual Studio 2010 222

EF: Importing an Existing Database............................ 222

EF: Model Firsto i 232

POCO Templatescooiii i e i 239

Putting It All Together. 243

Getting Data from the Database 243

Parallel Programming.ot 247
AppFabricCaching 248

SUMIMANY. . ottt e et et e et ettt et e e et 250

9 From 2008 to 2010: Designing the Look and Feel........... 251
Introducing the PlanMyNight.Web Project 251

Running the Project i 254

Creating the Account Controller oot 255
Implementing the Functionality................ 256

Creating the Account Viewo i 270

Using the Designer View to CreateaWeb Form...................... 278
Extending the Applicationwith MEF........... 286

Print Itinerary Add-in Explained. 288

SUMIMANY. .ot e e e et ettt e e 291

10 From 2008 to 2010: Debugging an Application............. 293
Visual Studio 2010 Debugging Features............................. 293
Managing Your Debugging Session. 294

New Threads Windowo i it 311

SUMIMANY. . ottt e e e e e et e e 312

INdEX .ot e e 315

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Introduction

Every time we get close to a new release of Microsoft Visual Studio, we can feel the
excitement in the developer community. This release of Visual Studio is certainly no different,
but at the same time we can feel a different vibe. In November 2009, at the Microsoft
Professional Developer Conference in Los Angeles, participants had the chance to get their
hands on the latest beta of this Visual Studio incarnation. The developer community started
to see how different this release is compared to any of its predecessors. This might sound
familiar, but Visual Studio 2010 constitutes, in our opinion, a big leap and is a true game
changer in that it has been designed and developed from the core out.

Looking at posts in the MSDN forums and many other popular developer communities also
reveals that many of you—professional developers—are still working in previous versions of
Visual Studio. This book will show you how to move to Visual Studio 2010 and try to explain
why it's a great time to make this move.

Who Is This Book For?

This book is for professional developers who are working with previous versions of Visual
Studio and are looking to make the move to Visual Studio 2010 Professional.

What Is the Book About?

The book is not a language primer, language reference, or single-technology book. It's a
book that will help professional developers move from previous versions of Visual Studio
(starting with 2003 and moving on up). It will cover the features of Visual Studio 2010
through a sample application. It will go through a lot of the exciting new language features
and new versions of the most popular technologies without focusing on the technologies
themselves. It will instead put the emphasis on how you get to those new tools and features
from Visual Studio 2010. If you are expecting this book to thoroughly cover the new Entity
Framework or ASP.NET MVC 2, this is not the book for you. If you want to read a book where
the focus is on Visual Studio 2010 and on the reasons for moving to Visual Studio 2010, this is
the book for you.

vii

viii Introduction

How Will This Book Help Me Move to
Visual Studio 2010?

This book will try to answer that question by using a practical approach and by going
through the new features and characteristics of Visual Studio 2010 from your point of view—
that is, from the view of someone using Visual Studio 2005, for example. To be consistent for
all points of view and to cover the same topics from all points of view, we decided to build
and use a real application that covers many areas of the product rather than show you many
disjointed little samples. This application is named Plan My Night, and we'll describe it in
detail in this Introduction.

To help as many developers as we can, we decided to divide this book into three parts:

B Part | is for developers moving from Visual Studio 2003
B Part Il is for developers moving from Visual Studio 2005

B Part lll is for developers moving from Visual Studio 2008

Each part will help developers understand how to use Visual Studio 2010 to create many
different types of applications and unlock their creativity independently of the version they
are using today. This book will focus on Visual Studio, but we'll also cover many language
features that make the move even more interesting.

Each part will follow a similar approach and will include these chapters:

B “Business Logic and Data”
B “Designing the Look and Feel”

B "Debugging the Application”

For example, Part |, “Moving from Microsoft Visual Studio 2003 to Visual Studio 2010,”
includes a chapter called "From 2003 to 2010: Debugging the Application.” Likewise, Part I,
“Moving from Microsoft Visual Studio 2005 to Visual Studio 2010," includes a chapter called
“From 2005 to 2010: Debugging the Application.”

Designing the Look and Feel

These chapters will focus on comparing how the creation of the user interface has evolved
through the versions of Visual Studio. They pay attention to the design surface, code editor,
tools, and various controls, as well as compare Ul validation methods. These chapters also
tackle the topic of application extensibility.

Introduction ix

Business Logic and Data

These chapters tackle how the application is structured and demonstrate the evolution

of the tools and language features available to manage data. They describe the different
application layers. They also show how the middle tier is created across versions and how the
application will manage caching the data, as well as how to manage getting data in and from
the database.

Debugging the Application

These chapters showcase the evolution of all developer aids and debugger tools, as well as
compare the different ways to improve the performance of an application. They also discuss
the important task of unit-testing your code.

Deploying Plan My Night

Part |, for developers using Visual Studio 2003, also includes one extra chapter, “From 2003
to 2010: Deploying an Application.” This chapter goes through the different ways to package,
deploy, and deliver your application to your end users. The topic of updating and sending
new bits to your customers is also discussed. We feel that Parts Il and lll, for developers
using Visual Studio 2005 and Visual Studio 2008, respectively, didn't require a chapter on
deployment.

What Is Plan My Night?

Plan My Night (PMN) is an application that is self-describing, but just to make sure we're on
the same page, here’s the elevator pitch about PMN:

Plan My Night is designed and developed to help its users plan and manage their
evening activities. It allows the user to create events, search for activities and
venues, gather information about the activities and the venues, and finally share or
produce information about them.

Introduction

As the saying goes, a picture is worth a thousand words, so take a look at the Plan My Night
user interface in Figure I-1.

an My Night - New Eimerary - Windows Intemet Explorer = =)
6@-] retp: v planmymight et 45550 Tenerares 32 ~[4[x][l sing 5 -]
i Favorites [4 Plan My Night - New Hinerary] B - B - @ - Pagev Safety~ Toos~ @+
SEARCH MY PROFILE MY TTINERARIES | ABOUT Helo PMH Kew 2t wl

Itinerary: New Ifinerary |k Comments

Toml estmateed tme: 4h 30m + 2 minutes of wavel time Qn Manday, January 18, 2010 by PMN New User
First Comment!

Leave a comment

Add Comment

i

5213 Ballard Ave
Seattle, WA | Pha

Edi | Make Pricte | Email| Prine | Shoreen URL | Share | Fam:

H
§

-

puys
§

-

Done & Local intranct | Protected Mode: Off fa - ®I% -

FIGURE I-1 PMN's user interface

In its Visual Studio 2010 version, Plan My Night is built with ASP.NET MVC 2.0 using jQuery
and Ajax for Ul validation and animation. It uses the Managed Extensibility Framework (MEF)
for extending the capabilities of the application by building plug-ins: for sharing to social
networks, printing, e-mailing, and so on. We have used the Entity Framework to create the
data layer and the Windows Server AppFabric (formerly known as codename “Velocity”) to
cache data in memory sent to and obtained from the Microsoft SQL Server 2008 database.

We figure that three pictures are better than one, so take a look at Figure I1-2 for a diagram
displaying the different parts and how they interact with each other and at Figure 1-3 to see
the different technologies used in building Plan My Night.

an My Night Application

FIGURE I-2 Plan My Night components and interactions

FIGURE I-3 PMN 1.0 and the different technologies used in building it

Introduction

xi

xii Introduction

Why Should You Move to Visual Studio 2010?

There are numerous reasons to move to Visual Studio 2010 Professional, and before we dive
into the book parts to examine them, we thought it would be good to list a few from a high-
level perspective (presented without any priority ordering):

Built-in tools for Windows 7, including multitouch and “ribbon” Ul components.

Rich, new editor with built-in Windows Presentation Foundation (WPF) that you can
highly customize to suit how you work. Look at Figure I-4 for a sneak peek.

Multimonitor support.

New Quick Search, which helps to find relevant results just by quickly typing the first
few letters of any method, class, or property.

Great support for developing and deploying Microsoft Office 2010, SharePoint 2010,
and Windows Azure applications.

Multicore development support that allows you to parallelize your applications, and a
new specialized debugger to help you track the tasks and threads.

Improvements to the ASP.NET AJAX framework, core JavaScript IntelliSense support,
and the inclusion in Visual Studio 2010 of jQuery, the open-source library for DOM
interactions.

Multitargeting/multiframework support. Read Scott Guthrie’s blog post to get an
understanding of this great feature: http.//weblogs.asp.net/scottgu/archive/2009/08/27/
multi-targeting-support-vs-2010-and-net-4-series.aspx.

Support for developing WPF and Silverlight applications with enhanced drag-
and-drop support and data binding. This includes great new enhancements to the
designers, enabling a higher fidelity in rendering your controls, which in turn enables
you to discover bugs in rendering before they happen at run time (which is a great
improvement from previous versions of Visual Studio). New WPF and Silverlight tools
will help you to navigate the visual tree and inspect objects in your rich WPF and
Silverlight applications.

Great support for Team Foundation Server (TFS) 2010 (and previous versions) using
Team Explorer. This enables you to use the data and reports that are automatically
collected by Visual Studio 2010 and track and analyze the health of your projects with
the integrated reports, as well as keep your bugs and tasks up to date.

Introduction xiii

B Integrated support for test-driven development. Automatic test stub generation and a
rich unit test framework are two nice test features that developers can take advantage
of for creating and executing unit tests. Visual Studio 2010 has great extensibility
points that will enable you to also use common third-party or open-source unit test
frameworks directly within Visual Studio 2010.

20 PlaniyNigh - Microsoft Visusl Studio ==

File Edit View Project Buid Debug Team Data Tools Test Window Help

P[0 2| R ES .

crosoft Saraples.PlanMyNight Web_Default]9 Page Losdiobject sender, System EventArgs)
e "t Samples PLanmyNight ieb

=S EES e

]

iebs
using System.web.Mvc;
using System.ieb.UT;

I3 Content
I3 Controllers.

Bl public partial class Default : Page

Lvvvvvvvy

E public void Page_Load(object sender, System.Eventargs e)

I

string originalPath = Request.Path;
HttpContext .Current. RewritePathi
THttphandler httpHandler = new
httpHandle: ssRequest (Hitp!
HetpContext .Current. RewritePathi

uest Applicationpath, false);
tepHandler();

rent);
path, false)s

4) Globalasax
% Global.asax.cs
[s) NotFound.htrn

4 Solution Explorer [T

w00% - 4| i] >

Error List - 3 x e
@ 0Errors | 1) 0Warnings | (i) 0 Messages.

Description File Line Column Project

[EYEEHTEY & Output % Find Sym

FIGURE I-4 Visual Studio new WPF code editor

This is just a short list of all the new features of Visual Studio 2010 Professional; you'll
experience some of them firsthand in this book. You can get the complete list of new
features by reading the information presented in the following two locations: http.//msdn.
microsoft.com/en-us/library/dd547188(VS.100).aspx and http://msdn.microsoft.com/en-us/
library/bb386063(VS.100).aspx.

But the most important reason for many developers and enterprises to make the move is to
be able to concentrate on the real problems they're facing rather than spending their time
interpreting code. You'll see that with Visual Studio 2010 you can solve those problems faster.
Visual Studio 2010 provides you with new, powerful design surfaces and powerful tools that
help you write less code, write it faster, and deliver it with higher quality.

xiv Introduction

Errata and Book Support

We've made every effort to ensure the accuracy of this book and its companion content. If
you do find an error, please report it on our Microsoft Press site at Oreilly.com:

. Go to http://microsoftpress.oreilly.com.

1
2. In the Search box, enter the book’s ISBN or title.
3. Select your book from the search results.

4. On your book’s catalog page, under the cover image, you'll see a list of links.
5. Click View/Submit Errata.

You'll find additional information and services for your book on its catalog page. If you need
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

Part |
Moving from Microsoft

Visual Studio 2003 to
Visual Studio 2010

Authors Patrice Pelland, Ken Haines, and Pascal Pare

From 2003 to 2010: Business Logic and Data (Pascal) 3
From 2003 to 2010: Designing the Look and Feel (Ken) 39
From 2003 to 2010: Debugging an Application (Patrice) 81

From 2003 to 2010: Deploying an Application (Patrice) 103

Chapter 1

From 2003 to 2010: Business
Logic and Data

After reading this chapter, you will be able to

B Use the Entity Framework (EF) to build a data access layer using an existing database or
with the Model-First approach

B Generate entity types from the Entity Data Model (EDM) Designer using the ADO.NET
Entity Framework POCO templates

B Get data from Web services

B |earn about data caching using the Microsoft Windows Server AppFabric (formerly
known by the codename “Velocity")

Application Architecture

The Plan My Night (PMN) application allows the user to manage his itinerary activities and
share them with others. The data is stored in a Microsoft SQL Server database. Activities are
gathered from searches to the Bing Maps Web services.

Let's have a look at the high-level block model of the data model for the application, which is
shown in Figure 1-1.

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Bing Maps services

FIGURE 1-1 Plan My Night application architecture diagram

Defining contracts and entity classes that are cleared of any persistence-related code con-
straints allows us to put them in an assembly that has no persistence-aware code. This
approach ensures a clean separation between the Presentation and Data layers.

Let's identify the contract interfaces for the major components of the PMN application:

B //tinerariesRepository is the interface to our data store (a Microsoft SQL Server
database).

B /ActivitiesRepository allows us to search for activities (using Bing Maps Web services).

B /CachingProvider provides us with our data-caching interface (ASP.NET caching or
Windows Server AppFabric caching).

Note This is not an exhaustive list of the contracts implemented in the PMN application.

PMN stores the user’s itineraries into an SQL database. Other users will be able to comment
and rate each other’s itineraries. Figure 1-2 shows the tables used by the PMN application.

Chapter 1 From 2003 to 2010: Business Logic and Data 5

ltinerary ltineraryRating
Id: bigint IDENTITY Id: bigint IDENTITY
Userld: uniqueidentifier NOT NULL Userld: uniqueidentifier NOT NULL
Name: nvarchar(100) NOT NULL ltineraryld: bigint NOT NULL (FK)
Created: smalldatetime NOTNULL | | Rating: tinyint NOT NULL
Description: nvarchar{1000) NULL Timestamp: datetime NOT NULL
IsPublic: bit NOT NULL
RatingSum: intNOT NULL
Rating: money NULL ltineraryComment

Id: bigint IDENTITY
ltineraryld: bigint NOT NULL (FK)

RatingCount int NOT NULL B
|
|
|
|

It Activit _
nerayAcivies Userld: uniqueidentiier NOT NULL
ltineraryld: bigint NOT NULL (FK) Body: nvarchar(4000) NOT NULL
Activityld: varchar(250) NOT NULL Timestamp: date NOT NULL

Order int NOT NULL IpAddress: varchar(16) NOT NULL

EstimatedMinutes: smallint NOT NULL
Typeld: int NOT NULL

State: char(2) NOT NULL ZipCode

City: varchar(150) NOT NULL - -

Zip: varchar(50) NOT NULL ZipCode: varchar(5) NOT NULL
Latitude: float(53) NOT NULL City: varchar(150) NOT NULL
Longitude: float{53) NOT NULL St t. . har(150) NOT NULL
Location: varchar(20) MULL ate: varchar(150)

FIGURE 1-2 PlanMyNight database schema

W Important The Plan My Night application uses the ASP.NET Membership feature to provide
secure credential storage for the users. The user store tables are not shown in Figure 1-2. You can
learn more about this feature on MSDN: ASP.NET 4 - Introduction to Membership (http://msdn.
microsoft.com/en-us/library/yh26yfzy(VS.100).aspx).

Note The ZipCode table is used as a reference repository to provide a list of available Zip Codes
and cities so that we can provide autocomplete functionality when the user is entering a search
query in the application.

Plan My Night Data in Microsoft Visual Studio 2003

It would be straightforward to create the Plan My Night application in Visual Studio 2003
because it offers all the required tools to help you code the application. However, some of the
technologies used back then required you to write a lot more code to achieve the same goals.

In Visual Studio 2003, you could create the required data layer using ADO.NET DataSet or
DataReader to access your database. (See Figure 1-3.) This solution offers you great flexibility
because you have complete control over access to the database. On the other hand, it also
has some drawbacks:

B You need to know the SQL syntax.

m All queries are specialized. A change in requirement or in the tables will force you to
update the queries affected by these changes.

6 Part | Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

B You need to map the properties of your entity classes using the column name, which is
a tedious and error-prone process.

B You have to manage the relations between tables yourself.

PlanMyNightDatabase.cs | 4b X

I%Ml:rusuf[‘Samu\es‘P\anMyN\ght‘DaLa‘DAL.PIanM‘/N\gthatabase ﬂ i g tineraryld, Guid userld byte rating, DateTime timestamp) ;I

public void Rateltinerary(lony itineraryld, Guid userld, byte rating, DateTime timestamp)
¢
const string crdInsertRating = "INSERT Into ItineraryRating iUserId, Itineraryld, Rating, Timestamp] " +
"VALUES (BUserId, @Itineraryld, BRating, BTimestawp)":

try
¢
using [SglConnection sglConnection = nem SglConnection(this.connectionString))
€
using [SqlCommand cwdlnsert = sglConnection.CreateCommand ()]
¢
cwdTnsert. CommandType = CommandType. Text:
cwdTnsert. CommandText = cmdInsertRating:

cwdInsert.Paraneters.Add("BVserId”, SqlDbType.Unieueldentifier].Value = userld;
cwdInsert.Paransters.Add("@ ItineraryId”, SqlDbType.Biglnt).Value = itineraryld;
cwdTnsert. Paraneters. idd {"BRating”, SqlDhType.TinyInt).Value = rating:
cwdInsert.Parancters.idd ("B Timestawp”, SqlDbType.DateTime].Value = timestamp:

sglconnection.Open() ;
cwdInsert. ExecutelonQuery () ;

sglconnection, Close (] ;
¥
¥
}
satch (SqlException) J
¢
throw;
¥
}

o | .

FIGURE 1-3 ADO.NET Insert query

In the next sections of this chapter, you'll explore some of the new features of Visual Studio
2010 that will help you create the PMN data layer with less code, give you more control of
the generated code, and allow you to easily maintain and expand it.

Data with the Entity Framework in Visual Studio 2010

The ADO.NET Entity Framework (EF) allows you to easily create the data access layer for an
application by abstracting the data from the database and exposing a model closer to busi-
ness requirement of the application. The EF has been considerably enhanced in the .NET
Framework 4 release.

See Also The MSDN Data Developer Center offers a lot of resources about the ADO.NET Entity
Framework (http://msdn.microsoft.com/en-us/data/aa937723.aspx) in .NET 4.

You'll use the PlanMyNight project as an example of how to build an application using some
of the features of the EF. The next two sections demonstrate two different approaches to
generating the data model of PMN. In the first one, you let the EF generate the Entity Data
Model (EDM) from an existing database. In the second part, you use a Model First approach,
where you first create the entities from the EF designer and generate the Data Definition
Language (DDL) scripts to create a database that can store your EDM.

Chapter 1 From 2003 to 2010: Business Logic and Data 7
EF: Importing an Existing Database

You'll start with an existing solution that already defines the main projects of the PMN appli-
cation. If you installed the companion content at the default location, you'll find the solution
at this location: %userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\
Chapter 1\Code\ExistingDatabase. Double-click the PlanMyNight.sIn file.

This solution includes all the projects in the following list, as shown in Figure 1-4:

B PlanMyNight.Data: Application data layer

B PlanMyNight.Contracts: Entities and contracts

B PlanMyNight.Bing: Bing Maps services

B PlanMyNight.Web: Presentation layer

B PlanMyNight.AppFabricCaching: AppFabric caching

Solution Explarer > 1x
_.l
||__Zﬁlution 'PlantdyMight' (5 prajects) |
4 [PlanhtyMight.&ppFabricCaching
[[=d Properties
> [z3] References
4 [F PlanhtyMight.Bing
> [=d Properties
> [x3] References
4 [F PlanhyMight.Contracts
[[=d Properties
> [x=] References
4 [PlanMyNight.Data
[[=d Properties
> [z3] References
4 2B PlanMyNight.Web
[[=d Properties
> [z3] References
5 App_Data
[Contrallers
3 Models
3 Scripts
3 Wiews
ﬁ] Global.asax
5 Web.config

v v v v

FIGURE 1-4 PlanMyNight solution

The EF allows you to easily import an existing database. Let's walk through this process.

The first step is to add an EDM to the PlanMyNight.Data project. Right-click the
PlanMyNight.Data project, select Add, and then choose New Item. Select the ADO.NET Entity
Data Model item, and change its name to PlanMyNight.edmx, as shown in Figure 1-5.

Part |

Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Marne:

£idd New Trern - PlaniviyRlight.Data
Installed Templates Sortby: Search Installed Templates 2]
4 Visual Citltems
Type: Visual CTt
Code ADONET Entity Data Model Visual C# lters ypes Vsl R ems
5 & project iterm for creating an ADO.NET
ciz 1 Entity Data Model,
Gereral Dataset Visual C# Ieerns
Wb
Windows Farms LING to SQL Classes Wisual C¥#Items
WPE
Reparting Local Database Visual C# ltems
Silverlight
Workflow Local Database Cache Visual C# lrerns
Service-based Database Visual C# Items
XML File Visual C# Items
XML Scherma Visual C# Items
2l XLTFile Visual C# Items

PlantdyNight edms

P

FIGURE 1-5 Add New Item dialog with ADO.NET Entity Data Model selected

The first dialog of the Entity Data Model Wizard allows you to choose the model content.
You'll generate the model from an existing database. Select Generate From Database and
then click Next.

You need to connect to an existing database file. Click New Connection. Select Microsoft
SQL Server Database File from the Choose Data Source dialog, and click Continue. Select
the %userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 1\
ExistingDatabase\PlanMyNight.Web\App_Data\PlanMyNight.mdf file. (See Figure 1-6.)

I &7 =
Whicl

=

This
cann
toin

Entity

[54

Entity Data Model Wizard

Connection Properties 7 |l

Enter information to cannect to the selected data source ar click
"Change" to choose a different data source and/for provider.

Data source:

Microsaft SQL Server Database File (SqiClient)

Database file name (new ar existing):

SlanhtyNight WebSpp_Data\PlanktyNight.mdf

Log on to the server

@ Use Windows Authentication
(0 Use SQL Server Authentication
User name;

Password;

Save my passward

e (s B

< Previous Mext »

=]

a?

MNewr Cannection...

) that s required to

security risk. Do you want

prlication code,

inish Cancel

FIGURE 1-6 EDM Wizard database connection

Chapter 1 From 2003 to 2010: Business Logic and Data 9

Leave the other fields in the form as is for now, and click Next.

Note You'll get a warning stating that the local data file is not in the current project. Click No to
close the dialog because you do not want to copy the database file to the current project.

From the Choose Your Database Objects dialog, select the Itinerary, ItineraryActivities,
ItineraryComment, ItineraryRating, and ZipCode tables and the UserProfile view. Select the
RetrieveltinerariesWithinArea stored procedure. Change the Model Namespace value to
Entities as shown in Figure 1-7.

Entity Data Model Wizard -7l

! b Choose Your Database Objects

Which database objects do you want to include in your model?

;
)
&

|z
D

[CIET aspnet Applications (dbo)
[CIE3 aspret_ Membership (dba)
[CIE3 aspnet_Profile (dbo)
[CIE3 aspnet_Schemaversions (dbo)
[CIET aspret_Users (dbo)
[ZIE Hinerary (dbs)
[V Hineraryhctivities (dbo)
[Z]E3 HineraryComment (dbo)
[Z]E3 HineraryRating (dbo)
[CIE sysdiagrams (dbo)
[ZIE3 ZipCode (dbo)
4 Yisws
UserProfile (dbo)
[C1E vwv_aspret_Applications (dbo)
[CH vwv_aspret_MembershipUsers (dba)
[CFE vwv_aspret_Profiles (dbo)
[CIE vw_aspret_Users (dbo)
4[] Stored Procedures
[T asnnet SnwDatalnTahles fdhnt 32
Pluralize o singularize generated object names

I

Include fareign key columns in the model
Madel Mamespace:

Entities

FIGURE 1-7 EDM Wizard: Choose Your Database Objects page

Click Finish to generate your EDM.

Fixing the Generated Data Model

You now have a model representing a set of entities matching your database. The wizard has
generated all the navigation properties associated with the foreign keys from the database.

The PMN application requires only the navigation property ItineraryActivities from the
Itinerary table, so you can go ahead and delete all the other navigation properties. You'll also
need to rename the ltineraryActivities navigation property to Activities. Refer to Figure 1-8
for the updated model.

10

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

s Tinerary @) s TineraryActivity ‘ s ZipCode @)
B properties B properties B properties
FH ¥ inerandd ¥ ZipCodel
5 Userld P Activityld = City
5 Narne 5 Order 9 State
[Created [EstimatedMinutes B Mavigation Praperties
7 Description N S B Typeld L
[IsPublic 9 State
5 RatingCount 5 City
2 RatingSum ' Zip
[Rating 2 Latitude
= Navigation Properties #F Longitude
=] Activities = Navigation Properties

T 1

s MineraryCom...

2 RineraryRating

B properties
B properties)]
=it 5 Ttineranyld
5 Userld P Userld
5 ineranyld ﬁs_udy
2 Rating Zf Timestarnp
F Timestamp S IpAddress

= Mavigation Properties

= Navigation Properties

FIGURE 1-8 Model imported from the PlanMyNight database

Notice that one of the properties of the ZipCode entity has been generated with the name
ZipCodel because the table itself is already named ZipCode and the name has to be unique.
Let's fix the property name by double-clicking it. Change the name to Code, as shown in
Figure 1-9.

¢ ZipCode

= Praperties

pslcesd
B3 City
ﬁ State

= Mavigation Properties
¢

FIGURE 1-9 ZipCode entity

Build the solution by pressing Ctrl+Shift+B. When looking at the output window, you'll notice
two messages from the generated EDM. You can discard the first one because the Location
column is not required in PMN. The second message reads as follows:

The table/view 'dbo.UserProfile' does not have a primary key defined and no valid
primary key could be inferred. This table/view has been excluded. To use the entity,
you will need to review your schema, add the correct keys, and uncomment it.

When looking at the UserProfile view, you'll notice it does not explicitly define a primary key
even though the UserName column is unique.

You need to modify the EDM manually to fix the UserProfile view mapping so that you can
access the UserProfile data from the application.

Chapter 1 From 2003 to 2010: Business Logic and Data 11

From the project explorer, right-click the PlanMyNight.edmx file and then select Open With.
Choose XML (Text) Editor from the Open With dialog as shown in Figure 1-10. Click OK to
open the XML file associated with your model.

Open With - Planhyblight.edrmx [~ el

Choose the program you want to use to open this file:

ADOMET Entity Data Model Designer (Default) Add...

- R
XML (Text) Editar with Encoding il dd

Source Code (Text) Editor

Source Code (Text) Editar With Encoding
HTrAL Editar

HTrAL Editor with Encoding

Binary Editar
Resource Editar

Ok l ’ Cancel

FIGURE 1-10 Open PlanMyNight.edmx in the XML Editor

Note You'll get a warning stating that the PlanMyNight.edmx file is already open. Click Yes to
close it.

The generated code was commented out by the code-generation tool because there was no
primary key defined. To be able to use the UserProfile view from the designer, you need to
uncomment the UserProfile entity type and add the Key tag to it. Search for UserProfile in
the file. Uncomment the entity type, add a Key tag and set its name to UserName, and make
the UserName property not nullable. Refer to Listing 1-1 to see the updated entity type.

LISTING 1-1 UserProfile Entity Type XML Definition

<EntityType Name="UserProfile">
<Key>
<PropertyRef Name="UserName"/>
</Key>
<Property Name="UserName" Type="uniqueidentifier" Nullable="false" />
<Property Name="FullName" Type="varchar" MaxLength="500" />
<Property Name="City" Type="varchar" MaxLength="500" />
<Property Name="State" Type="varchar" MaxLength="500" />
<Property Name="PreferredActivityTypeld" Type="int" />
</EntityType>

12 Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

If you close the XML file and try to open the EDM Designer, you'll get the following error
message in the designer: “The Entity Data Model Designer is unable to display the file you
requested. You can edit the model using the XML Editor.”

There is a warning in the Error List pane that can give you a little more insight into what this
error is all about:

Error 11002: Entity type 'UserProfile’ has no entity set.

You need to define an entity set for the UserProfile type so that it can map the entity type to
the store schema. Open the PlanMyNight.edmx file in the XML editor so that you can define

an entity set for UserProfile. At the top of the file, just above the Itinerary entity set, add the

XML code shown in Listing 1-2.

LISTING 1-2 UserProfile EntitySet XML Definition

<EntitySet Name="UserProfile" EntityType="Entities.Store.UserProfile"

store:Type="Views" store:Schema="dbo" store:Name="UserProfile">
<DefiningQuery>
SELECT
[UserProfile].[UserName] AS [UserName],
[UserProfile].[FullName] AS [FullName],
[UserProfile].[City] AS [City],
[UserProfile].[State] AS [State],
[UserProfile].[PreferredActivityTypeld] as [PreferredActivityTypeld]
FROM [dbo].[UserProfile] AS [UserProfile]
</DefiningQuery>
</EntitySet>

Save the EDM XML file, and reopen the EDM Designer. Figure 1-11 shows the UserProfile view
in the Entities.Store section of the Model Browser.

Tip You can open the Model Browser from the View menu by clicking Other Windows and
selecting the Entity Data Model Browser item.

Model Br

Type here to search =

4 |4 PlanMyNightedmx
Ll Entities
4 [Entity Types
&2 Tinerary
&2 Tinerarylctivity
%2 TtineraryComment
&2 TtineraryRating
%2 ZipCode
3 Complex Types
3 Associations
L el EntityCentainer: PlanMyNightEntitic
4 | Entities.Store
4 [0 Tables / Views
[tinerary
[KineraryActivities
[KineraryComment
[KineraryRating
4 [UserProfile
{E UserMName
[city
FullName
(5] PreferredActivityTypeld
[E] state
[ZipCode
[Stored Procedures
3 Constraints

FIGURE 1-11 Model Browser with the UserProfile view

Chapter 1 From 2003 to 2010: Business Logic and Data

13

Now that the view is available in the store metadata, you add the UserProfile entity and map

it to the UserProfile view. Right-click in the background of the EDM Designer, select Add,
and then choose Entity. You'll see the dialog shown in Figure 1-12.

Add Entity

Properties

Entity narne:

[2 el

UserProfile

Base type:

(Mone)

Entity Set:

UserProfiles

Key Property
Create key property

Property narne:

UserMarme

Property type:

Guid

FIGURE 1-12 Add Entity dialog

14

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Complete the dialog as shown in Figure 1-12, and click OK to generate the entity.

You need to add the remaining properties: City, State, and PreferredActivityTypeld. To do
so, right-click the UserProfile entity, select Add, and then select Scalar Property. After the
property is added, set the Type, Max Length, and Unicode field values. Table 1-1 shows

the expected values for each of the fields.

TABLE 1-1 UserProfile Entity Properties

Name Type Max Length
FullName String 500
City String 500
State String 500
PreferredActivityTypeld Int32 NA

Unicode
False
False
False

NA

Now that you have created the UserProfile entity, you need to map it to the UserProfile view.
Right-click the UserProfile entity, and select Table Mapping as shown in Figure 1-13.

Add 3
Renarme

Cut Chrl +3
Copy Ctrl+C
Paste Crl +4f
Delete Del

i 9=

X {

Collapse

Table Mapping
Stored Procedure Mapping

B [l

Show in Model Browser

Update kodel frorm Database..,

Generate Database from hodel..
Add Code Generation Iern..,
Walidate
Properties Alt+Enter

FIGURE 1-13 Table Mapping menu item

Then select the UserProfile view from the drop-down box as shown in Figure 1-14. Ensure
that all the columns are correctly mapped to the entity properties. The UserProfile view of
our store is now accessible from the code through the UserProfile entity.

Mapping Details - UserPrafile X

Column Operator Value / Property

B |4 Tables
4 [[Maps to UserProfile
a

P Userarne : Guid
5 FullName : Sting

5 State : String
[Preferedéctivit Typeld : Int32

E3E 3R 4

FIGURE 1-14 UserProfile mapping details

Chapter 1 From 2003 to 2010: Business Logic and Data 15

Stored Procedure and Function Imports

The Entity Data Model Wizard has created an entry in the storage model for the
RetrieveltinerariesWithinArea stored procedure you selected in the last step of the wizard.
You need to create a corresponding entry to the conceptual model by adding a Function
Import entry.

From the Model Browser, open the Stored Procedures folder in the Entities.Store section.
Right-click RetrieveltineraryWithinArea, and then select Add Function Import. The Add
Function Import dialog appears as shown in Figure 1-15. Specify the return type by selecting
Entities and then select the Itinerary item from the drop-down box. Click OK.

Add Function Import @

Function Import MName:

RetrieveltinerariesWithinArea

Stored Procedure Mame:

Retripwalis PR Y —

Returns a Collection Of
@) Mone
@) Scalars:

©) Complex: Update

@ Entities: ’hinelary A

Stored Procedure Column Information
Get Column Information

Click on "Get Column Information” above to retrieve the stored
procedure’s schema. Once the schema is available, click on "Create Mew
Complex Type" below to create a compatible complextype. You can
also always update an existing complex type to match the returned
schema. The changes will be applied to the model once you click on
QK.

Create Mew Complex Type

OK] ’ Cancel

FIGURE 1-15 Add Function Import dialog

The RetrieveltinerariesWithinArea function import was added to the Model Browser as shown
in Figure 1-16.

16

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Model Browser v i1x

Type here to search

4 |4 PlanMyNightedmx
Ll Entities
v 3 Entity Types
3 Complex Types
3 Associations
4 (@] EntityCentainer: PlanMyNightEntities
(3 Entity Sets
3 Association Sets
4 [Function Impaorts
Rl RetrieveltinerariesWithinArea
@ 1at
'@ lon
page
@l pageSize
'@ radius
total
_ @ typeld
4 | Entities.Store
3 Tables / Views
4 [Stored Procedures
4 D RetrieveltinerariesWithinfrea
lat
'@ lon
@ page
pageSize
radius

'@ total

@ typetd
E3 Constraints

FIGURE 1-16 Function Imports in the Model Browser

You can now validate the EDM by right-clicking on the design surface and selecting Validate.
There should be no error or warning.

EF: Model First

In the prior section, you saw how to use the EF designer to generate the model by importing
an existing database. The EF designer in Visual Studio 2010 also supports the ability to gener-
ate the Data Definition Language (DDL) file that will allow you to create a database based on
your entity model. In this section, you'll use a new solution to learn how to generate a data-
base script from a model.

You can start from an empty model by selecting the Empty Model option from the Entity
Data Model Wizard. (See Figure 1-17.)

Chapter 1 From 2003 to 2010: Business Logic and Data 17

Note To get the wizard, right-click the PlanMyNight.Data project, select Add, and then choose
New Item. Select the ADO.NET Entity Data Model item.

Entity Data Model Wizard -7l

! b Choose Model Contents

What should the model contain?

u

Generate [T
fram d..

Creates an empty madel as 3 starting point for visually designing a conceptual madel fram the toalbox,
Classes are generated from the madel when the project is compiled. You can specify a database connection
Ister to map the conceptual madel to the storage model.

FIGURE 1-17 EDM Wizard: Empty model

Open the PMN solution at %userprofile%\Documents\Microsoft Press\Moving to Visual
Studio 2010\Chapter 1\Code\ModelFirst by double-clicking the PlanMyNight.sIn file.

The PlanMyNight.Data project from this solution already contains an EDM file named
PlanMyNight.edmx with some entities already created. These entities match the data schema
you saw in Figure 1-2.

The Entity Model designer lets you easily add an entity to your data model. Let’s add the
missing ZipCode entity to the model. From the toolbox, drag an Entity item into the designer,
as shown in Figure 1-18. Rename the entity as ZipCode. Rename the /d property as Code,
and change its type to String.

18 Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

o0 Plankybight - Microsoft Visual Studio = el =
Fle Edit View Project Bulld Debuy Team Data Test Tools Window Help
(G @ s aB]9-c-|bowe FFGREBO-L AR R =T E
ll Plantybight.edmy
F k r 7 S - o p-
‘Vp“m“w“’ 37 Zipcode Crepe e Cam et 2| SE
5 Pefiicy 23 Solution ‘PlanhyNight' 5 projects)
L Association B Properties S properties 4 (3 PlanhyNight.AppF abricCaching
& Entity S 1 b [Properties
> [Ref
Lo Inheritonce & City 2 Usertd 2 Tinerandd e
a4 General 4 (G PrantyNight Bing
57 State 5 Name 5 Userld s Ba Properties
= Navigation Properties F Crested £ Body: I b B3 References
e reinolussbie L 5 Description 5 Timestarmp
controls in this group. G e 4 (3 PlanMyNight Cantracts
Drag an itern onto this raelic pAddress b [l Properties
text to add it to the [5F RatingCount. = Havigation Properties b B References
toolbox, % RatingSum L . @ fight.Data
' Rating P b Properties
= Navigation Properties “ RineraryRating b [l References
4 & PlantyNight.edrmx
= Properties %] PlanMyNightDesigner.cs
P ()] b (R Planhytight Web
Ko s Aty 8 Userld = solution.. I
2 Hineraryld
= properties 2 Rating —
¥ Tinerand B Timestamp PlanMyNight ZipCode.Code Property
Bactiinld = Navigation Froperties Bl =
2 Order g
i —— Unicode False -
5 Estimatedinutes .
B State
Sy Concurrency Modh None
i
e gefauh\/a\u: (Mone) Al
5 Latitude & Documentation =
Flongitude Entity Keye True
A Typeld of e Code A
= Navigation Properties | Name
—— E, 0 The name of the property,

FIGURE 1-18 Entity Model designer

You need to add the City and State properties to the entity. Right-click the ZipCode entity,
select Add, and then choose Scalar Property. Ensure that each property has the values shown
in Table 1-2.

TABLE 1-2 ZipCode Entity Properties

Name Type Fixed Length Max Length Unicode
Code String False 5 False
City String False 150 False
State String False 150 False

Add the relations between the ItineraryComment and Itinerary entities. Right-click the
designer background, select Add, and then choose Association. (See Figure 1-19.)

Chapter 1 From 2003 to 2010: Business Logic and Data
Add Association

Association Mame:

Fi_itineraryCommentltinerary

End End

Entity: Entity:

’ItineraryComment v] ’Itinerary v]
Multiplicity: Multiplicity:

[Many) | [1ione -]

[[] Mavigation Property: [] Mavigation Property:

Ttinerary ItineraryCormments
[] &dd fareign key properties to the ‘TineraryComrment’ Entity

ItineraryComment can have 1 (One) instance of Itinerary, -
Itinerary can have * (Many) instances of ItineranyComrment,
QK l ’ Cancel

FIGURE 1-19 Add Association dialog for FK_ItineraryCommentitinerary

Set the association name to FK_ItineraryCommentltinerary, and then select the entity
and the multiplicity for each end, as shown in Figure 1-19. After the association is created,
double-click the association line to set the Referential Constraint as shown in Figure 1-20.

Referential Canstraint
Principal:
Ttinerary - oK
Cependent:
Delete

ItineraryComment

Cancel

Principal Key Dependent Property

Id Itineraryld

FIGURE 1-20 Association Referential Constraint dialog

19

20

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Add the association between the ItineraryRating and Itinerary entities. Right-click the
designer background, select Add, and then choose Association. Set the association name to
FK_ItineraryltineraryRating and then select the entity and the multiplicity for each end as
in the previous step, except set the first end to ItineraryRating. Double-click on the associa-
tion line, and set the Referential Constraint as shown in Figure 1-20. Note that the Dependent
field will read ItineraryRating instead of ItineraryComment.

Create a new association between the ItineraryActivity and Itinerary entities. For the
FK_lItineraryltineraryActivity association, you also want to create a navigation property
and name it Activities, as shown in Figure 1-21. After the association is created, set the
Referential Constraint for this association by double-clicking on the association line.

Add Association

Association Mame:

FE_Ttinerargfctivityltinerary

End End

Entity: Entity:

’ItineraryActivity v] ’Itinerary v]
Multiplicity: Multiplicity:

[Many) | [1ione -]
[[] Mavigation Property: MNavigation Property:

Ttinerary Avctivities

[] 2dd fareign key properties to the ‘Tinerangictivity' Entity

Itinerarydctivity can have 1 (One) instance of Itinerany. -

Itinerary can have * (Many) instances of Itinerangfctivity, Use
Ttinerary.Activities to access the ltineraryfctivity instances|

Ok l ’ Cancel

FIGURE 1-21 Add Association dialog for FK_ItineraryActivityltinerary

Generating the Database Script from the Model
Your data model is now complete, but there is no mapping or store associated with it. The EF

designer offers you the possibility of generating a database script from our model.

Right-click on the designer surface, and choose Generate Database From Model as shown in
Figure 1-22.

Chapter 1 From 2003 to 2010: Business Logic and Data 21

— N . —
B State ﬁ Created ﬁ Body
e Mavigation Properties ﬁDescription ﬁTimestan
- 5 IsPublic

5 [paddres:
' RatingCount = Mavigation P
Add 3
Diagram L4 S —
T [< “¢ Tinerary)
Grid v ’
= Properties
Scalar Property Format 3 ¥ tinerar
Select Al] Activity
& Mapping Details 57 Order
Iodel Browser B Estimat
Update kadel fi Datab = state
pdate Model from Database... ﬁCit}"
Generate Database from Model... ﬁZip
Add Code Generation Itemn... 57 Latitud
Validate eyl
5 Typeld
Properties Alt+Enter = Navigatior

e -

FIGURE 1-22 Generate Database From Model menu item

The Generate Database Wizard requires a data connection. The wizard uses the connec-
tion information to translate the model types to the database type and to generate a DDL
script targeting this database.

Select New Connection, select Microsoft SQL Server Database File from the Choose Data
Source dialog, and click Continue. Select the database file located at %userprofile%\
Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 1\Code\ModelFirst\Data\
PlanMyNight.mdf. (See Figure 1-23)

Connection Properties m

Enter information to connect to the selected data source or click
"Change" to choose a different data source andfor provider,

Data source:

Microsoft SQL Server Database File (SgIClient)

Database file name (hew or existing):

=nts\SourcelDataiModelFirstyPlanhyMight.mdf Browyse..,

Log on to the server

@ Use Windows Authentication

() Use SOL Server Authentication

User name;
Password;
Save my password
Test Connection] [(0]:4 H Cancel]

FIGURE 1-23 Generate a script database connection

22

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

After your connection is configured, click Next to get to the final page of the wizard as
shown in Figure 1-24. When you click Finish, the generated T-SQL PlanMyNight.edmx.sql file
is added to your project. The DDL script will generate the primary and foreign key constraints
for your model.

Generate Database Wizard [|

“%%J Summary and Settings

Save DDL Azt PlanhyMight.edrmsql

DoL

s

-- Entity Designer DDL Script for SQL Server 2005, 2008, and Azure

-- Date Created: 02/03/2010 22:58:49
- Generated from EDMX file: CAUsers\DocumentsWisual Studio 20104Projects
\Chapterl\PlanhdyNight Dats\PlanhdyNight edmx

SET QUOTED_IDENTIFIER: OFF;
GO

USE [Planhylight];

GO

IF SCHEMA_ID(N'dbo') IS MULL EXECUTE(W'CREATE SCHEMA [dba]');
GO

-- Dropping existing FOREIGN KE constraints

FIGURE 1-24 Generated T-SQL file

The EDM is also updated to ensure your newly created store is mapped to the entities. You
can now use the generated DDL script to add the tables to the database. Also, you now have
a data layer that exposes strongly typed entities that you can use in your application.

Important Generating the complete PMN database would require adding the remaining
tables, stored procedures, and triggers used by the application. Instead of performing all these
operations, we will go back to the solution we had at the end of the “EF: Importing an Existing
Database” section.

POCO Templates

The EDM Designer uses T4 templates to generate the code for the entities. So far, we have
let the designer create the entities using the default templates. You can take a look at the
code generated by opening the PlanMyNight.Designer.cs file associated with PlanMyNight.
edmx. The generated entities are based on the EntityObject type and decorated with
attributes to allow the EF to manage them at run time.

Chapter 1 From 2003 to 2010: Business Logic and Data 23

Note T4 stands for Text Template Transformation Toolkit. T4 support in Visual Studio 2010 allows
you to easily create your own templates and generate any type of text file (Web, resource, or
source). To learn more about code generation in Visual Studio 2010, visit Code Generation and
Text Templates (http://msdn.microsoft.com/en-us/library/bb126445(VS.100).aspx).

The EF also supports POCO entity types. POCO classes are simple objects with no attributes
or base class related to the framework. (Listing 1-3, in the next section, shows the POCO
class for the ZipCode entity.) The EF uses the names of the types and the properties of these
objects to map them to the model at run time.

Note POCO stands for Plain-Old CLR Objects.

ADO.NET POCO Entity Generator

Let's re-open the %userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\
Chapter 1\Code\ExistingDatabase\PlanMyNight.sIn file.

Open the PlanMyNight.edmx file, right-click on the design surface, and choose Add Code
Generation Item. This opens a dialog like the one shown in Figure 1-25, where you can select
the template you want to use. Select the ADO.NET POCO Entity Generator template, and
name it PlanMyNight.tt. Then click the Add button.

Note You might get a security warning about running this text template. Click OK to close the
dialog because the source for this template is trusted.

Add New ltem - PlarMyMNightData : [2 [
Installed Templates Sort by Highest Ranked = BE Search Online Templates 2|
Online Templates N

é‘é ADO.NET C# POCO Entity Generator Type: Visual G2

4 Templates A Microsoft Entity Framework project item to generate a strongly-typed Created By: Microso ft
ASPNET ObjectContext class and entity classes with persistence ignorance in C... Version: 1.1
Database Downloads: 12031
Other Silverlight Client Access Policy File Rating: (5 Votes)
Siverlight W Adds item template for clientaccesspolicyxml file format for cross- More Information
Windows Forms domain services. Report Extension to Microsoft
Workflow
WoE h\" WPF About Box (CS)
Every application has an AboutBox, but there isn't a common one for

WPF Applications... until now, Create an AboutBox for a WPF Applicat...

85| WCF Flowchart Service Template
£ Iem template for creating a Flowchart Warkflow Service e T S—

&, 40088t oot Gt

&G, ADONET POCO Entity Gensrator

AT rT L —

1
Name: PlanlMyNight.tt

FIGURE 1-25 Add New Item dialog

24

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Two files, PlanMyNight.tt and PlanMyNight.Context.tt, have been added to your project, as
shown in Figure 1-26. These files replace the default code-generation template, and the code
is no longer generated in the PlanMyNight.Designer.cs file.

g Solution 'PlantdyMight' (5 projects)
» [PlanMyNight.&ppFabricCaching
» [PlanMyNight.Bing
(A PlanhyMight. Contracts
[z PlanMyNight.Data
=d| Properties
gl References
i App.Config
4 7] PlankyMight.Context.tt
%) PlantyMight.Context.cs
i PlankdyMight.edrm
4 |7] PlanktyMight.tt
% Itinerary.cs
%) Hinerargdctivity.cs
% HineraryComrment.cs
%) HineraryRating.cs
% PlanhyMight.cs
% UserProfile.cs
% ZipCode.cs
(B PlanhyMightiveb

FIGURE 1-26 Added templates

The PlanMyNight.tt template produces a class file for each entity in the model. Listing 1-3
shows the POCO version of the ZipCode class.

LISTING 1-3 POCO Version of the ZipCode Class

namespace Microsoft.Samples.PlanMyNight.Data
{
pubTlic partial class ZipCode
{
#region Primitive Properties
public virtual string Code
{
get;
set;
}
public virtual string City
{
get;
set;
}
public virtual string State
{
get;
set;
}

#endregion

Chapter 1 From 2003 to 2010: Business Logic and Data 25

Tip Partial classes were added to C# 2.0. They allow splitting the implementation of a class over
multiple files, where each file can contain one or more members and the files are combined
when the application is compiled. Partial classes are really useful if you need to add code to
automatically generated classes because the code is added outside of the generated file and it
will not be overridden if the class is regenerated.

Tip C# 3.0 introduced a new feature called automatic properties. The backing field is created at
compile time if the compiler finds empty get or set blocks.

The other file, PlanMyNight.Context.cs, generates the ObjectContext object for the
PlanMyNight.edmx model. This is the object you'll use to interact with the database.

Tip The POCO templates will automatically update the generated classes to reflect the changes
to your model when you save the .edmx file.

Moving the Entity Classes to the Contracts Project

We have designed the PMN application architecture to ensure that the presentation layer
was persistence ignorant by moving the contracts and entity classes to an assembly that has
no reference to the storage.

Visual Studio 2003 Even though it was possible to write add-ins in Visual Studio 2003 to
generate code based on a database, it was not easy and you had to maintain these tools. The
EF uses T4 templates to generate both the database schema and the code. These templates can
easily be customized to your needs.

The ADO.NET POCO templates split the generation of the entity classes into a separate tem-
plate, allowing you to easily move these entities to a different project.

You are going to move the PlanMyNight.tt file to the PlanMyNight.Contracts project. Right-
click the PlanMyNight.tt file, and select Cut. Right-click the Entities folder in the PlanMyNight.
Contracts project, and select Paste. The result is shown in Figure 1-27.

26

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Solution Explorer v 1x
& 2]]8a
b [PlanMyNight.AppFabricCaching -
[PlanMyNight.Bing
4 [F PlanMyNight.Cantracts
[[=d Properties
> [x3] References
[Data
4 [Entities
4 |3] PlankyMight.tt
% Itinerary.cs
) Hinerarbctivity.cs
%) HineraryComment.cs
) hineraryRating.cs
%) PlanhyMight.cs
%) UserProfile.cs
) FipCode.cs
4 [PlanMyNight.Data
> [=d Properties
> [z3] References
[J Caching
|5 App.Config
4 |3] PlanhyMight.Context.tt
%) PlantyMight.Context.cs
 |.d PlanMyMight.edrmx |
b B PlanMyNight e =

m

FIGURE 1-27 POCO template moved to the Contracts project

The PlanMyNight.tt template relies on the metadata from the EDM model to generate the
entity type’s code. You need to fix the relative path used by the template to access the
EDMX file.

Open the PlanMyNight.tt template, and locate the following line:
string inputFile = @"PlanMyNight.edmx";

Fix the file location so that it points to the PlanMyNight.edmx file in the PlanMyNight.Data
project:

string inputFile = @"..\..\PlanMyNight.Data\PlanMyNight.edmx";
The entity classes are regenerated when you save the template.

You also need to update the PlanMyNight.Context.tt template in the PlanMyNight.Contracts
project because the entity classes are now in the Microsoft.Samples.PlanMyNight.Entities
namespace instead of the Microsoft.Samples.PlanMyNight.Data namespace. Open the
PlanMyNight.Context.tt file, and update the using section to include the new namespace:

using System;

using System.Data.Objects;

using System.Data.EntityClient;

using Microsoft.Samples.PlanMyNight.Entities;

Build the solution by pressing Ctrl+Shift+B. The project should now compile successfully.

Chapter 1 From 2003 to 2010: Business Logic and Data 27

Putting It All Together

Now that you have created the generic code layer to interact with your SQL database, you
are ready to start implementing the functionalities specific to the PMN application. In the
upcoming sections, you'll walk through this process, briefly look at getting the data from the
Bing Maps services, and get a quick introduction to the Microsoft Windows Server AppFabric
Caching feature used in PMN.

There is a lot of plumbing pieces of code required to get this all together. To simplify the
process, you'll use an updated solution where the contracts, entities, and most of the con-
necting pieces to the Bing Maps services have been coded. The solution will also include the
PlanMyNight.Data.Test project to help you validate the code from the PlanMyNight.Data
project.

Note Testing in Visual Studio 2010 will be covered in Chapter 3.

Getting Data from the Database

At the beginning of this chapter, we decided to group the operations on the Itinerary entity
in the IltinerariesRepository repository interface. Some of these operations are

B Searching for Itinerary by Activity
B Searching for Itinerary by ZipCode
B Searching for Itinerary by Radius

B Adding a new ltinerary
Let's take a look at the corresponding methods in the IltinerariesRepository interface:

B SearchByActivity allows searching for itineraries by activity and returning a page of
data.

B SearchByZipCode allows searching for itineraries by Zip Code and returning a page of
data.

B SearchByRadius allows searching for itineraries from a specific location and returning a
page of data.

B Add allows you to add an itinerary to the database.

Open the PMN solution at %userprofile%\Documents\Microsoft Press\Moving to Visual
Studio 2010\Chapter 1\Code\Final by double-clicking the PlanMyNight.sIn file.

28

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Select the PlanMyNight.Data project, and open the ItinerariesRepository.cs file. This is the
IltinerariesRepository interface implementation. Using the PlanMyNightEntities Object
Context you generated earlier, you can write LINQ queries against your model, and the EF
will translate these queries to native T-SQL that will be executed against the database.

Note LINQ stands for Language Integrated Query and was introduced in the .NET Framework
3.5. It adds native data-querying capability to the .NET Framework so that you don't have to
worry about learning or maintaining custom SQL queries. LINQ allows you to use strongly typed
objects, and Visual Studio IntelliSense lets you select the properties or methods that are in the
current context as shown in Figure 1-28. To learn more about LINQ, visit the .NET Framework
Developer Center (http://msdn.microsoft.com/en-us/netframework/aa904594.aspx).

public PagingResult<Ttinerary> SearchByActivity(string activityld, int pageSize, int pageNumber)
{
using (var ctx = new PlanMyNightEntities())
ctx.ContextOptions.ProxyCreationEnabled = false;

var query = from itinerary in ctx.Itineraries.Include("Activities”)
where itinerary.Activities.Any(t => t.|

} 5 Activity -

1 2 |Activityld H string lineraryActivity Activityld

= City

@ Equals

5 EstimatedMinutes

@ GetHashCode

@ GetType

ZF Itineraryld

5 Latitude -

FIGURE 1-28 IntelliSense support for LINQ queries

Navigate to the SearchByActivity function definition. This method must return a set of
itineraries where the IsPublic flag is set to true and where one of their activities has the same
activityld that was passed in the argument to the function. You also need to order the result
itinerary list by the rating field.

Visual Studio 2003 Implementing each method to retrieve the itinerary in Visual Studio 2003
would have required writing tailored SQL. With the EF and LINQ, any query becomes trivial and
changes can be easily implemented at the code level!

Using standard LINQ operators, you can implement SearchByActivity as shown in Listing 1-4.
Add the highlighted code to the SearchByActivity method body.

Chapter 1 From 2003 to 2010: Business Logic and Data 29

Visual Studio 2003 Generics were added to version 2.0 of the C# language and the common
language runtime (CLR). Generics introduce the concept of type parameters, which make it
possible to design classes and methods that defer the specification of types until the class or
method is declared. They are often used with a collection, where the type parameter is used as a
placeholder for the type of objects that it stores.

PMN uses generics to store results of different types. With Visual Studio 2003, you could have
written such a class by using an ArrayList:

public class PagingResult
{

private ArraylList items;

pubTlic PagingResult(Array items)
{

this.items = new ArrayList(items);

public ArrayList Items
{

get { return this.items; }

3

To use this class in your code, you always have to know the type of objects it contains and
evaluate the cost or risk of runtime casts or boxing operations. Using a generic type parameter T,
you can write a type-safe class so that the compiler will prevent any invalid use at build time:

public class PagingResult<T>

{
public PagingResult(IEnumerable<T> items)
{
this.Items = new List<T>(items);
3

public IColTlection<T> Items { get; }

}

To learn more about generics, visit Generics in the .NET Framework (http.//msdn.microsoft.com/
en-us/library/ms172192.aspx).

30 Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

LISTING 1-4 SearchByActivity Implementation

public PagingResult<Itinerary> SearchByActivity(string activityId, int pageSize, int
pageNumber)
{

using (var ctx = new PlanMyNightEntities())

{

ctx.ContextOptions.ProxyCreationEnabled = false;

var query = from itinerary in ctx.Itineraries.Include("Activities")
where itinerary.Activities.Any(t => t.Activityld == activityId)
&& dtinerary.IsPublic
orderby itinerary.Rating
select itinerary;

return PageResults(query, pageNumber, pageSize);
3
}

Note The resulting paging is implemented in the PageResults method:

private static PagingResult<Itinerary> PageResults(IQueryable<Itinerary> query,
int page, int pageSize)
{

int rowCount = rowCount = query.Count();

if (pageSize > 0)

{
query = query.Skip((page - 1) * pageSize)
.Take(pageSize);
}
var result = new PagingResult<Itinerary>(query.ToArray())
{

PageSize = pageSize,
CurrentPage = page,
TotalItems = rowCount
b
return result;

}

IQueryable<Itinerary> is passed to this function so that it can add the paging to the base query
composition. Passing /Queryable instead of [Enumerable ensures that the T-SQL created for the
query against the repository will be generated only when query.ToArray is called.

The SearchByZipCode function method is similar to the SearchByActivity method, but it
also adds a filter on the Zip Code of the activity. Here again, LINQ support makes it easy
to implement as shown in Listing 1-5. Add the highlighted code to the SearchByZipCode
method body.

Chapter 1 From 2003 to 2010: Business Logic and Data
LISTING 1-5 SearchByZipCode Implementation

public PagingResult<Itinerary> SearchByZipCode(int activityTypeld, string zip,
int pageSize, int pageNumber)
{
using (var ctx = new PlanMyNightEntities())
{

ctx.ContextOptions.ProxyCreationEnabled = false;

var query = from itinerary in ctx.Itineraries.Include("Activities")
where itinerary.Activities.Any(t => t.Typeld == activityTypeld &&
t.Zip == zip)
&& ditinerary.IsPublic
orderby ditinerary.Rating
select itinerary;

return PageResults(query, pageNumber, pageSize);

The SearchByRadius function calls the RetrieveltinerariesWithinArea import function that
was mapped to a stored procedure. It then loads the activities for each itinerary found. You
can copy the highlighted code in Listing 1-6 to the SearchByRadius method body in the
ItinerariesRepository.cs file.

LISTING 1-6 SearchByRadius Implementation

public PagingResult<Itinerary> SearchByRadius(int activityTypeld,
double Tongitude, double Tatitude, double radius, int pageSize, int pageNumber)
{
using (var ctx = new PlanMyNightEntities())
{

ctx.ContextOptions.ProxyCreationEnabled = false;

// Stored Procedure with output parameter

var totalOutput = new ObjectParameter('total", typeof(int));

var items = ctx.RetrieveltinerariesWithinArea(activityTypeId, latitude,
longitude, radius, pageSize, pageNumber, totalOutput).ToArray(Q);

foreach (var item 1in items)
{
item.Activities.ToList() .AddRange(this.Retrieve(item.Id).Activities);
}
int total = totalOutput.Value == DBNull.Value ? 0 : (int)totalOutput.Value;

return new PagingResult<Itinerary>(items)

31

32

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

{
TotalItems = total,
PageSize = pageSize,
CurrentPage = pageNumber
15
}
}

The Add method allows you to add Itinerary to the data store. Implementing this function-
ality becomes trivial because your contract and context object use the same entity object.
Copy and paste the highlighted code in Listing 1-7 to the Add method body.

LISTING 1-7 Add Implementation

public void Add(Itinerary itinerary)
{
using (var ctx = new PlanMyNightEntities())

{
ctx.Itineraries.AddObject(itinerary);
ctx.SaveChanges();
}
}

There you have it! You have completed the /tinerariesRepository implementation using the
context object generated using the EF designer. Run all the tests in the solution by pressing
Ctrl+R, A. The tests related to the /tinerariesRepository implementation should all succeed.

Getting Data from the Bing Maps Web Services

PMN relies on the Bing Maps services to allow the user to search for activities to add to
her itineraries. To get a Bing Maps Key to use in the PMN application, you need to create a
Bing Maps Developer Account. You can create a free developer account on the Bing Maps
Account Center (https.//www.bingmapsportal.com/).

See Also Microsoft Bing Maps Web services is a set of programmable Simple Object Access
Protocol (SOAP) services that allow you to match addresses to the map, search for points of
interest, integrate maps and imagery, return driving directions, and incorporate other location
intelligence into your Web application. You can learn more about these services by visiting the site
for the Bing Maps Web Services SDK (http://msdn.microsoft.com/en-us/library/cc980922.aspx).

Visual Studio 2003 In Visual Studio 2003, if you had to add a reference to a Web service , you
would have selected the Add Web Service Reference from the contextual menu to bring up the
Add Web Reference dialog and then added a reference to a Web service to your project. (See
Figure 1-29))

Chapter 1 From 2003 to 2010: Business Logic and Data 33

Add Web Reference

Navigate to a web service URL (s ar wsdl) and click Add Reference to add all the available services found af that URL.
Qeack @ (D [&

LRL: Ittwahservicesfv1fmetadatafqencndEservicamanmdeserwce‘wsd\ | Mo

Web services found at this URL:

"GeocodeService" Description

1 Service Found:
- geocodsssrvice

No Ports or Methods were found on this page.

IF this is an ASPNET Web service, make sure that all WebMethads are public and
have a <WwebMethod:> attribute,

Visual Basic example: Web reference name:

<webMethodt)> et virtualsarth, dev., staging
Public Function HelleWarld() as String

Return "Hello World!" Add Reference
End Sub

Visual C# example:

[WebMethod]
public string Hellowarld() {

return "Hello World!"; Cancel
+

Help
¥ |

FIGURE 1-29 Visual Studio 2003 Add Web Reference dialog

Introduced in the .NET Framework 3.0, the Windows Communication Foundation (WCF)
services brought the ASMX Web services and other communication technologies into
a unified programming model.

Visual Studio 2010 provides tools for working with WCF services. You can bring up the

new Add Service Reference dialog by right-clicking on a project node and selecting Add
Service Reference as shown in Figure 1-30. In this dialog, you first need to specify the
service metadata address in the Address field and then click Go to view the available service
endpoints. You can then specify a namespace for the generated code and click OK to add
the proxy to your project.

Add Service Reference ®=]

Ta see a list of available services on a specific server, enter a service URL and click Go. To brawse far available
services, click Discover.

Address:
hittp://staging.dev.virtualearth net/webservices/v L/ geacodeservice/GeacadeSery + | [piscover |-
Services: Operations:
®] GeacodeService @ Geacode
5° I6eocodeService @ReverseGeocode

Lservice(s) faund at address
“hitp://staging.dev.virtualearth.net/webservices/v L/geacodeservice/GeacodeService.sve/mex.

Hamespace:

GeocodeService

FIGURE 1-30 Add Service Reference dialog

34

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Tip Click the Discover button to look for WCF services in the current solution.

See Also Click the Advanced button to access the Service Reference Settings dialog. This
dialog lets you tweak the configuration of the WCF service proxy. You can add the .NET
Framework 2.0 style reference by clicking the Add Web Service button. To learn more about
these settings, visit the MSDN - Configure Service Reference Dialog Box (http://msdn.
microsoft.com/en-us/library/bb514724(VS.100).aspx).

The generated WCF proxy can be used in the same way you used the ASMX-style proxy, as
shown in Listing 1-8.

LISTING 1-8 Using a Web Service Proxy

public BingCoordinate GeocodeAddress(ActivityAddress address, string token)

{

Microsoft.Samples.PlanMyNight.Bing.VEGeocodingService.GeocodeResponse geocodeResponse
= null;

// Make the geocode request

using (var geocodeService = new
Microsoft.Samples.PlanMyNight.Bing.VEGeocodingService.GeocodeServiceClient())

{
try
{
geocodeResponse = geocodeService.Geocode(geocodeRequest);
geocodeService.Close(Q);
}
catch
{
geocodeService.Abort();
}
b
if (geocodeResponse != null && geocodeResponse.Results != null && geocodeResponse.
Results.Length > 0)
{

var location = geocodeResponse.Results[0].Locations[0];
return new BingCoordinate { Latitude = (float)location.Latitude, Longitude =
(float)location.Longitude };
}

return default(BingCoordinate);

}

Chapter 1 From 2003 to 2010: Business Logic and Data 35
Parallel Programming

With the advances in multicore computing, it is becoming more and more important

for developers to be able to write parallel applications. Visual Studio 2010 and the .NET
Framework 4.0 provide new ways to express concurrency in applications. The Task Parallel
Library (TPL) is now part of the Base Class Library (BCL) for the .NET Framework. This means
that every .NET application can now access the TPL without adding any assembly reference.

PMN stores only the Bing Activity ID for each ItineraryActivity to the database. When it's
time to retrieve the entire Bing Activity object, a function that iterates through each of the
ItineraryActivity instances for the current Itinerary is used to populate the Bing Activity entity
from the Bing Maps Web services.

One way of performing this operation is to sequentially call the service for each activity in the
Itinerary as shown in Listing 1-9. This function waits for each call to RetrieveActivity to com-
plete before making another call, which has the effect of making its execution time linear.

LISTING 1-9 Activity Sequential Retrieval

public void PopulateItineraryActivities(Itinerary itinerary)

{
foreach (var item in itinerary.Activities.Where(i =>i.Activity == null))
{
item.Activity = this.RetrieveActivity(item.ActivityId);
}
}

In the past, if you wanted to parallelize this task, you had to use threads and then hand off
work to them. With the TPL, all you have to do now is use a Parallel.ForEach that will take
care of the threading for you, as seen in Listing 1-10.

LISTING 1-10 Activity Parallel Retrieval

public void PopulateltineraryActivities(Itinerary itinerary)

{
Parallel.ForEach(itinerary.Activities.Where(i => i.Activity == null),
item =>
{
jtem.Activity = this.RetrieveActivity(item.ActivityId);
53

36

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

See Also The .NET Framework 4.0 now includes the Parallel LINQ libraries (in System.Core.
dll). PLINQ introduces the .AsParallel extension to perform parallel operations in LINQ queries.
You can also easily enforce the treatment of a data source as if it was ordered by using the
.AsOrdered extensions. Some new thread-safe collections have also been added in the System.
Collections.Concurrent namespace. You can learn more about these new features from Parallel
Computing on MSDN (http://msdn.microsoft.com/en-us/concurrency/default.aspx).

AppFabric Caching

PMN is a data-driven application that gets its data from the application database and the
Bing Maps Web services. One of the challenges you might face when building a Web applica-
tion is managing the needs of a large number of users, including performance and response
time. The operations that use the data store and the services used to search for activities can
increase the usage of server resources dramatically for items that are shared across many
users. For example, many users have access to the public itineraries, so displaying these will
generate numerous calls to the database for the same items. Implementing caching at the
Web tier will help reduce the usage of resources at the data store and help mitigate latency
for recurring searches to the Bing Maps Web services. Figure 1-31 shows the architecture for
an application implementing a caching solution at the front-end server.

. | Application /
Web Tier

Bing Maps services Data Tier

FIGURE 1-31 Typical Web application architecture

Using this approach reduces the pressure on the data layer, but the caching is still coupled
to a specific server serving the request. Each Web tier server will have its own cache, but you
can still end up with an uneven distribution of the processing to these servers.

Windows Server AppFabric caching offers a distributed, in-memory cache platform. The
AppFabric client library allows the application to access the cache as a unified view event if
the cache is distributed across multiple computers as shown in Figure 1-32. The API provides

Chapter 1 From 2003 to 2010: Business Logic and Data 37

simple get and set methods to retrieve and store any serializable common language runtime
(CLR) objects easily. The AppFabric cache allows you to add a cache computer on demand,
thus making it possible to scale in a manner that is transparent to the client. Another benefit
is that the cache can also share copies of the data across the cluster, thereby protecting data
against failure.

Application /
Web Tier

AppFabric
Cache Tier

Data Tier

FIGURE 1-32 Web application using Windows Server AppFabric caching

See Also Windows Server AppFabric caching is available as a set of extensions to the .NET
Framework 4.0. For more information about how to get, install, and configure Windows
Server AppFabric, please visit Windows Server AppFabric (http://msdn.microsoft.com/en-us/
windowsserver/ee695849.aspx).

See Also PMN can be configured to use either ASP.NET caching or Windows
Server AppFabric caching. A complete walkthrough describing how to add
Windows Server AppFabric caching to PMN is available here: PMN: Adding
Caching using Velocity (http://channel9.msdn.com/learn/courses/VS2010/ASPNET/
EnhancingAspNetMvcPlanMyNight/Exercise-1-Adding-Caching-using-Velocity/).

38 Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Summary

In this chapter, you used a few of the new Visual Studio 2010 features to structure the data
layer of the Plan My Night application using the Entity Framework version 4.0 to access a
database. You also were introduced to automated entity generation using the ADO.NET
Entity Framework POCO templates and to the Windows Server AppFabric caching extensions.

In the next chapter, you will explore how the ASP.NET MVC framework and the Managed
Extensibility Framework can help you build great Web applications.

Chapter 2

From 2003 to 2010: Designing the
Look and Feel

After reading this chapter, you will be able to
B Create an ASP.NET MVC controller that interacts with the data model

B (Create an ASP.NET MVC view that displays data from the controller and validates user
input

B Extend the application with an external plug-in using the Managed Extensibility
Framework

Web application development in Microsoft Visual Studio has certainly made significant
improvements over the years since ASP.NET 1.0 was released. Visual Studio 2003 included
features such as automatic input validation and mobile controls (plus many others) to help
developers create efficient applications that were easy to manage.

The spirit of improvement to assist developers in creating world-class applications is very
much alive in Visual Studio 2010. In this chapter, we'll explore some of the new features as we
add functionality to the Plan My Night companion application.

Note The companion application is an ASP.NET MVC 2 project, but a Web developer has a
choice in Visual Studio 2010 to use this new form of ASP.NET application or the more traditional
ASP.NET (referred to in the community as Web Forms for distinction). ASP.NET 4.0 has many
improvements to help developers and is still a very viable approach to creating Web applications.

We'll be using a modified version of the companion application’s solution to work our way
through this chapter. If you installed the companion content in the default location, the cor-
rect solution can be found at Documents\Microsoft Press\Moving to Visual Studio 2010\
Chapter 2\ in a folder called UserInterface-Start.

Introducing the PlanMyNight.Web Project

The user interface portion of Plan My Night in Visual Studio 2010 was developed as an
ASP.NET MVC application, the layout of which differs from what a developer might be accus-
tomed to when developing an ASP.NET Web Forms application in Visual Studio 2003. Some
items in the project (as seen in Figure 2-1) will look familiar (such as Global.asax), but others
are completely new, and some of the structure is required by the ASP.NET MVC framework.

39

40

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

File Edit View Project Build Debug Team Data Tools Test Window Help

S HA] S AR - ~)| P [Debug ~| [Any cPU

1118 [y s

P[5 % 2| 5 RES =2

EE SR Source Control Explorer

Server Objects & Events <] o Events)

<%@ Master Language="C#" Inherits="System.leb.MvC.ViewMasterPage” %>
<html sxmlns="http://we.w3.0rg/1998/xhtm]" xml:lang="en" lang="en"> N
El<head> N
<title><aspiContentPlacetolder ID="TitleContent” runat="server” /»</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" /> "
<meta http-equiv="content-language” content="en-Us" /> =N’
<meta http-equiv="X-UA-Compatible” content-"TE-8" /> >
»
»
4

3

<meta name="description” content="Plan My Night: Select an activity type and enter a location to
<link href="<%=Url.Content("~/Content/Styles/Site.css™)%" rel="stylesheet” type="text/css” medi|
<% Ajax.RegisterClientScriptInclude(Url.Content("~/Content/Scripts/jquery-1.3.2.min.3s"), "http
<aspiContentPlaceHolder TD-"HtmlHeadContent” runat="server” />

~H@fa“mm@i

= 2 |[xHTML10 Transition -| [@ ;[MewWerkltem~ [= 4 ;[Publish: | Create Publish Settings -| 1% =

Rl Sol.tion Explorer -+ <y
Pk HEE

<IDOCTYPE htmL PUBLIC "-//W3C//DTD XHTML 1. Strict//EN" "https//www.w3.org/TR/xhtml1/DTD/xhtml1-strlEf| [Selution PlanMyNightPro’ (15 proje|

1 Addins

12 Solution ltems

2k Tests

(& PlanMyNight Bing

(& PlanMyNight.Contracts
(5] PlanMyNight.Data

(&l PlanMyNight Infrastructure
(& PlanMyNight.Velocity

2 PlanMyNight Web

b [Properties

</head> » [References
E1<body>
E <div id="container”> (3 App_Browsers
e <div id="header"> > L5 Avp_Dats
E <div id="logo" & 3 Areas
<hl>¢a href="<i= Url.Content(*~/")%>">Plan My Nightc/a></hl> » 3 Content
</div> ©» [Controllers
<hr /> & £ Helpers
E <div id="navigation"> » O Infrastructure
& e » [ViewModels
<a href="<%=Url.Content("~/")%>">Search</1i> b CF Views
<% if(Request. TsAuthenticated) { % =
<1i><%=Html.ActionLink<AccountControllers (¢ => c.Index(null), "My Profile")% > [E] Defauitaspr
<1i id="liMyTtineraries"><¥=Html.ActionLinkcItinerariesControllers(c = c.Ing (8] Errorhtm
PR (] favicon.co
<lirAbout >) Globalasax
 5] NotFound.htm
</div> Y
E <div id="toolbar"> v S Webconfig

 lneinStatus/) . %

<% ltm] BenderdctioncSitotiactorlontoallorsle =
00% - 4| !

g 5
@ Design | o Spiit [Source

ErEITERY I W Team Explorer

Clean succeeded

FIGURE 2-1 PlanMyNight.Web project view
Here are the items required by ASP.NET MVC:

B Areas This folder is used by the ASP.NET MVC framework to organize large Web
applications into smaller components, without using separate solutions or projects. This
feature is not used in the Plan My Night application but is called out because this folder
is created by the MVC project template.

B Controllers During request processing, the ASP.NET MVC framework looks for con-
trollers in this folder to handle the request.

B Views The Views folder is actually a structure of folders. The layer immediately inside
the Views folder is named for each of the classes found in the Controllers folder, plus a
Shared folder. The Shared subfolder is for common views, partial views, master pages,
and anything else that will be available to all controllers.

See Also More information about ASP.NET MVC components, as well as how its request
processing differs from ASP.NET Web Forms, can be found at http://asp.net/mvd.

In most cases, the web.config file is the last file in a project’s root folder. However, it has
received a much-needed update in Visual Studio 2010: Web.config Transformation. This fea-
ture allows for a base web.config file to be created but then to have build-specific web.config
files override the settings of the base at build, deployment, and run times. These files appear
under the base web.config file, as seen in Figure 2-2.

http://asp.net/mvc

File Edit

Chapter 2 From 2003 to 2010: Designing the Look and Feel 41

View Project Build Debug Team XML Data Tools Test Window Help

<

Mm% -

<oaml version="1.8"2>
[Fi<!-- For more information on using web.config transformation visit i
[http://g0.microsoft. com/fulink/?Link1d=125539 --3|

El<configuration xmlns:xdt="http://schemas .microsoft. com/XML-Document-Transform">

-
B <system.ueb>

</system.web>
</configuration>

oo A3 e

Web Release.config X

In the example below, the *SetAttributes” transform will change the value of
“connectionString” to use "ReleaseSQLServer” only when the "Match” locator
finds an atrribute "name” that has a value of “MyDB"

<connectionStrings>
<add name="HyDB"
connectionString="Data Source=ReleasesQLServer;Initial Catalog=MyReleaseDB;Integrated
xdt: Transform="SetAttributes” xdt:Locator="Hatch(name)"/>
</connectionStrings>

<compilation xdt:Transform="Removeattributes(debug)” /> L
pras

In the example below, the "Replace” transform will replace the entire

<customErrors> section of your web.config file

Note that because there is only one customErrors section under the

<system.web> node, there is no need to use the "xdt:Locator” attribute

<customErrors defaultRedirect="GenericError.htm"
mode="RemoteOnly” xdt:Transform="Replace">
cerror statusCode="506" redirect="InternalError.htm"/>
</customErrors>
-

S E e e DR by -J[Any CPU | [12§ [ty agein = i e

gl I ,

Ttem(s) Saved Lnd

G aE| @l
[d Solution "PlanMyNight' (13 projects)
4 Addins

% Solution ltems

2k Tests

(& PlanMyNight Bing

(&l PlanMyNight.Contracts

(& PlanMyNight.Data

(& PlanMyNightInfrastructure

(& PlanMyNight.Velocity

22 PanMyNight Web

3] Properties

[References

(23 App_Browsers

(5 App_Data

[Areas

3 Content

3 Controllers.

3 Helpers.

(3 Infrastructure

(3 ViewModels

[Views

=] Default.aspx

(9] Error.htm

|80 faviconiico

4] Global.asax

8] NotFound.htm

5 Web.config
) Web.Debug.config
% Web.Release.config

[

N

&3 Solution Explorer [N s

Col 50 Ch50

FIGURE 2-2 A web.config file with build-specific files expanded

Visual Studio 2003 When working on a project in Visual Studio 2003, do you recall need-
ing to remember not to overwrite the web.config file with your debug settings? Or needing to
remember to update web.config when it was published for a retail build with the correct set-
tings? This is no longer an issue in Visual Studio 2010. The settings in the web.Release.config file
will be used during release builds to override the values in web.config, and the same goes for the
web.Debug.config in debug builds.

Other sections of the project include the following:

Content A collection of folders containing images, scripts, and style files

Helpers Includes miscellaneous classes, containing a number of extension methods,
that add functionality to types used in the project

Infrastructure Contains items related to

dealing with the lower level infrastructure of

ASP.NET MVC (for example: caching and controller factories)

ViewModels Contains data entities filled
to display data

out by controller classes and used by views

42

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Running the Project

If you compile and run the project, you should see a screen similar to Figure 2-3.

Plany seanch | amout @smmn)
Night
Search
I \i I\Advan(ediiarth
e.g.: Bars in Manhattan, NY'
Actuties Hineranies Your current itinerary [r—

Please provide a search criteria...

Vour ftinerary is currently empty.

Perform a search and then select activities to build an itinerary...

00

developer & platform evangelism

FIGURE 2-3 Default page of the Plan My Night application

The searching functionality and the ability to organize an initial list of itinerary items all works,
but if you attempt to save the itinerary you are working on, or if you log in with Windows Live
ID, the application will return a 404 Not Found error screen (as shown in Figure 2-4).

Server Error in '/' Application.

The resource cannot be found.

Description: HTTP 404. The resource you are looking for (or one of ts dependencies) could have been removed, had fts name changed, or is temporarily unavaiable. Please review the folowing URL
and make sure that it is spelled correctly.

Requested URL: /AccountlLiveld

Version Information: licrosoft.NET Framework Version:s.0,30128; ASP.NET Version:4.0.30128.1

FIGURE 2-4 Error screen returned when logging in to the Plan My Night application

You get this error because currently the project does not include an account controller to
handle these requests.

Chapter 2 From 2003 to 2010: Designing the Look and Feel 43

Creating the Account Controller

The AccountController class provides some critical functionality to the companion Plan My
Night application:

B [t handles signing users in and out of the application (via Windows Live ID).

B |t provides actions for displaying and updating user profile information.

To create a new ASP.NET MVC controller:

1. Use Solution Explorer to navigate to the Controllers folder in the PlanMyNight.Web
project, and click the right mouse button.

2. Open the Add submenu, and select the Controller item.

||:=-| Controller... [} Ctrl+M, Ctrl+C
| Newkem.. Ctrl+ Shift+ A
[5] Bdsting Iem... Shift+Alt+A
4 New Folder

Add ASP.NET Folder »
| ¢ Class.. Shift+Alt+C

Controller Name:

AccountlController

[T Add action methods for Create, Update, and Details scenarios

Note Leave the Add Action Methods For Create, Update And Details Scenarios check box blank.
Selecting the box inserts some “starter” action methods, but because you will not be using the
default methods, there is no reason to create them.

44

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

After you click the Add button in the Add Controller dialog box, you should have a basic
AccountController class open, with a single Index method in its body:

using System;

using System.Collections.Generic;
using System.Ling;
using System.Web;
using System.Web.Mvc;

namespace Microsoft.Samples.PlanMyNight.Web.Controllers

public class AccountController :

// GET: /Account/

Controller

public ActionResult Index()

return View();

{
{
//
{
3
}
3

Visual Studio 2003 A difference to be noted from developing ASP.NET Web Forms applica-
tions in Visual Studio 2003, is that ASP.NET MVC applications do not have a companion code-
behind file for each of their .aspx files. Controllers like the one you are currently creating perform
the logic required to process input and prepare output. This approach allows for a clear separa-
tion of display and business logic, and it's a key aspect of ASP.NET MVC.

Implementing the Functionality

To communicate with any of the data layers and services (the Model), you'll need to add
some instance fields and initialize them. Before that, you need to add some namespaces to
your using block:

using System.IO
using Microsoft
using Microsoft
using Microsoft
using Microsoft
using Microsoft

.Samples.
.SampTes.
.SampTes.
.Samples.
.SampTes.

PlanMyNight
PTanMyNight
PTanMyNight
PlanMyNight
PTanMyNight

.Data;

.Entities;
.Infrastructure;
.Infrastructure.Mvc;
.Web.ViewModels;

using System.Collections.Specialized;
using WindowsLiveId;

Chapter 2 From 2003 to 2010: Designing the Look and Feel

Now, let’s add the instance fields. These fields are interfaces to the various section of your

public class AccountController : Controller

Model:

{
private
private

private
private
private

readonly IWindowsLivelogin windowsLogin;

readonly IMembershipService membershipService;
readonly IFormsAuthentication formsAuthentication;
readonly IReferenceRepository referenceRepository;
readonly IActivitiesRepository activitiesRepository;

Note Using interfaces to interact with all external dependencies allows for better portability of
the code to various platforms. Also, during testing, dependencies can be mimicked much easier
when using interfaces, making for more efficient isolation of a specific component.

As mentioned, these fields represent parts of the Model this controller will interact with to
meet its functional needs. Here are the general descriptions for each of the interfaces:

45

B [WindowsLiveLogin Provides functionality for interacting with the Windows Live ID
service.

B |MembershipService Provide user profile information and authorization methods. In

your companion application, it is an abstraction of the ASP.NET Membership Service.

B |FormsAuthentication Provides for ASP.NET Forms Authentication abstraction.

m |ReferenceRepository Provides reference resources, such as lists of states and other
model-specific information.

B |ActivitiesRepository An interface for retrieving and updating activity information.

You'll add two constructors to this class: one for general run-time use, which uses the
ServiceFactory class to get references to the needed interfaces, and one to enable tests to
inject specific instances of the interfaces to use.

pubTlic AccountController()

this(

new ServiceFactory().GetMembershipService(Q),

new WindowsLivelLogin(true),

new FormsAuthenticationService(),

new ServiceFactory().GetReferenceRepositoryInstance(),
new ServiceFactory().GetActivitiesRepositoryInstance())

46 Part | Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

public AccountController(
IMembershipService membershipService,
IWindowsLiveLogin windowsLogin,
IFormsAuthentication formsAuthentication,
IReferenceRepository referenceRepository,
TActivitiesRepository activitiesRepository)

this.membershipService = membershipService;
this.windowsLogin = windowsLogin;
this.formsAuthentication = formsAuthentication;
this.referenceRepository = referenceRepository;
this.activitiesRepository = activitiesRepository;

Authenticating the User

The first real functionality you'll implement in this controller is that of signing in and out of
the application. Most of the methods that you'll implement later require authentication, so
this is a good place to start.

The companion application uses a few technologies together at the same time to give the
user a smooth authentication experience: Windows Live ID, ASP.NET Forms Authentication,
and ASP.NET Membership Services. These three technologies are used in the LivelD action
you'll implement next.

Start by creating the following method, in the AccountController class:

pubTlic ActionResult LiveId()
{

return Redirect("~/");

}

This method will be the primary action invoked when interacting with the Windows Live ID
services. Right now, if it is invoked, it will just redirect the user to the root of the application.

Note The call to Redirect returns RedirectResult, and although this example uses a string to
define the target of the redirection, various overloads can be used for different situations.

A few different types of actions can be taken when Windows Live ID returns a user to your
application. The user can be signing into Windows Live ID, signing out, or clearing the
Windows Live ID cookies. Windows Live ID uses a query string parameter called action on the
URL when it returns a user, so you'll use a switch to branch the logic depending on the value
of the parameter.

Chapter 2 From 2003 to 2010: Designing the Look and Feel 47

Add the following to the Liveld method above the return statement:

string action = Request.QueryString["action"];
switch (action)

{
case "logout":
this.formsAuthentication.SignOut(Q);
return Redirect("~/");
case "clearcookie":
this.formsAuthentication.SignOut(Q);
string type;
byte[] content;
this.windowsLogin.GetClearCookieResponse(out type, out content);
return new FileStreamResult(new MemoryStream(content), type);
}

See Also Full documentation of the Windows Live ID system can be found on the http://dev.
live.com/ Web site.

The code you just added handles the two sign-out actions for Windows Live ID. In both cases,
you use the IFormsAuthentication interface to remove the ASP.NET Forms Authentication
cookie so that any future http requests (until the user signs in again) will not be considered
authenticated. In the second case, you went one step further to clear the Windows Live 1D
cookies (the ones that remember your login name, but not your password).

Handling the sign-in scenario requires a bit more code because you have to check whether
the authenticating user is in your Membership Database and, if not, create a profile for

the user. However, before that, you must pass the data that Windows Live ID sent you

to your Windows Live ID interface so that it can validate the information and give you a
WindowsLivelLogin.User object:

default:
// Tlogin
NameValueCollection tokenContext;
if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
{
tokenContext = Request.Form;
}
else
{
tokenContext = new NameValueCollection(Request.QueryString);
tokenContext["stoken"] =
System.Web.HttpUtility.Url1Encode(tokenContext["stoken"]);
}

var liveIdUser = this.windowsLogin.ProcessLogin(tokenContext);

48

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

At this point in the case for logging in, either liveldUser will be a reference to an
authenticated WindowsLivelLogin.User object or it will be null. With this in mind, you can
add your next section of the code, which takes action when the liveldUser value is not null:

if (liveIdUser != null)

{

var returnUrl = liveIdUser.Context;

var userId = new Guid(liveIdUser.Id).ToString();

if (!this.membershipService.ValidateUser(userId, userId))

{
this.formsAuthentication.SignIn(userId, false);
this.membershipService.CreateUser(userId, userId, string.Empty);
var profile = this.membershipService.CreateProfile(userId);
profile.FulTlName = "New User";
profile.State = string.Empty;
profile.City = string.Empty;
profile.PreferredActivityTypeld = 0;
this.membershipService.UpdateProfile(profile);
if (string.IsNullOrEmpty(returnUrl1)) returnUrl = null;
return RedirectToAction("Index", new { returnUrl = returnUrl });

}

else

{
this.formsAuthentication.SignIn(userld, false);
if (string.IsNullOrEmpty(returnUrl1)) returnUrl = "~/";

return Redirect(returnUrl);
}
}
break;

The call to the ValidateUser method on the IMembershipService reference allows the applica-
tion to check whether the user has been to this site before and whether there will be a profile
for the user. Because the user is authenticated with Windows Live ID, you are using the user’s
ID value (which is a GUID) as both the user name and password to the ASP.NET Membership
Service.

If the user does not have a user record with the application, you create one by calling the
CreateUser method and then also create a user settings profile via CreateProfile. The profile is
filled with some defaults and saved back to its store, and the user is redirected to the primary
input page so that he can update the information.

Note Controller.RedirectToAction determines which URL to create based on the combination of
input parameters. In this case, you want to redirect the user to the Index action of this controller,
as well as pass the current return URL value.

The other action that takes place in this code is that the user is signed in to ASP.NET Forms
authentication so that a cookie will be created, providing identity information on future
requests that require authentication.

Chapter 2 From 2003 to 2010: Designing the Look and Feel 49

The settings profile is managed by ASP.NET Membership Services as well and is declared in
the web.config file of the application:

<system.web>

<profile enabled="true">

<properties>

<add name="FullName" type="string" />

<add name="State" type="string" />

<add name="City" type="string" />

<add name="PreferredActivityTypeId" type="int" />
</properties>

<providers>

<clear />

<add name="AspNetSql1ProfileProvider"
type="System.Web.Profile.SqlProfileProvider,

System.Web, Version=4.0.0.0, Culture=neutral,
Pub1icKeyToken=b03f5f7f11d50a3a"
connectionStringName="ApplicationServices"

applicationName="/" />
</providers>
</profile>

</system.web>

At this point, the LivelD method is complete and should look like the following code. The
application can now take authentication information from Windows Live ID, prepare an ASP.
NET MembershipService profile, and create an ASP.NET Forms Authentication ticket.

public ActionResult LiveId()

{

string action = Request.QueryString["action"];
switch (action)

{
case "logout":
this.formsAuthentication.SignOut(Q);
return Redirect("~/");
case "clearcookie":
this.formsAuthentication.SignOut(Q);
string type;
byte[] content;
this.windowsLogin.GetClearCookieResponse(out type, out content);
return new FileStreamResult(new MemoryStream(content), type);
default:
// login
NameValueCollection tokenContext;
if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
{
tokenContext = Request.Form;
}
else

{

50 Part | Moving from Microsoft Visual Studio 2003 to Visual Studio 2010
tokenContext = new NameValueCollection(Request.QueryString);
tokenContext["stoken"] =

System.Web.HttpUtility.Ur1Encode(tokenContext["stoken"]);

var TiveldUser = this.windowsLogin.ProcessLogin(tokenContext);

if (liveIdUser != null)

{
var returnUrl = TliveIdUser.Context;
var userId = new Guid(1iveIdUser.Id).ToString(Q);
if (!this.membershipService.ValidateUser(userId, userId))
{
this.formsAuthentication.SignIn(userId, false);
this.membershipService.CreateUser(userId, userId, string.Empty);
var profile = this.membershipService.CreateProfile(userId);
profile.FullName = "New User";
profile.State = string.Empty;
profile.City = string.Empty;
profile.PreferredActivityTypeld = 0;
this.membershipService.UpdateProfile(profile);
if (string.IsNullOrEmpty(returnUr1)) returnUrl = null;
return RedirectToAction("Index", new { returnUrl = returnUrl });
}
else
{
this.formsAuthentication.SignIn(userId, false);
if (string.IsNullOrEmpty(returnUr1)) returnUrl = "~/";
return Redirect(returnUrl);
}
}
break;
}
return Redirect("~/");
}

Of course, the user has to be able to get to the Windows Live ID login page in the first place
before logging in. Currently in the Plan My Night application, there is a Windows Live ID log-
in button. However, there are cases where the application will want the user to be redirected
to the login page from code. To cover this scenario, you need to add a small method called
Login to your controller:

public ActionResult Login(string returnUr1)

{
var redirect = HttpContext.Request.Browser.IsMobileDevice ?
this.windowsLogin.GetMobileLoginUrl(returnUrl)
this.windowsLogin.GetLoginUr1(returnUrl);
return Redirect(redirect);
}

This method simply retrieves the login URL for Windows Live and redirects the user to
that location. This also satisfies a configuration value in your web.config file for ASP.NET

Chapter 2 From 2003 to 2010: Designing the Look and Feel 51

Forms Authentication in that any request requiring authentication will be redirected to this
method:

<authentication mode="Forms">
<forms loginUrl="~/Account/Login" name="XAUTH" timeout="2880" path="~/" />
</authentication>

Retrieving the Profile for the Current User

Now with the authentication methods defined, which satisfies your first goal for this
controller—signing users in and out in the application—you can move on to retrieving
data for the current user.

The Index method, which is the default method for the controller based on the URL map-
ping configuration in Global.asax, will be where you retrieve the current user’s data and
return a view displaying that data. The /ndex method that was initially created when the
AccountController class was created should be replaced with the following:

[Authorize()]
[AcceptVerbs(HttpVerbs.Get)]
public ActionResult Index(string returnUrl)
{
var profile = this.membershipService.GetCurrentProfile();
var model = new ProfileViewModel
{
Profile = profile,
ReturnUr1 = returnUrl ?? this.GetReturnUr1()
1

this.InjectStatesAndActivityTypes(model);

return View("Index", model);

Visual Studio 2003 Attributes such as [Authorize()] might not have been in common use in
Visual Studio 2003; however, ASP.NET MVC makes use of them often. Attributes allow for meta-
data to be defined about the target they decorate. This allows for the information to be exam-
ined at run time (via reflection) and for action to be taken if deemed necessary.

The Authorize attribute is very handy because it declares that this method can be invoked
only for http requests that are already authenticated. If a request is not authenticated, it will
be redirected to the ASP.NET Forms Authentication configured login target, which you just
finished setting up. The AcceptVerbs attribute also restricts how this method can be invoked,
by specifying which Http verbs can be used. In this case, you are restricting this method to
HTTP GET verb requests. You've added a string parameter, returnUrl, to the method signature
so that when the user is finished viewing or updating her information, she can be returned to
what she was looking at previously.

52 Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Note This highlights a part of the ASP.NET MVC framework called Model Binding, details of
which are beyond the scope of this book. However, you should know that it attempts to find a
source for returnUrl (a form field, routing table data, or query string parameter with the same
name) and binds it to this value when invoking the method. If the Model Binder cannot find a
suitable source, the value will be null. This behavior can cause problems for value types that can-
not be null, because it will throw an InvalidOperationException.

The main portion of this method is straightforward: it takes the return of the
GetCurrentProfile method on the ASP.NET Membership Service interface and sets up a

view model object for the view to use. The call to GetReturnUrl is an example of an exten-
sion method defined in the PlanMyNight.Infrastructure project. It's not a member of the
Controller class, but in the development environment it makes for much more readable code.
(See Figure 2-5))

File Edit View Refactor Project Build Debug Team Data Tools Test Window Help

Il 1= T R =R) e (e | [Getheturmu ISR G Bl
R 2083 bl 65RO % 125 BES [Newworkiem= 3 = 4y [F]

RTINS SitcMoster @ Source Control Explorer
2 Microsoft. Samples PlanhyNi 0 Exiensions [% Gethbsolutelrl(ControllerBase controller, string path)
return LinkBuilder.BuildUrlFromExpression<Ts(

controller.ControllerContext. RequestContext,

controller.Url.RouteCollection,

action);

¥
e public static string GetAbsoluteUrl(this Controllerfase controller, string path)

return String.Concat(controller.ControllerContext. HttpContext.Request.Url. Scheme,
['://*, controller.controllerContext . HttpContext.Request. Servervariables["HTTP_HOST"], path);

¥
E public static bool IsAjaxCall(this Controller controller)

return Istring. TshullorEmpty(controller.Request.ContentType) 8&
controller. Request.ContentType. Contains("application/json”);

L]
g
2
2
&
P
f
g
=
g
g
7
3
x
g
g

¥
- E public static string GetReturnUrl(this Controller controller)
if (controller.Request.ServerVariables != null &2
15tring. IsMullorEmpty (controller.Request. Servervar iables["HTTP_REFERER"]))

return controller.Request.ServerVariables["HTTP_REFERER"];

return /"

Mm% -4 i,

Ready Ln21 Col17 Ch17

FIGURE 2-5 Example of extension methods in MvcExtensions.cs

Visual Studio 2003 In .NET Framework 1.1, which Visual Studio 2003 used, extension meth-
ods did not exist. Rather than calling this.GetReturnUrl() and also having the method appear in
IntelliSense for this object, you would have to type MvcExtensions.GetReturnUrl(this), pass-
ing in the controller as a parameter. Extension methods certainly make the code more readable
and do not require the developer to know the static class the extension method exists under. For
IntelliSense to work, the name space does need to be listed in the using clauses.

InjectStatesAndActivityTypes is a method you need to implement. It gathers data from the
reference repository for names of states and the activity repository. It makes two collections

Chapter 2 From 2003 to 2010: Designing the Look and Feel 53

of SelectListltem (an HTML class for MVC): one for the list of states, and the other for the list
of different activity types available in the application. It also sets the respective value.

private void InjectStatesAndActivityTypes(ProfileViewModel modeTl)
{
var profile = model.Profile;
var types = this.activitiesRepository.RetrieveActivityTypes().Select(
o => new SelectListItem {
Text = o.Name,
Value = 0.Id.ToStringQ),
Selected = (profile != null && o0.Id ==
profile.PreferredActivityTypeld)
}).ToList(Q);

types.Insert(0, new SelectListItem { Text = "Select...", Value = "0" });
var states = this.referenceRepository.RetrieveStates().Select(
0 => new SelectListItem {
Text = o.Name,
Value = o.Abbreviation,
Selected = (profile != null && o.Abbreviation ==
profile.State)
}).ToList(Q);

states.Insert(0, new SelectListItem {
Text = "Any state",
Value = string.Empty
s

model.PreferredActivityTypes = types;
model.States = states;

Visual Studio 2003 In Visual Studio 2003, the InjectStatesAndActivities method takes lon-
ger to implement because a developer cannot use the LINQ extensions (the call to Select) and
Lambda expressions, which are a form of anonymous delegate that the Select method applies to
each member of the collection being enumerated. Instead, the developer would have to write
out his own loop and enumerate each item manually.

Updating the Profile Data

Having completed the infrastructure needed to retrieve data for the current profile, you can
move on to updating the data in the model from a form submission by the user. After this,
you can create your view pages and see how all this ties together. The Update method is
simple; however, it does introduce some new features not seen yet:

[Authorize()]

[AcceptVerbs(HttpVerbs.Post)]
[ValidateAntiForgeryToken()]

public ActionResult Update(UserProfile profile)
{

54 Part | Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

var returnUrl = Request.Form["returnUrl1"];
if (!ModelState.IsValid)

{
// validation error
return this.IsAjaxCall() ? new JsonResult { JsonRequestBehavior =
JsonRequestBehavior.AllowGet, Data = ModelState }
: this.Index(returnurl);
}

this.membershipService.UpdateProfile(profile);

if (this.IsAjaxCall(Q))

{
return new JsonResult { JsonRequestBehavior = JsonRequestBehavior.AllowGCet,
Data = new { Update = true, Profile = profile, ReturnUrl = returnUrl } };

}

else

{
return RedirectToAction("UpdateSuccess", "Account"”, new { returnUrl =
returnUrl });

3

The ValidateAntiForgeryToken attribute ensures that the form has not been tampered with.
To use this feature, you need to add an AntiForgeryToken to your view's input form. The
check on the ModelState to see whether it is valid is your first look at input validation. This is
a look at the server-side validation, and ASP.NET MVC offers an easy-to-use feature to make
sure that incoming data meets some rules. The UserProfile object that is created for input to
this method, via MVC Model Binding, has had one of its properties decorated with a System.
ComponentModel.DataAnnotations.Required attribute. During Model Binding, the MVC
framework evaluates DataAnnotation attributes and marks the ModelState as valid only when
all of the rules pass.

In the case where the ModelState is not valid, the user is redirected to the Index method
where the ModelState will be used in the display of the input form. Or, if the request was an
AJAX call, a JsonResult is returned with the ModelState data attached to it.

Visual Studio 2003 Because in ASP.NET MVC requests are routed through controllers rather
than pages, the same URL can handle a number of requests and respond with the appropri-

ate view. In Visual Studio 2003, a developer would have to create two different URLs and call a
method in a third class to perform the functionality.

When the ModelState is valid, the profile is updated in the membership service and a
JSON result is returned for AJAX requests with the success data, or in the case of “"normal”

Chapter 2 From 2003 to 2010: Designing the Look and Feel 55

requests, the user is redirected to the UpdateSuccess action on the Account controller. The
UpdateSuccess method is the final method you need to implement to finish off this controller:

public ActionResult UpdateSuccess(string returnUrl)

= new ProfileViewModel

Profile = this.membershipService.GetCurrentProfile(),
ReturnUrl = returnUr]

return View(model);

{
var model
{
};

}

The method is used to return a success view to the browser, display some of the updated
data, and provide a link to return the user to where she was when she started the profile
update process.

Now that you've reached the end of the Account controller implementation, you should have
a class that resembles the following listing:

using
using
using
using
using
using
using
using
using
using
using
using

namespace

{

System;

System.Collections.Specialized;

System.I0;

System.Ling;

System.Web;

System.Web.Mvc;
Microsoft.Samples.PlanMyNight.Data;
Microsoft.Samples.PlanMyNight.Entities;
Microsoft.Samples.PTlanMyNight.Infrastructure;
Microsoft.Samples.PlanMyNight.Infrastructure.Mvc;
Microsoft.Samples.PTanMyNight.Web.ViewModels;
WindowsLiveld;

Microsoft.Samples.PTanMyNight.Web.Controllers

[HandleErrorWithContentType()]
[OutputCache(NoStore = true, Duration = 0, VaryByParam = "*")]
pubTlic class AccountController : Controller

{

private readonly IWindowsLivelLogin windowsLogin;

private readonly IMembershipService membershipService;
private readonly IFormsAuthentication formsAuthentication;
private readonly IReferenceRepository referenceRepository;
private readonly IActivitiesRepository activitiesRepository;

public AccountController()

this(
new ServiceFactory().GetMembershipService(),
new WindowsLivelLogin(true),
new FormsAuthenticationService(),
new ServiceFactory().GetReferenceRepositoryInstance(),
new ServiceFactory().GetActivitiesRepositoryInstance())

56 Part | Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

pubTlic AccountController(IMembershipService membershipService,

this.
this.
this.
this.
this.

IWindowsLivelLogin windowsLogin,
IFormsAuthentication formsAuthentication,
IReferenceRepository referenceRepository,
TActivitiesRepository activitiesRepository)

membershipService = membershipService;
windowsLogin = windowsLogin;
formsAuthentication = formsAuthentication;
referenceRepository = referenceRepository;
activitiesRepository = activitiesRepository;

public ActionResult LiveId()

{

string action = Request.QueryString["action"];
switch (action)

{

case "logout":

this.formsAuthentication.SignOut();
return Redirect("~/");

case "clearcookie":

this.formsAuthentication.SignOut();

string type;

byte[] content;

this.windowsLogin.GetClearCookieResponse(out type, out content);
return new FileStreamResult(new MemoryStream(content), type);

default:

// login

NameValueCollection tokenContext;

if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")

{
tokenContext = Request.Form;

}

else

{
tokenContext = new NameValueCollection(Request.QueryString);
tokenContext["stoken"] =
System.Web.HttpUtility.Ur1Encode(tokenContext["stoken"]);

}

var TiveIldUser = this.windowsLogin.ProcessLogin(tokenContext);
if (liveIdUser != null)
{
var returnUrl = TliveIdUser.Context;
var userId = new Guid(TliveIdUser.Id).ToStringQ);
if (!'this.membershipService.ValidateUser(userId, userId))
{
this.formsAuthentication.SignIn(userId, false);
this.membershipService.CreateUser(
userId, userId, string.Empty);
var profile =

Chapter 2 From 2003 to 2010: Designing the Look and Feel 57

this.membershipService.CreateProfile(userId);

profile.FullName = "New User";

profile.State = string.Empty;

profile.City = string.Empty;

profile.PreferredActivityTypeld = 0;

this.membershipService.UpdateProfile(profile);

if (string.IsNullOrEmpty(returnUr1)) returnUrl = null;

return RedirectToAction("Index", new { returnUrl =
returnUrl });

}
else
{
this.formsAuthentication.SignIn(userId, false);
if (string.IsNullOrEmpty(returnUr1)) returnUrl = "~/";
return Redirect(returnUrl);
}
}
break;
}
return Redirect("~/");
}
public ActionResult Login(string returnUrl)
{
var redirect = HttpContext.Request.Browser.IsMobileDevice ?
this.windowsLogin.GetMobileLoginUrl(returnUrl)
this.windowsLogin.GetLoginUr1(returnUrl);
return Redirect(redirect);
}
[Authorize()]

[AcceptVerbs (HttpVerbs.Get)]
public ActionResult Index(string returnUrl)

{
var profile = this.membershipService.GetCurrentProfile();
var model = new ProfileViewModel
{
Profile = profile,
ReturnUrl = returnUrl ?? this.GetReturnUr1()
};
this.InjectStatesAndActivityTypes(model);
return View("Index", model);
}
[Authorize()]

[AcceptVerbs(HttpVerbs.Post)]
[ValidateAntiForgeryToken()]
pubTlic ActionResult Update(UserProfile profile)
{
var returnUrl = Request.Form["returnUr1"];
if (!ModelState.IsValid)
{
// validation error
return this.IsAjaxCall() ?

58 Part | Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

3

new JsonResult { JsonRequestBehavior =
JsonRequestBehavior.AllowGet, Data = ModelState }
: this.Index(returnUrl);
}
this.membershipService.UpdateProfile(profile);
if (this.IsAjaxCall(Q))

{
return new JsonResult {
JsonRequestBehavior = JsonRequestBehavior.AllowGet,
Data = new {
Update = true,
Profile = profile,
ReturnUrl = returnUrl } };
}
else
{
return RedirectToAction("UpdateSuccess",
"Account", new { returnUrl = returnUrl });
}

public ActionResult UpdateSuccess(string returnUrl)

{

var model = new ProfileViewModel

{
Profile = this.membershipService.GetCurrentProfile(),
ReturnUrl = returnUrl

53

return View(model);

private void InjectStatesAndActivityTypes(ProfileViewModel model)

{

var profile = model.Profile;
var types = this.activitiesRepository.RetrieveActivityTypes()
.Select(o => new SelectListItem { Text = o.Name,
Value = 0.Id.ToString(Q),
Selected = (profile != null &&
0.Id == profile.PreferredActivityTypeId) })
.ToList(Q);
types.Insert(0, new SelectListItem { Text = "Select...", Value = "0" });
var states = this.referenceRepository.RetrieveStates().Select(
o => new SelectListItem {
Text = o.Name,
Value = o.Abbreviation,
Selected = (profile != null &&
o.Abbreviation == profile.State) })
.ToList(Q);
states.Insert(0,
new SelectListItem { Text = "Any state",
Value = string.Empty });
model.PreferredActivityTypes = types;
model.States = states;

Chapter 2 From 2003 to 2010: Designing the Look and Feel 59

Creating the Account View

In the previous section, you created a controller with functionality that allows a user to
update her information and view it. In this section, you're going to walk through the Visual
Studio 2010 features that enable you to create the views that display this functionality to the
user.

To create the Index view for the Account controller:

1. Navigate to the Views folder in the PlanMyNight.Web project.

2. Click the right mouse button on the Views folder, expand the Add submenu, and select
New Folder.

3. Name the new folder Account.

4. Click the right mouse button on the new Account folder, expand the Add submenu,
and select View.

5. Fill out the Add View dialog box as shown here:

(" Add View -

View name:

Index
[F] Createa partial view [.ascx)
Create a strongly-typed view

View data class:
ProfileViewModel -

View content:

Empty

Select master page

~(Views/Shared/Site.Master D

ContentPlaceHolder ID:

MainContent

60 Part |

6.

Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Click Add. You should see an HTML page with some <asp:Content> controls in the

markup:

o Pt - Wicrsa Vi S . -
=

View Project Build Debug Team Data Teols Test Window Help

=N T

P [Debug ~| [any cPu

1118 [ty s

P [% % (kK0 | B B E S -

2 | | XHTML10 Transition -| | @ < i Publish: | Create Publish Settings - 4 & <

Solution Explorer

[N] AccountController.cs -
Server Objects & Events | tHo Events) B = Ela
<@ Page Title="" Language="C#" NasterPageFile="~/Views/Shared/Site.Master” F|| (3 Solution "PlanMyNight' (13 projects)
Inherits="System.lieb.Mvc.ViewPagecProfileViewiodels" %> <1 o 2 Addins
[T > = Solution kems
E<asp:Content ID="Content1® ContentPlacetolderID="TitleContent" runat="server" b Tests
</35;f‘("::tént> b (3 PlanMyNight Bing
b (3 PlanMyNight.Contracts
E<asp:Content ID="Content2” ContentPlaceHolderID="MainContent” runat="server”> » (50 PlanMyNight Data
b (G PlanMyNightInfrastructure
<h2>Indesxs/h2> b (5 PlanMyNightVelocity
4 (3 PlanMyNight Web
</asp:Content> 3 » B Properties
b [References
<asp:Content ID="Content3" ContentPlaceHolderID="HtmlHeadContent” runat="server”>
</asp:Content> > 3 App.Browsers
» [App_Data
> [Areas
» [Content
[Controllers
5 [Helpers
b 3 Infrastructure
F b O ViewModels
4 [Views
4 |5 Account|
] Index.aspx
> [HMineraries
b C3 Search

b [Shared
|2 Web.config
] Default.aspx

0% - 4] n, i o]
ah
3 Design | o1 Spiit [@ Source | [{]| %@ Pagex> D] | 3 sotution e W Team Bxplorer

—_—

You might notice that it doesn't look much different from what you are used to see-

ing in Visual Studio 2003. By default, ASP.NET MVC 2 uses the ASP.NET Web Forms view
engineg, so there will be some commonality between MVC and Web Forms pages. The
primary differences at this point are that the page class derives from System.Web.Mvc.
ViewPage<ProfileViewModel> and there is no code-behind file. MVC does not use code-
behind files, like ASP.NET Web Forms does, to enforce a strict separation of concerns. MVC
pages are generally edited in markup view; the designer view is primarily for ASP.NET Web
Forms applications.

For this page skeleton to become the main view for the Account controller, you should
change the title content to be more in line with the other views:

<asp:Content ID="Contentl" ContentPlaceHolderID="TitleContent" runat="server">
Plan My Night - Profile
</asp:Content>

Next you need to add the client scripts you are going to use in the content placeholder for
the HtmlHeadContent:

<asp:Content ID="Content3" ContentPlaceHolderID="HtmlHeadContent" runat="server">
<% Ajax.RegisterClientScriptInclude(
Url.Content("~/Content/Scripts/jquery-1.3.2.min.js"),
"http://ajax.Microsoft.com/ajax/jQuery/jquery-1.3.2.min.js"); %>
<% Ajax.RegisterClientScriptInclude(
Url.Content("~/Content/Scripts/jquery.validate.js"),
"http://ajax.microsoft.com/ajax/jquery.validate/1.5.5/jquery.validate.min.js"); %>

Chapter 2 From 2003 to 2010: Designing the Look and Feel 61

<% Ajax.RegisterCombinedScriptInclude(
Url.Content("~/Content/Scripts/MicrosoftMvcIQueryValidation.js"), "pmn"); %>

<% Ajax.RegisterCombinedScriptInclude(
Url.Content("~/Content/Scripts/ajax.common.js"), "pmn"); %>

<% Ajax.RegisterCombinedScriptInclude(
Url.Content("~/Content/Scripts/ajax.profile.js"), "pmn"); %>

<%= Ajax.RenderClientScripts() %>

</asp:Content>

This script makes use of extension methods for the System.Web.Mvc.AjaxHelper, which are
found in the PlanMyNight.Infrastructure project, under the MVC folder.

With the head content setup, you can look at the main content of the view:

<asp:Content ContentPlaceHolderID="MainContent" runat="server">
<div class="panel" id="profileForm">
<div class="innerPanel">
<h2>My Profile</h2>
<% Html.EnableClientValidation(); %>
<% using (Html.BeginForm("Update", "Account™)) %>
<% { %>
<%=Htm1.AntiForgeryToken()%>
<div class="items">
<fieldset>
<p>
<Tlabel for="FullName">Name:</label>
<%=Htm1.EditorFor(m => m.Profile.FullName)%>
<%=Htm1.ValidationMessage("Profile.FullName",
new { @class = "field-validation-error-wrapper" })%>
</p>
<p>
<label for="State">State:</label>
<%=Htm1.DropDownListFor(m => m.Profile.State, Model.States)%>
</p>
<p>
<label for="City">City:</Tabel>
<%=Htm1.EditorFor(m => m.Profile.City, Model.Profile.City)%>
</p>
<p>
<label for="PreferredActivityTypeld">Preferred activity:</Tabel>
<%=Htm1.DropDownListFor(m =>
m.Profile.PreferredActivityTypeld,
Model.PreferredActivityTypes)%>
</p>
</fieldset>
<div class="submit">
<%=Htm1.Hidden("returnUr1", Model.ReturnUrl)%>
<%=Htm1.SubmitButton("submit", "Update")%>

</div>
</div>
<div class="toolbox"></div>
<% } %>
</div>
</div>

</asp:Content>

62

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Aside from some inline code, this looks to be fairly normal HTML markup. We're going to
focus our attention on the inline code pieces to demonstrate the power they bring (as well as
the simplicity).

Visual Studio 2003 In Visual Studio 2003, it was more commonplace to use server-side con-
trols to display data and other display-time logic. However, because ASP.NET MVC view pages do
not have a code-behind file, server-side logic executed in the view at render time must be done
in the same file with the markup. ASP.NET Web Forms controls can still be used. Our example
makes use of the <asp:Content> control. However, the functionality of ASP.NET Web Forms con-
trols is generally limited because there is no code-behind file.

MVC makes a lot of use of what is known as HTML helpers. The methods contained under
System.Web.Mvc.HtmIHelper emit small, standards-compliant HTML tags for various uses.
This requires the MVC developer to type more markup than a Web Forms developer in some
cases, but the developer has more direct control over the output. The strongly typed version
of this extension class (HtmlHelper<TModel>) can be referenced in the view markup via the
ViewPage<TModel>.Html property.

These are the HTML methods used in this form, which are only a fraction of what is available
by default:

B Html.EnableClientValidation enables data validation to be performed on the client side
based on the strongly typed ModelState dictionary.

B Html.BeginForm places a <form> tag in the markup and closes the form at the end
of the using section. It takes various parameters for options, but the most common
parameter is the name of the action and the controller to invoke that action on. This
allows the MVC framework to generate the specific URL to target the form to at run
time, rather than having to input a string URL into the markup.

B Html.AntiForgeryToken places a hidden field in the form with a check value that is also
stored in a cookie in the visitor's browser and validated when the target of the form has
the ValidateAntiForgeryToken attribute. Remember that you added this attribute to the
Update method in the controller.

B Html.EditorFor is an overloaded method that inserts a text box into the markup. This is
the strongly typed version of the Html.Editor method.

B Html.DropDownlistFor is an overloaded method that places a drop-down list into the
markup. This is the strongly typed version of the Html.DropDownList method.

B HtmlValidationMessage is a helper that will display a validation error message when a
given key is present in the ModelState dictionary.

Chapter 2 From 2003 to 2010: Designing the Look and Feel 63

B Html.Hidden places a hidden field in the form, with the name and value that is
passed in.

B Html.SubmitButton creates a Submit button for the form.

Note With the Index view markup complete, you only need to add the view for the
UpdateSuccess action before you can see your results.

To create the UpdateSuccess view:

1. Expand the PlanMyNight.Web project in Solution Explorer, and then expand the Views
folder.

2. Click the right mouse button on the Account folder.
3. Open the Add submenu, and click View.
4. Fill out the Add View dialog box so that it looks like this:

r ™
Add View -

View name:

UpdateSuccess|
[F] Createa partial view [.ascx)
Create a strongly-typed view

View data class:
ProfileViewModel -

View content:

Empty

Select master page

~/Views/Shared/Site.Master D

ContentPlaceHolder ID:

MainContent

[Add l l Cancel]

- =/

After the view page is created, fill in the title content so that it looks like this:

<asp:Content ContentPlaceHolderID="TitleContent" runat="server">Plan My Night - Profile
Updated</asp:Content>

64 Part | Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

And the placeholder for MainContent should look like this:

<asp:Content ContentPlaceHolderID="MainContent" runat="server">
<div class="panel" id="profileForm">
<div class="innerPanel">
<h2>My Profile</h2>
<div class="items">
<p>Your profile has been successfully updated.</p>
<h3>» <a href="<%=Htm1.AttributeEncode(Model.ReturnUrl ??
Url.Content("~/"))%>">Continue</h3>
</div>
<div class="toolbox"></div>
</div>
</div>
</asp:Content>

To see the views created, you must perform an edit to the Site.Master file (located in the
Views/Shared folder from the Web project’s root). Line 33 of the file is commented out, and
the comment tags should be removed so that it matches the following example:

<%=Htm1.ActionLink<AccountController>(c => c.Index(null), "My Profile")%>

With this last view created, you can now compile and launch the application. Click the Sign In
button, as seen in the top right corner of Figure 2-6, and sign in to Windows Live ID.

— Pﬁ?g’?\yt SEARCH | ABOUT) |

Search

\i ml | Advanced Search

Actiities Itineraries Your current itinerary Totalestimated tme:

Please provide a search criteria...
Vour itinerary is currently empty.

Perform a search and then select activities to build an itinerary...

Al ights reserved
© 2009 Micros

00

Geveioper & platform evangelism

FIGURE 2-6 Plan My Night default screen

Chapter 2 From 2003 to 2010: Designing the Look and Feel 65

After you've signed in, you should be redirected to the Index view of the Account controller
you created, shown in Figure 2-7.

Pl
Night

il

SEARCH | MYPROFILE | MYTINERARIES | ABOUT o r e

Name: MNew User

State: Any state

City:

Preferred activity:

Update

00 .0

eveioper & plationm evangelism

FIGURE 2-7 Profile settings screen returned from the Index method of the Account controller

If instead you are returned to the search page, just click the My Profile link, located in the
links at the center and top of the interface. To see the new data-validation features at work,
try to save the form without filling in the Full Name field. You should get a result that looks

like Figure 2-8.
My Profile
| RS i v s e,
State: Washington El
City: |Redmond |

Preferred activity:

Restaurant E|

Update

FIGURE 2-8 Example of failed validation during Model Binding checks

66

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Because you enabled client-side validation, there was no post back. To see the server-side
validation work, you would have to edit the Index.aspx file in the Account folder and com-
ment out the call to Html.EnableClientValidation. The tight integration and support of AJAX
and other JavaScript in MVC applications allows for server-side operations such as validation
to be moved to the client side much more easily than they were previously.

Visual Studio 2003 In ASP.NET MVC applications, the value of the ID attribute for a particular
HTML element is not transformed, like it is in ASP.NET Web Forms 1.0. In Visual Studio 2003, a
developer would have to make sure to set the UniquelD of a control/element into a JavaScript
variable so that it could be accessed by external JavaScript. This was done to make sure the

ID was unique. However, it was always an extra layer of complexity added to the interaction
between ASP.NET 1.0 Web Forms controls and JavaScript. In MVC, this transformation does not
happen, but it is up to the developers to ensure uniqueness of the ID. It should also be noted
that ASP.NET 4.0 Web Forms now supports disabling the ID transformation on a per-control
basis, if the developer so wishes.

With the completed Account controller and related views, you have filled in the missing
“core” functionality of Plan My Night, while taking a brief tour of some new features in Visual
Studio 2010 and MVC 2.0 applications. But MVC is not the only choice for Web developers.
ASP.NET Web Forms has been the primary application type for ASP.NET since it was released,
and it continues to be improved upon in Visual Studio 2010. In the next section, we'll explore
creating an ASP.NET Web Form with the Visual Designer to be used in the MVC application.

Using the Designer View to Create a Web Form

Applications will encounter an unexpected condition at some point in their lifetime of use.
The companion application is no different, and when it does encounter an unexpected con-
dition, it returns an error screen like that shown in Figure 2-9.

Night SEARCH | aBOUT

Ooops! An error has occurred while processing your request
! Don't worry, this was our fault, not yours.
£

= Want to try again?

Error Details

System ArgumentNulException: Value canno be nul. Parameter narme valus o ystem MWeb, Caching CacheEnty.ctor(String ks .0 Object
value, . C allback . DateTime uicAbsolutcbpraton, Time
Sichnabaitation, CachdtemProrty prorty, Bocleon BPUBL) a5yt b.Caching.Ca 1D isPublic, Stvmg key,
Object value, C: Y DateTime u Timesps Ca riority,
CacheltemRemovedCallback onfermoveC aitack. Eoclein vEp\a(E) 3 System Web.Coching Cacheincer (Strmg ey, Object valoer

NetCac) delSrng conoiner, Sing ey, ket value TimeSpan
t\meuut) m(\mde\wn(mde End of C tyNight Web spl it
tData Caching.C. itinerand) in C. End of

]

ita\Ca 9\C: T0at
Mmasof:sammes’manMyNugmwmc trollers. Controller Details(Ints4 id) in
o\C 71 at lambda mﬂhud((\nsuva)Cuntvn\lEansE Omect[])at

At ontroller, Object(] parameters|
System Wb, Mv(REﬂE(tEdAntlunDesmptwExe(ute((untvn”ev(umext(unthev(untEﬂ, TDictionary 2 parameters) at
rollerContext controilerContext, ActionDescriptor actionDescriptor,
Iummna[,y Earamﬁters} at System.Web| s Cun(ruHErA((wnInvuker e DiplayClassd <Invokectionbshod WithFikers b_af ot
I iFilter(IA ctionFilter filter, ActionExecutingContext preContext,
continuation) ot SystermWeb Mve ContollerActionvoker. <> c_DisplayCiessd.c>c D\sp\ay(\sssf(IrwnkaAmnnMéthudWlthF\ltevDh <0

ext preCont
DispiayClaesf <Invo aA:!mnMethnd\'\/lMF\ltevs)h _c0)

i tyaa e <5 DispiayClassd.<>
t b.M, rolrhes ontsoleContec controleiContert, List i

O atrbor ackionbeatsptor]D\(tmnaryl parameters) at Systs b.Mve.Con tion(ContrgllerContest

controllerContext, String actionName)

developer & platiorm evangelism -

FIGURE 2-9 Example of an error screen in the Plan My Night application

Chapter 2 From 2003 to 2010: Designing the Look and Feel 67

Currently, a user who sees this screen really has only the option of trying his action again or
using the navigation links along the top area of the application. (Of course, that might also
cause another error.) Adding an option for the user to provide feedback allows the develop-
ers to gain information about the situation that might not be apparent by using the standard
exception message and stack trace. To show a different way to create a user interface com-
ponent for Plan My Night, the error feedback page is going to be created as an ASP.NET Web
Form using primarily the Designer view in Visual Studio. Before you can begin designing the
form, you need to create a base form file to work from.

To create a new Web form:

1. Open the context menu on the PlanMyNight.Web project (by clicking the right mouse
button), open the Add submenu, and select New Item.

2. In the Add New Item dialog box, select Web Form Using Master Page and call the item
ErrorFeedback.aspx in the Name field.

- — .
Add New ltem - PlanMyNightWeb e [
Installed Templates Sort by: | search Installed Templates 2|
4 Visual C2 p
Type: Visual C#
Code A MVC2 Controller Class Visual C# ype: iz
5 = A form for Web Applications that is built
c] from a Master Page
General MVC 2 View Content Page Visual C#
4 Web
Mvc2 MVC 2 View Master Page Visual C#
Windows Forms
WP E‘lzg MVC 2 View Page Visual C#
Reporting S
SLG L E=| MVC 2 View User Control Visual C#
Workflow
Online Templates Web Form Visual C#
gzg Web Form using Master Page Visual C¥
H=| Web User Control Visual C#
cho] Class Visual C#
E Master Page Visual C#
Nested Master Page Visual C# =
Name: ErrorFeedback.aspx
Add Cancel

3. The dialog screen to associate a master page with this Web form will appear. On the
Project Folders side, ensure that the main PlanMyNight.Web folder is selected and then
select the WebForms.Master item on the right.

68

Part |

Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

- N
Select a Master Page l (9 [
e - — -
Project folders: Contents of folder:
4 [PlanMyNight Web % WebForms.Master]
b (23 App_Browsers
b (3 App_Data
[Areas
» £ Content |
b [Controllers
|
» 3 Helpers |
b £ Infrastructure I
1 [Properties
b [References
b [ViewModels
1 C3 Views |
l
U
-
L = = |

4. The resulting page can be shown in the source mode (or Design view) instead of Split
view. Switch the view to Split (located at the bottom of the window, just like in previous
Visual Studio versions). When you are done, the screen should look similar to this:

File Edit View Project Build Debug Team Data Format Tools Test Window Help

Sl % a9 -e -85 P [Debug -] [any cPU

0 MR BES .

1118 [t s

XHTML 10 Transition - | | &

blish: | Create Publish Settings ~| & =

~ Solution Bxplorer

ErrorFeedback.aspx X [ETNVEC TS UpdateSuccessaspx Index.aspx AccountController.cs - ix B
Client Objects & Events <[(NoEvents) g =B [év
5@ Page Title="" Language="CA' MasterPageFile="~/WebForms.Master” Autofventhireup="true" CodeBehind Gl [Solution ‘PlanhyNight' (13 proje ~ N
<asp:Content ID="Contentl” ContentPlaceHolderID="TitleContent” runat="server”> 175 addins &
</asp:Content> b 7 Solution ltems
<asp:Content ID="Content2" ContentPlacetolderID="ttmlHeadContent” runat="server"> o Tests
</asp:Contents> 4
<asp:Content ID="Content3" ContentPlaceHolderID="MainContent” runat="server”> _| > @ ranmynightsing
<Jasp:Content> =l » & PianMyNight.Contracts
b (G PlanMyNight Data
b (5 PlanMyNight Infrastructure
b (5 PlanMyNight.Velocity
4 3 PlanMyNight.Web
i [Properties
& [References
i » [App_Browsers
00% - < i v + 2 App.Date 1
‘WebForms Master| > [Areas
[l 1+ [Content
Plan My 3 Comots
. SEARCH | MY PROFILE | MY ITINERARIES | ABOUT 4
1 t & [Helpers
= b [Infrastructure
b [ViewModels
[MainContent (Custom)]
5= b O Views
> [Defaultiaspx

| © 2009 Microsoft Corporation.

| All rights reserved. | Terms of Use | Privacy Statement

af

rvr

3 Design @ Source |

[#] Error.htm
[ErrorFeedback.aspx
60 faviconico
b] Global.asax

|8] NotFound.htm
o » [Zh Web.config

& 1 WehEnrme Macter
 ——i—
&3 Selution Explorer [

eam Explorer

Ch1 INS

Note Split view is recommended so that you can see the source the designer is generating and
to add extra markup as needed.

It's a good idea to pin the control toolbox open on the screen because you'll be dragging
controls and elements to the content area during this section. The toolbox, if not present
already, can be found under the View menu.

Chapter 2 From 2003 to 2010: Designing the Look and Feel 69

Start by dragging a div element (under the HTML group) from the toolbox into the
MainContent section of the designer. A div tab will appear, indicating that the new element
you added is the currently selected element. Open the context menu for the div, and choose
Properties (which can also be opened by pressing the F4 key). With the Properties window
open, edit the (Id) property to have a value of profileForm. (Casing is important.) Also, change
the Class property to have a value of panel. After editing the values, the size of your content
area will have changed, because CSS is applied in the Design view.

Visual Studio 2003 A much-needed update to the Web Forms designer surface from Visual
Studio 2003 is the application of CSS. This allows the developer to see in real-time how the style
changes are applied, without having to run the application. When viewed in Visual Studio 2003,
the designer for the search.aspx page will appear similar to Figure 2-10.

9% PlanMyNight2005 - Microsoft Visual Studio EEX

Fie Edt Uew Projec Euld Debug Data Fomat Layour Took Window Communky Hep
SR =2 N IR TN - YRR SR = R = N - - fAny CPU ~ | @ st S SR RRE T
; ENEE B
Z LS i 58 10 Trenstional (- | & | B o

8] Logn.aspx.cs] Login.aspx @] Account.aspx.cs @) Account.ssp 8

ID property is not specified

Content - Contentt (Custom)

Search

F |_iSimpleSubmitl]| Advanced Search

E B |

.z “Bars m Manhattan, NY™

Select an activity type and enter a location to constrain your search by..

Activity: Phctivity Velidationbessage]

adgesst]

-
< &
[Design | @ eures | g

Ready

FIGURE 2-10 Designer view of an ASP.NET Web page in Visual Studio 2003

Drag another div inside the first one, and set its class property to innerPanel. In the markup
panel, add the following markup to the innerPanel.

<h2>Error Feedback</h2>

70

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

After the close of the <h2> tag, add a new line and open the context menu. Choose Insert
Snippet, and follow the click path of ASP.NET > form. This will create a server-side form tag
for you to insert Web controls into. Inside the form tag, place a div tag with the class attri-
bute set to items and then a fieldset tag inside the div tag.

Next drag a TextBox control (found under Standard) from the toolbox and drop it inside the
fieldset tag. Set the ID of the text box to FullName. Add a <label> tag before this control in
the markup view, set its for property to the ID of the textbox and set its value to Full Name:
(making sure to include the colon). To set the value of a <label> tag, place the text between
the <label> and </label> tags. Surround these two elements with a <p>, and you should
have something like Figure 2-11 in the Design view.

a
Pla?‘hf‘_lyt SEARCH | MY PROFILE | MY ITINERARIES | ABOUT

[MainContent [Custom)]
Error Feedback

fieldset]

Full Name:

FIGURE 2-11 Current state of ErrorFeedback.aspx in the Design view

Add another text box, and label it in a similar manner as the first, but set the ID of the text
box to EmailAddress and the label value to Email Address: (making sure to include the
colon). Repeat the process a third time, setting the TextBox ID and label value to Comments.
There should now be three labels and three single-line TextBox controls in the Design view.
The Comments control needs multiline input, so open its property page and set TextMode to
Multiline, Rows to 5, and Columns to 40. This should create a much wider text box in which
the user can enter comments.

Chapter 2 From 2003 to 2010: Designing the Look and Feel 71

Use the Insert Snippet feature again, after the Comments text box, and insert a “div with
class” tag (HTML>divc). Set the class of the div tag to submit, and drag a Button control from
the toolbox into this div. Set the Button’s Text property to Send Feedback.

The designer should show something similar to what you see in Figure 2-12, and at this point
you have a page that will submit a form.

n
Plan Af]y SEARCH | MY PROFILE | MY ITINERARIES | ABOUT
ight
R i ment (G
Error Feedback -
Full Name: | ‘
Email Address: | ‘
Comments:
=
=
Send Feedback
All ights reserved. | Terms of Use | Privacy Statement Q o 0

© 2009 Microsoft Corporation.
P developer & platform evang.

FIGURE 2-12 The ErrorFeedback.aspx form with a complete field set

However, it does not perform any validation on the data being submitted. To do this, you'll
take advantage of some of the validation controls present in ASP.NET. You'll make the Full
Name and Comments boxes required fields and perform a regex validation of the e-mail
address to ensure that it matches the right pattern.

Under the Validation group of the toolbox are some premade validation controls you'll use.
Drag a RequiredFieldValidator object from the toolbox, and drop it to the right of the Full
Name text box. Open the properties for the validation control, and set the ControlToValidate
property to FullName. (It's a drop-down list of controls on the page.) Also, set the CssClass to
field-validation-error. This changes the display of the error to a red triangle used elsewhere

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

in the application. Finally, change the Error Message property to Name is Required. (See
Figure 2-13))

File Edit View Project Build Debug Team Data Format Tools Test Window Help

-G E @ § @]9 - ¢ -G ok | [amycru | [ty again SEEE R |
[EEXT% = [#2 68| B A3 3 [E [Newiniine siyley -] 2 S [[Paragraph_[segoe i avin, 7: J[os [2 0 [A 2| =-]= =3[[

4 B Y site.css UserProfile.xtension.cs & UserProfile.cs 1 Site.Master Properties -1 x
TETRImTL 1 System.Web ULWebC -

=21 | = S
(Expressions) B
) RequiredFieldValidato
AccessKey
BackColor
BorderColor
Borderstyle Notset
BorderWidth
ClientiDMode Inherit
ControlToValidate FullName

Full Name: CssClass errorShort

SEARCH | MY PROFILE | MY ITINERARIES | ABC[|

10/dig UORN0S 8

Error Feedback

Display Static
Email Address: True

Enabled True
EnableTheming True
Comments: EnsbleViewstate True
EroMessage Name is Required
Font

ForeColor

Height

InitialValue

! SetFocusOnError

SkinlD

Tablndex 0

Send Feedback ©

EnableClientScript

< m
L Indicates whether to perform validation on the

]
G Design |01 Spiit | @ Source | [4][<form |[<divitems> | [<fieidset>][<p> || <aspRequiredFisiavalidat...> client in up-level browsers.

B Call Stack 8 Immediate Window ¥ Find Symbol Results 5 Locals /& Watch 1

Drag border or press arrow keys to move. Drag margin handles to resize margins. Press SHIFT or CTRL for more options.

FIGURE 2-13 Validation control example

Repeat these steps for the Comments box, but substitute the ErrorMessage and
ControlToValidate property values as appropriate.

For the Email Address field, you want to make sure the user types in a valid e-mail address,
so for this field drag a RegularExpressionValidator control from the toolbox and drop it next
to the Email Address text box. The property values are similar for this control in that you set
the ControlToValidate property to EmailAddress and the CssClass property to field-validation-
error. However, with this control you define the regular expression to be applied to the input
data. This is done with the ValidationExpression property, and it should be set like this:

[A-Za-z0-9._%+-]1+@[A-Za-z0-9.-1+\.[A-Za-z]{2,4}

The error message for this validator should say something like “Must enter a valid e-mail
address.”

The form is complete. To see it in the application, you need to add the option of provid-
ing feedback to a user when the user encounters an error. In Solution Explorer, navigate the
PlanMyNight.Web project tree to the Views folder and then to the Shared subfolder. Open
the Error.aspx file in the markup viewer, and go to line 35. This is the line of the error screen
where you ask the user if she wants to try her action again and where you'll put the option
for sending the feedback. After the question text in the same paragraph, add the following
markup:

or send feedback?

Chapter 2 From 2003 to 2010: Designing the Look and Feel 73

This will add an option to go to the form you just created whenever there is a general error
in the MVC application. To see your form, you'll have to cause an error in your application.

To cause an error in the Plan My Night application:

1.

Start the application.

2. After the default search page is up, type the following into the browser address bar:
http://www.planmynight.net:48580/Itineraries/Details/38923828.

3.

Because it is highly unlikely such an itinerary ID exists in the database,

will be shown.

[|
Plﬁ?g%yt SEARCH ABOUT

p Ooops! An error has occurred while processing your request
! Don't worry, this was our fault, not yours.
L b Want to try again or send feedback?

Error Details

System.ArgumentNullException: Value cannot be null. Parameter name: value at System.Web.Caching.CacheEntry..ctor(String
key, Object value, CacheDependency dependency, CacheltemRemovedCallback onRemovedHandler, DateTime
utcAbsoluteExpiration, TimeSpan slidingExpiration, CacheltemPriority priority, Boolean isPublic) at
System.Web.Caching.Cachelnternal.Dolnsert(Boolean isPublic, String key, Object value, CacheDependency dependencies,
DateTime utcAbsoluteExpiration, TimeSpan slidingExpiration, CacheltemPriority priority, CacheltemRemovedCallback
onRemoveCallback, Boolean replace) at System Web.Caching.Cache.Insert(String key, Object value, CacheDependency
dependencies, DateTime absoluteExpiration, TimeSpan slidingExpiration) at .
Microsoft.Samples.PlanMyNight. Web.Infrastructure. AspNetCachingProvider.Add(String container, String key, Object value,

TimeSpan timeout) in C'\code\PMN\code - End of Chapter\PlanMyNight Web\Infrastructure\AspNetCachingProvider ¢s:line 33 at
Microsoft.Samples.PlanMyNight.Data.Caching.CachedItinerariesRepository.Retrieve(Int64 itineraryld) in C:\code\PMN\code - End

of Chapter\PlanMyNight. ata\Ca(hing\Ca(hedIlinerariesReposho?l.(s:line 70 at
Microsoft.5amples.PlanMyNight.Web.Controllers.ItinerariesController.Details(Int64 id) in C:\code\PMN\code - End of
Chapter\PlanMyNight.Web\Controllers\ItinerariesController.cs:line 71 at lambda_method(Closure , ControllerBase , Object[]) at
System.Web.Mvc.ActionMethodDispatcher.Execute(ControllerBase controller, Object[] parameters) at
System.Web.Mvc.ReflectedActionDescriptor.Execute(ControllerContext controllerContext, IDictionary'2 parameters) at
System.Web.Mvc.ControllerActionInvoker.InvokeActionMethod(ControllerContext controllerContext, ActionDescriptor
actionDescriptor, IDictionary’2 parameters) at

System.Web.Mvc.ControllerActionInvoker.< >c_ DisplayClassd.<InvokeActionMethodWithFilters>b__a() at
S‘vs(em.Web.Mv(.ControIIerAdionInvoker.lnvokeAdionMethodFiIter(IActionFiIterﬁlter, ActionExecutingContext preContext, . -
« 0 v

i,

With the error screen visible, click the link to go to the feedback form
form with invalid data.

Error Feedback

Full Name: | | S Name is Required
Email Address: |some0ne@somewhere.c0m |

Comments:

this is some feedback

Send Feedback

an error screen

. Try to submit the

74

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

ASP.NET uses client-side script (when the browser supports it) to perform the validation, so
no postbacks occur until the data passes. On the server side, when the server does receive
a postback, a developer can check the validation state with the Page.IsValid property in the
code-behind. However, because you used client-side validation (which is on by default), this
will always be true. The only code in the code-behind that needs to be added is to redirect
the user on a postback (and check the Page.lsValid property, in case client validation missed
something):

protected void Page_Load(object sender, EventArgs e)

{
if (this.IsPostBack && this.IsValid)
{
this.Response.Redirect("/", true);
}
}

This really isn't very useful to the user, but our goal in this section was to work with the
designer to create an ASP.NET Web Form. This added a new interface to the PlanMyNight.
Web project, but what if you wanted to add new functionality to the application in a more
modular sense, such as some degree of functionality that can be added or removed without
having to compile the main application project. This is where an extensibility framework like
the Managed Extensibility Framework (MEF) can show the benefits it brings.

Extending the Application with MEF

A new technology available in Visual Studio 2010 as part of the .NET Framework 4 is the
Managed Extensibility Framework (MEF). The Managed Extensibility Framework provides
developers with a simple (yet powerful) mechanism to allow their applications to be extend-
ed by third parties after the application has been shipped. Even within the same application,
MEF allows developers to create applications that completely isolate components, allow-

ing them to be managed or changed independently. It uses a resolution container to map
components that provide a particular function (exporters) and components that require that
functionality (importers), without the two concrete components having to know about each
other directly. Resolutions are done on a contract basis only, which easily allows components
to be interchanged or introduced to an application with very little overhead.

See Also MEF's community Web site, containing in-depth details about the architecture, can
be found at http://mef.codeplex.com.

Chapter 2 From 2003 to 2010: Designing the Look and Feel 75

The companion Plan My Night application has been designed with extendibility in mind, and
it has three "add-in” module projects in the solution, under the Addins solution folder. (See
Figure 2-14.)

File Edit View Project Build Debug Team Data Tools Test Window Help

@il G @] 8 @]9 - - LG P [obuy (A cru 1 [ty again Bl e
| 2000 w9 i Q]S M2 5 BE S - NewWokhem- (3 = 4

[ES IS PRRIEY AspheiCachingProvider.cs Ermoraspr Indexaspx Solution Explarer

z i Addl 2 <[3 Arcatiame S dEEaleE
Sinamespace Microsoft.Samples.Plantyight.AddLns. Emailltinerary 23 Solution ‘PlanMyNight' 15 projects)
<) 4 i Addins
4 (@ PlanMyNight Addlns Emailltinerary
» [Properties
b [References

%0g/00) -
swadolg B

using System.Componentiodel . Composition;
using System.Web.Mvc;
using System.Web.Routing;

public class RouteTableConfiguration 35 App_Data

{ 3 Controllers
public const string Areallame = "PlanMyNight.AddIns.Emailltinerary”s [Notifications
(3 Resources
[Export(typeof(Routecollection))] [Views
public RouteCollection RouteCollectionConfiguration

&) HineraryContextualActionsExport.cs
1

(2] RouteTableConfiguration.cs|

?“ @ PlanMyNight Addins Printitinerary

var routes = new RouteCollection(); l Properties

var areaContext = new AreaRegistrationContext(AreaName, routes); [l References
(3 App_Data
areaContext.MapRoute(3 Controllers

“ItineraryEmail®, 3 Views

“Itineraries/Email/{action}’,

new { controller = "Emailltinerary” },

new[] { "Microsoft.Sanples.PlanMyllight.AddIns.Enailltinerary.Contr

&) RineraryContextualActionsExport.cs
] RouteTableConfiguration.cs
]
£ PlanMyNight.Addins.Share
return routes; » B Properties
b [References
(5 App_Data
3 Controllers

3 Models
> 3 Views
] RouteTableConfiguration.cs
] SharingContextualActionsExport.cs

P Saldinn Trame
3] Solution Explorer [[TRTRTRN= T

FIGURE 2-14 The Plan My Night application add-ins

PlanMyNight.Addins.Emailltinerary adds the ability to e-mail itinerary lists to anyone the user
sees fit to receive them. PlanMyNight.Addins.Printltinerary provides a printer-friendly view
of the itinerary. Lastly, PlanMyNight.Addins.Share adds in social-media sharing functions (so
that the user can post a link to an itinerary) as well as URL-shortening operations. None of
these projects reference the main PlanMyNight.Web application or are referenced by it. They
do have references to the PlanMyNight.Contracts and PlanMyNight.Infrastructure projects,
so they can export (and import in some cases) the correct contracts via MEF as well as use
any of the custom extensions in the infrastructure project.

Note Before doing the next step, if the Web application is not already running, launch the
PlanMyNight.Web project so that the Ul is visible to you.

To add the modules to your running application, run the DeployAllAddins.bat file, found
in the same folder as the PlanMyNight.sIn file. This will create new folders under the Areas
section of the PlanMyNight.Web project. These new folders, one for each plug-in, will con-
tain the files needed to add their functionality to the main Web application. The plug-ins
appear in the application as extra options under the current itinerary section of the search
results page and on the itinerary details page. After the batch file is finished running, go to

76

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

the interface for Plan My Night, search for an activity, and add it to the current itinerary. You
should notice some extra options under the itinerary panel other than just New and Save.
(See Figure 2-15))

Total estimated time: 30m

Palomino

1420 5th Ave Ste 350 . @

Seattle, WA | Phone: (206) 623-1300

Time: min Set Time

Il Terrazzo Carmine

411 1st Ave S . @

Seattle, WA | Phone: (206) 467-7797

Time: min Set Time

New | [Save | &3 Email | dgy Print

FIGURE 2-15 Location of the e-mail add-in in the Ul

The social sharing options will show in the interface only after the itinerary is saved and
marked public. (See Figure 2-16.)

Itinerary: Seattle Restaurants ; | Public &

Add activities to my itinera i

Total estimated time: 30m + 6 minutes of travel time.

A. Palomino
1420 5th Ave Ste 350
Seattle, WA | Phone: (206) 623-1300
Estimated time: 20 minutes.

i Travel estimated time: 6 minutes.

B. Il Terrazzo Carmine
411 1stAve S
Seattle, WA | Phone: (206) 467-7797
Estimated time: 10 minutes.

Edit | Make Private | Email | Shorten URL | Share | Rate:

FIGURE 2-16 Location of the social-sharing add-in in the Ul

Chapter 2 From 2003 to 2010: Designing the Look and Feel 77

Visual Studio 2003 Visual Studio 2003 does not have anything that compares to MEF. To
support plug-ins, a developer would have to either write the plug-in framework from scratch or
purchase a commercial package. Either of the two options led to proprietary solutions an exter-
nal developer would have to understand in order to create a component for them. Adding MEF
to the .NET Framework helps to cut down the entry barriers to producing extendible applications
and the plug-in modules for them.

Print Itinerary Add-in Explained

To demonstrate how these plug-ins wire into the application, let's have a look at the
PrintIntinerary.Addin project. When you expand the project you should see something like
the structure shown in Figure 2-17.

G Solution ‘PlanMyNight' (15 projects)
4 % Addins

[> |§ PlanMyNight.AddIns.Emailltinerary |

4 M.% PlanMyNight.AddIns.Printltinerary
> [=d Properties
> [x3] References

3 App_Data
4 [Controllers

& PrintltineraryController.cs

4 [Views

4 [Printltinerary

] Print.aspx
i Web.config

& HineraryContextualActionsExport.cs

#] RouteTableConfiguration.cs
8 PlanMyNight.Addlns.Share
Solution Items
Tests
[PlanMyNight.Bing
[PlanMyNight.Contracts
(Z PlanMyNight.Data
[PlanMyNight Infrastructure
[PlanMyNight.Velocity
£® PlanMyNight.Web

[

v v vV W v W W

FIGURE 2-17 Structure of the Printltinerary project

Some of this structure is similar to the PlanMyNight.Web project (Controllers and Views).
That's because this add-in will be placed in an MVC application as an area. If you look more
closely at the PrintltineraryController.cs file in the Controller folder, you can see it is similar in
structure to the controller you created earlier in this chapter (and similar to any of the other
controllers in the Web application). However, some key differences set it apart from the con-
trollers that are compiled in the primary PlanMyNight.Web application.

78

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Focusing on the class definition, you'll notice some extra attributes:

[Export("PrintItinerary", typeof(IController))]
[PartCreationPolicy(CreationPolicy.NonShared)]

These two attributes describe this type to the MEF resolution container. The first attribute,
Export, marks this class as providing an /Controller under the contract name of Printlitinerary.
The second attribute declares that this object supports only nonshared creation and cannot
be created as a shared/singleton object. Defining these two attributes are all you need to
do to have the type used by MEF. In fact, PartCreationPolicy is an optional attribute, but it
should be defined if the type cannot handle all the creation policy types.

Further into the PrintltineraryController.cs file, the constructor is decorated with an
ImportingConstructor attribute:

[ImportingConstructor]
public PrintItineraryController(IServiceFactory serviceFactory) :
this(
serviceFactory.GetItineraryContainerInstance(),
serviceFactory.GetItinerariesRepositoryInstance(),
serviceFactory.GetActivitiesRepositoryInstance())
{
}

The ImportingConstructor attribute informs MEF to provide the parameters when creating
this object. In this particular case, MEF provides an instance of /ServiceFactory for this object
to use. Where the instance comes from is of no concern to the this class and really assists
with creating modular applications. For our purposes, the IServiceFactory contracted is being
exported by the ServiceFactory.cs file in the PlanMyNight.Web project.

The RouteTableConfiguration.cs file registers the URL route information that should be
directed to the PrintltineraryController. This route, and the routes of the other add-ins, are
registered in the application during the Application_Start method in the Global.asax.cs file of
PlanMyNight.Web:

// MEF Controller factory
var controllerFactory = new MefControllerFactory(container);
ControllerBuilder.Current.SetControllerFactory(controllerFactory);

// Register routes from Addins
foreach (RouteCollection routes in container.GetExportedValues<RouteCollection>())
{
foreach (var route in routes)
{
RouteTable.Routes.Add(route);
}

Chapter 2 From 2003 to 2010: Designing the Look and Feel 79

The controllerFactory, which was initialized with a MEF container containing path information
to the Areas subfolder (so that it enumerated all the plug-ins), is assigned to be the control-
ler factory for the lifetime of the application. This allows controllers imported via MEF to be
usable anywhere in the application. The routes these plug-ins respond to are then retrieved
from the MEF container and registered into the MVC routing table.

The ItineraryContextualActionsExport.cs file exports information to create the link

to this plug-in, as well as metadata for displaying it. This information is used in the
ViewModelExtensions.cs file, in the PlanMyNight.Web project, when building a view model
for display to the user:

// get addin 1links and toolboxes
var addinBoxes = new List<RouteValueDictionary>(Q);
var addinLinks = new List<ExtensionLink>();

addinBoxes.AddRange (AddinExtensions.GetActionsFor("ItineraryToolbox", model.Id == 0 ? null :
new { id = model.Id }));

addinLinks.AddRange(AddinExtensions.GetLinksFor("ItineraryLinks", model.Id == 0 ? null : new
{ id = model.Id }));

The call to AddinExtensions.GetLinksFor enumerates over exports in the MEF Export provider
and returns a collection of them to be added to the local addinLinks collection. These are
then used in the view to display more options when they are present.

Summary

In this chapter, we explored a few of the many new features and technologies found in Visual
Studio 2010 that were used to create the companion Plan My Night application. We walked
through creating a controller and its associated view and how the ASP.NET MVC framework
offers Web developers a powerful option for creating Web applications. We also explored
how using the Managed Extensibility Framework in application design can allow plug-in
modules to be developed external to the application and loaded at run time. In the next
chapter, we'll explore how debugging applications has been improved in Visual Studio 2010.

Chapter 3

From 2003 to 2010: Debugging
an Application

After reading this chapter on debugging, you will be able to
B Use the new debugger features of Microsoft Visual Studio 2010
B (Create unit tests and execute them in Visual Studio 2010

B Compare what was available to you or see what was different for you as a developer in
Visual Studio 2003

As we were writing this book, we realized how much the debugging tools and developer aids
have evolved over the last three versions of Visual Studio. Focusing on debugging an applica-
tion and writing unit tests just increases the opportunities we have to work with Visual Studio
2010.

Visual Studio 2010 Debugging Features

In this chapter, you'll go through the different debugging features using a modified Plan
My Night application. If you installed the companion content at the default location, you'll
find the modified Plan My Night application at the following location: %userprofile%\
Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 3\Code. Double-click the
PlanMyNight.sIn file.

First, before diving into the debugging session itself, you'll need to set up a few things:

1. In Solution Explorer, ensure that PlanMyNight.Web is the startup project. If the project
name is not in bold, right-click on PlanMyNight.Web and select Set As StartUp Project.

2. To get ready for the next steps, in the PlanMyNight.Web solution open the
Global.asax.cs file by clicking the triangle beside the Global.asax folder and then
double-clicking the Global.asax.cs file as shown in Figure 3-1.

81

82

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

‘Solution Explorer > o x
@ 2E A %=
(5 PlanMyNight.Data ~

3 @ PlanMyNight.Infrastructure
(5 PlanMyNight.Velocity
4 8 PlanMyNight.Web
[=d| Properties
5] References —
g App_Browsers
3 App_Data
[Areas
[Content
[Controllers
[J Helpers
3 Infrastructure
3 ViewModels
[Views
|:=—| Default.aspx
%) Default.aspx.cs
|#] Error.htm
|8 favicon.ico
4 ﬁ] Global.asax
(%3 Global.asax.cs|
[#] MotFound.htm
[Web.config L

m

[

4

@ LRI SIS I, Team Explorer BE Server Explorer

FIGURE 3-1 Solution Explorer before opening the file Global.asax.cs

Managing Your Debugging Session

Using the Plan My Night application, you'll examine how a developer can manage and share
breakpoints. And with the use of new breakpoint enhancements, you'll learn how to inspect
the different data elements in the application in a much faster and more efficient way. You'll
also look at new minidumps and the addition of a new intermediate language (IL) inter-
preter that allows you to evaluate managed code properties and functions during minidump
debugging.

New Breakpoint Enhancements
At this point, you have the Global.ascx.cs file opened in your editor. The following steps walk

you through some ways to manage and share breakpoints:

1. Navigate to the Application_BeginRequest(object sender, EventArgs e) method, and set a
breakpoint on the line that reads var url = HttpContext.Current.Request.Url; by clicking
in the left margin or pressing F9. Look at Figure 3-2 to see this in action.

El protected void Application_BeginRequest(object sender, Eventirgs e)
1
[~] ar url = HttpContext.Current.Request.Url;

var authority = HttpContext.Current.Request.ServerVariables["HT

FIGURE 3-2 Creating a breakpoint

Chapter 3 From 2003 to 2010: Debugging an Application 83

2. Press F5 to start the application in debug mode. You should see the developer Web
server starting in the system tray and a new browser window opening. The application
should immediately stop at the breakpoint you just created. The Breakpoints window
might not be visible even after starting the application in debug mode. If that is the
case, you can make it visible by going to the Debug menu and selecting Windows and
then Breakpoints, or you can use the following keyboard shortcut: Ctrl+D+B.

Visual Studio 2003 Here is an area where there's a night-and-day difference between
Visual Studio 2003 and Visual Studio 2010. Thankfully, the ease of debugging in Visual
Studio 2010 is not comparable to the pain developers experienced in Visual Studio 2003.

Debugging Web applications in Visual Studio 2003 required you to complete a series of
careful tasks to be successful. For instance, you had to enable debugging in a few different
places in the Configuration Manager; you had to configure IIS carefully to avoid getting
the dreaded Temporary ASP.NET Files Access Denied security exception. Basically, it was
not developer friendly; it required lots of configuration and still there was no guarantee

of success. Many articles were written to help solve the intricacies of debugging an
ASP.NET Web application with Internet Information Services (lIS) 5 and 6 and Visual Studio
2003. A good reference that you might have consulted a few times is this one: http://msdn.
microsoft.com/en-us/library/aa290100(VS.71).aspx. Many of those blogs or articles were
just there to allow professional developers to debug on their workstations. Doing some
research in online forums revealed how much folks like you were struggling for years
through dozens of tough Web application debugging situations. For instance, debugging
an ASP.NET application along with a few Web services was quite a challenge to set up.

The creation of the personal Web server (also known as “Cassini”) improved things tremen-
dously, but a few enhancements in Visual Studio 2010 make it easier to modify the neces-
sary configuration files, modify project settings, and deploy to IIS. These improvements
help developers write good code and and spend less time trying to debug it. You'll find
that it definitely feels different to debug in Visual Studio 2010—you'll find it refreshing

and easier.

You should now see the Breakpoints window as shown in Figure 3-3.

Breakpoints
New= | X | 0 5 | & @ | 43 %] | Columns~ | Search: | -| In Column: [All visible 1%
Name b Labels Condition Hit Count

7@ [Global asax.cs, line 88 chorocter 13 (no condition) break always

I i B, Call Hierarchy B Output B3, Find Results1 & Find Symbol Results

FIGURE 3-3 Breakpoints window

84

Part |

Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

3. In the same method, add three more breakpoints so that the editor and the

Breakpoints window look like those shown in Figure 3-4.

Bl protected void Application_BeginRequest(object sender, Eventargs e)

ar url = HttpContext.Current.Request.Url;
var authority = HttpContext.Current.Request.ServerVariables["HTTP_HOST"].

ar expectedAuthority = url.Port == 48588 ? “"www.planmynight.net:48580"
var pathAndQuery = url.PathandQuery;
if (pathAndQuery == "/default.aspx")

pathandQuery = "/";

[if (lauthority.Equals(expectedAuthority, StringComparison.OrdinallgnoreCy
{

var redirectTe = string.Concat(url.Scheme, "://", expectedauthority,
H
H
H

}

00% = 4| m

New~ | X |)3 | @& |3 = | Columns~ |Search:| </ InColumn: |Allvisib

Name Labels Condition Hit Count

)

Breakpoints

{no condition) break always

Global.asax.cs, line 88 character 13 {no condition) break always
Global.asax.cs, line 90 character 13 {no condition) break always
7@ Global.asax.cs, line 97 character 13 {no condition) break always

FIGURE 3-4 Code editor and Breakpoints window with three new breakpoints

Visual Studio 2003 As a reader and a professional developer who used Visual Studio
2003 often, you probably noticed a series of new buttons as well as new fields in the
Breakpoints window in this exercise. As a reminder, take a look at Figure 3-5 for a quick
comparison of what it looks like in Visual Studio 2003.

|Breakp0ints
mNew x % E@ ‘@ Columns =
Mame | Condition | Hit Count: |

o |w| @ default.aspx.cs, line 21 character 4 {no condition) break always (currently 1)
|w! # Search.aspu.cs, line 82 character 4 ({no condition) break always (currently 1)

@ Search.aspx.cs, line 85 character 4 {no condition) break always (currently 0)
@ Search.aspx.cs, line 90 character 4 {no condition) break always (currently 0)
@ Search.aspx.cs, line 95 character 4 {no condition) break always (currently 0)

ﬁ Call Stack @ Breakpoints | [Command Window | Bl output |

FIGURE 3-5 Visual Studio 2003 Breakpoints window

4. Notice that the Labels column is now available to help you index and search break-

points. It is a really nice and useful feature that Visual Studio 2010 brings to the table.
To use this feature, you simply right-click on a breakpoint in the Breakpoints window

Chapter 3 From 2003 to 2010: Debugging an Application

85

and select Edit Labels or use the keyboard shortcut Alt+F9, L. Take a look at Figure 3-6

as a reference.
paLnAnuUyuEry = !y
! X Delete Ale+F9, D
] %] Go To Source Code Alt+F9, 5
{ :
var red #l GoTo Disassembly Alt+F9, A "0, exp
@ Location...
1 ¥ Condition...
| 1 Hit Count...
t Filter..
100 % - 4
When Hit... EE——
Eieakpainty Edit labels... Alt+F9, L
New ~ -
| x | p s | Qi 9 | Q Export selected... |
MName t Count
Sort by 3

o Global.asax.cs, line 100 chalaerer <7
o Global.asax.cs, line 88 character 13
o Global.asax.cs, line 90 character 13
o Global.asax.cs, line 97 character 13

FIGURE 3-6 Edit Labels option

U0 COTTTCroTy
(no condition)
(no condition)
(no condition)

wreak always
break always
break always
break always

5. In the Edit Breakpoint Labels window, add labels for the selected breakpoint (which

is the first one in the Breakpoints window). Type ContextRequestUrl in the Type A
New Label text box, and click Add. Repeat this operation on the next breakpoint, and
type a label name of Url. When you are done, click OK. You should see a window that
looks like Figure 3-7 while you are entering them, and to the right you should see the
Breakpoints window after you are done with those two operations.

Edit breakpoint labels

Type a new label:

(B

Or choose among existing labels:

Add |

ContextRequestUrl
Urd

Breakpoints

New~ | X | 0 /5 | @ @ |57 2| Columns~ [search: | | In Column: [Allvisibl:

Name

[ok][cance |

B JGlobal.asaxcs, line 100 character 17

@ Global.asax.cs, line 88 character 13
- 7@ Global.asax.cs, line 90 character 13
L. [¥]@ Global.asax.cs, line 97 character 13

FIGURE 3-7 Adding labels that show up in the Breakpoints window

Labels
ContextRequestUr, Url

Condition
(no condition)
(ne condition)
(ne condition)
(no condition)

Hit Count
break always
break always
break always
break always

Note You can also right-click on the breakpoint in the left margin and select Edit Labels
to accomplish the same tasks just outlined.

86

Part |

Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Note You'll see that when adding labels to a new breakpoint you can choose any of

the existing labels you have already entered. You'll find these in the Or Choose Among
Existing Labels area, which is shown in the Edit Breakpoint Labels dialog box on the left in
Figure 3-7.

Using any of the ways you just learned, add labels for each of the breakpoints and
make sure your Breakpoints window looks like Figure 3-8 after you're done.

Breakpoints

New= | X | © 55 | @ @ | 53 41| Coumns~ | searchs [
MName = Labels

~[7]@ Global.asax.cs, line 100 character 17 ContextRequestUrl,url

0 Global.asax.cs, line 88 character 13 url

[* X Global.asax.cs, line 90 character 13 expectedAuth

0 Global.asax.cs, line 97 character 13 redirectTo,url

FIGURE 3-8 Breakpoints window with all labels entered

When you have a lot of code and you are in the midst of a debugging session, it would
be great to be able to filter the displayed list of breakpoints. That's exactly what the
new Search feature in Visual Studio 2010 allows you to do.

To see the Search feature in action, just type url in the search text box and you'll see
the list of breakpoint is filtered down to breakpoints containing url in one of their
labels.

In a team environment where you have many developers and testers working together,
often two people at some point in time are working on the same bugs. In Visual Studio
2003, the two people needed to sit near each other, send one another screen shots,

or send one another line numbers of where to put breakpoints to refine where they
should look while debugging a particular bug.

Important One of the great new additions to breakpoint management in Visual Studio
2010 is that you can now export breakpoints to a file and then send them to a colleague,
who can then import them into his own environment. Another scenario that this feature is
useful for is to share breakpoints between machines. We'll see how to do that next.

In the Breakpoints window, click the Export button a to export your breakpoints to a
file, and then save the file on your desktop. Name the file breakexports.xml.

. Delete all the breakpoints either by clicking the Delete All Breakpoints Matching The

Current Search Criteria button 9 or by selecting all the breakpoints and clicking the

Delete The Selected Breakpoints button X . The only purpose of deleting them is to
simulate two developers sharing them or one developer sharing breakpoints between
two machines.

Chapter 3 From 2003 to 2010: Debugging an Application 87

10. You'll now import your breakpoints by clicking the Import button 9 and loading
them from your desktop. Notice that all your breakpoints with all of their properties are
back and loaded in your environment. For the purposes of this chapter, delete all the
breakpoints.

Visual Studio 2003 Putting breakpoints in client-side code (JavaScript) and stopping and
tracing was not really friendly. As a developer, you had to place a debugger (or stop in VBScript)
statement in your client-side code and then trace into the code. But there was no IntelliSense
support for client-side code. In Visual Studio 2010, you get great support for JavaScript as well as
for the latest jQuery iteration. It was already good in Visual Studio 2008, but the integration in
Visual Studio 2010 is faster and you don't have to do anything to get it.

Inspecting the Data

When you are debugging your applications, you know how much time one can spend
stepping into the code and inspecting the content of variables, arguments, and so forth.
Maybe you can remember when you were learning to write code, a while ago, when
debuggers weren't a reality or when they were really rudimentary. Do you remember (maybe
not—you might not be as old as we are) how many printf or WriteLn statements you had to
write to inspect the content of different data elements.

Visual Studio 2010 From the days of Visual Studio 2003, there already was a big improve-
ment from the days of writing to the console with all kinds of statements because we had a real
debugger with new functionalities. New data visualizers allowed you to see XML as a well-formed
XML snippet and not as a long string. Furthermore, with those data visualizers, you could view
arrays in a more useful way, with the list of elements and their indices, and you accomplished
that by simply hovering your mouse over the object. Take a look at Figure 3-9 for an example.

IEnumerable E
List<ListItem> statel:E ¢ states|{Dimensions:[SO]} era> () ;
= @ [Microsoft, Samples.PlanMyNight. Entities, State[1] | {Dimensions: [S0T+

foreach (Ztate state in st

p W [0] |4{Microsoft,Samples.Planfyiight Entities. State}

W [1] |{Microsoft,Samples,PlaniyMight . Entities. Statet

7 abbrevistion < - "ak® [MyMight.Entities, State}

abbrevistion < - "ak" MyNight Entities State}

2 Mame 3, v "alaska" MyMight.Entities. State} 0 x|[ca
& name 3, » "alaska" MyMight.Entities. State}
wO[o] [qFICrosore, sampies, Fanilyiight, Entities, State
@ [7] |{Microsoft,Samples.PlanfyMight Entities, State}
@ [8] |{Microsoft,Samples.PlaniyMight Entities, State}
@ [9] |{Microsoft,Samples.PlanfyMight Entities, State}
W [10] | {Microsoft, Samples, PlaniyMight Entities, State}
@ [11] | {Microsoft, Samples. PlaniyMight Entities, State}
W [12] | {Microsoft, Samples, PlaniyMight Entities, State}
[13] | {Microsoft, Samples. PlanfyMight Entities, State}
@ [14] | {Microsoft, Samples. PlanlyMight Entities, Statet

B B B R R E R DR

&= 2[] states £ g

IEES = SREEEs:

Arraylist statelist = new ArrayList(]:

FIGURE 3-9 Collection view versus an array view in the debugger in Visual Studio 2010 and in Visual
Studio 2003

88 Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Visual Studio 2003 In Visual Studio 2003, there was no other way to do data visualizations
apart from Watch, Locals, and Quick Watch or some of the more rudimentary ways described
earlier. You couldn’t hover over a field in an array to get its content. If you had XML or format-
ted text in a string, you couldn't read it in any meaningful way other than opening Notepad or
another file in Visual Studio and pasting the content of a string to see the formatted content of a
variable.

Although those DataTip data visualization techniques are still available in Visual Studio 2010,
a few great enhancements have been added that make DataTips even more useful. The
DataTip enhancements have been added in conjunction with another new feature of Visual
Studio 2010, multimonitor support. Floating DataTips can be valuable to you as a developer.
Having the ability to put them on a second monitor can make your life a lot easier while
debugging because it keeps the data that always needs to be in context right there on the
second monitor. The following steps demonstrate how to use these features:

1. In the Global.ascx.cs file, insert breakpoints on lines 89 and 91, lines starting with the
source code var authority and var pathAndQuery, respectively.

2. You are now going to experiment with the new DataTip features. Start the debugger by
pressing F5. When the debugger hits the first breakpoint, move your mouse over the
word url and click on the pushpin as seen in Figure 3-10.

B protected void Application_BeginRequest(object sender, Eventirgs e)

{
var url = HttpContext.Current.Request.Url;
=] ¢ url {http://localhost:48580/Default.aspx} = [rverVariables["HTTP_HOST" 5|
var expectedAuthority = Url.Port == 48580 7 "www.planmynight.net:48588" : “planmynight.net”;

@ ar pathAndQuery = url.PathAndQuery;

if (pathAndQuery == “/default.aspx")

pathandQuery = "/";
FIGURE 3-10 The new DataTip pushpin feature

3. To the right of the line of code, you should see the pinned DataTip (as seen in
Figure 3-11 on the left). If you hover your mouse over the DataTip, you'll get the
DataTip management bar (as seen in Figure 3-11 on the right).

Enaer, CVENTArgs g)

x
@ url {http://localhost48580/Default.aspx} | #
Sel'\fEl'\fﬂl'lﬂDlEhL nriF_nust |y ¥
W url {http://localhost:48580/Default.aspx o K - P -
.Ser\rcl'vm{uagL:;L nITF_nUsT ot www.planmynight.net:48588" : "planmynI} Unpin from source |

FIGURE 3-11 On the left is the pinned DataTip, and on the right is the DataTip management bar

Note You should also see in the breakpoint gutter a blue pushpin indicating that the

DataTip is pinned. The pushpin should look like this: ¥4~ Because you have a break-
point on that line, the pushpin is actually underneath it. To see the pushpin, just toggle
the breakpoint by clicking on it in the gutter. Toggle once to disable the breakpoint and
another time to get it back.

4.

Chapter 3 From 2003 to 2010: Debugging an Application 89

Note If you click on the double arrow pointing down in the DataTip management bar,
you can insert a comment for this DataTip, as shown in Figure 3-12. You can also remove
the DataTip altogether by clicking the X button in the DataTip management bar.

@ url {http://localhost:48580/Default.aspx}
! @ authority Q -"localhost:48580" %
L {authority != null) true i

Type a comment here

FIGURE 3-12 Inserting a comment for a DataTip

One nice feature of the new DataTip is that you can insert any expression to be evalu-
ated right there in your debugging session. For instance, right-click on the DataTip
name, in this case on url, select Add Expression, type authority, and then add another
one like this: (authority != null). You'll see that the expressions are evaluated immedi-
ately and will continue to be evaluated for the rest of the debugging session every time
your debugger stops on those breakpoints. At this point in the debugging session, the
expression should evaluate to null and false, respectively.

Press F10 to execute the line where the debugger stopped, and look at the url DataTip
as well as both expressions. They should contain values based on the current context.
Take a look at Figure 3-13 to see this in action.

1
B protected void Application_BeginRequest(object sender, EventArgs e)

{
var url = Httplontext.Current.Request.Url; [g un {http://localhost48580/Default.aspx}

ar_authority — HttpContext.Current.Request. SEENENTERIS Q"localhost48580"

var expectedAuthority = url.Port == 48580 ? "

(e
ar pathAndQuery — url.PathAndQuerys;| @ (utharity I= null| _ true

if (pathAndQuery == “/default.aspx")

["RV RN

pathAndQuery = “/";
}

FIGURE 3-13 The url pinned DataTip with the two evaluated expressions

Although it is nice to be able to have a mini-watch window where it matters—right
there where the code is executing—you can also see that it is superimposed on the
source code being debugged. Keep in mind that you can move the DataTip window
anywhere you want in the code editor by simply dragging it. Take a look at Figure 3-14
for an example.

T
Lo @ url {http://localhost:48580/Default.aspr}
=] protected void Application_BeginRequest(object sender, EventArgs e) g oo R
y st

(authority I= null) &
var url = HttpContext.Current.Request.Url; @ (authority = null)__true

ar_authority = HttpContext.Current.Request.ServerVariables["HTTP_HOST"];

var_expectedAuthority = url.Port == 48582 ? “www.planmynight.net:48588" : "planmynight.net”;

ar_pathAndQuery = url.PathAndQuery;|

if (pathAndQuery == */default.aspx”)

el e

pathAndQuery = "/";

FIGURE 3-14 Move the pinned DataTip away from the source code

90

Part |

7.

Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Because it is pinned, the DataTip window stays where you pinned it, so it will not be in
view if you trace into another file. But in some cases, you need the DataTip window to
be visible at all times. For instance, keeping it visible is interesting for global variables
that are always in context or for multimonitor scenarios. To move a DataTip, you have
to first unpin it by clicking the pushpin in the DataTip management bar. You'll see that
it turns yellow. That indicates you can now move it wherever you want—for instance,
over Solution Explorer, to a second monitor, over your desktop, or to any other window.
Take a look at Figure 3-15 for an example.

4 (] PlanMyNight.Data

b [l Properties
var url = HttpContext.Current.Request.Url; b [References

protected void Application BeginRequest(object sender, EventArgs e)

ar authority = HttpContext.Current.Request.ServerVariables[“HTTP_HOST"];| @ url {httpy/localhost48380/ Defaultaspr)
var_expectedAuthority = url.Port == 48588 ? "www.planmynight.net:48588" : "plani @ authority Q-"localhost48580"
ar pathAndquery = url.PathAndQuerys| Omsmrsemll e

if (pathAndQuery == "/default.aspx”) T PIaRyNIGRT Conte |
e & PlanMyNight.edmyx

thAnd = 3
pathAndQuery = "/ 8] ReferenceRepository.cs

4 (3 PlanMyNight Infrastructure

if (lauthority.Equals(expectedauthority, StringComparison.OrdinalIgnoreCase)) b [Properties
b [References
var redirectTo = string.Concat(url.Scheme, "://", expectedauthority, pathan b O3 Mve
Response.RedirectPermanent (redirectTo); H &) ExtensionLink.s
] O

FIGURE 3-15 Unpinned DataTip over Solution Explorer and the Windows desktop

Note If the DataTip is not pinned, the debugger stops in another file and method, and
the DataTip contains items that are out of context, the DataTip windows will look like
Figure 3-16. You can retry to have the debugger evaluate the value of an element by

clicking on this button: @ . However, if that element has no meaning in this context, it's
possible that nothing happens.

E“blic partial class Default : Page @ url {http://localhost48580/Detault.aspx)
@ suth “www.planmynight net48580"
public void Page_Load(object sender, System.EventArgs e) | . e Ll
7 @ (authority = null [true

string originalPath = Request.Path; @ urlLocalPath “/Default.aspx”

HttpContext.Current.RewritePath(Request.ApplicationPath, false);
IHttpHandler httpHandler = new MvcHttpHandler();
httpHandler.ProcessRequest (HttpContext.Current);
HttpContext.Current.RewritePath(originalPath, false);

}
!

FIGURE 3-16 DataTip window with out-of-context items

Note You'll get an error message if you try to pin outside the editor, as seen in
Figure 3-17.

[|=dl Froperties | N Ik
@ url {http://localhost:48580/Default.asps) || X
@ authority Q. -"localhost:48580" fe]
v (authority != null) iz ‘:1 Cannot pin. Not over a source file |
=] BingCoordinate.cs | ‘]'I |

FIGURE 3-17 Error message that appears when trying to pin a DataTip outside the code editor

Chapter 3 From 2003 to 2010: Debugging an Application 91

Note Your port number might be different than in the screen shots just shown. This is
normal—it is a random port used by the personal Web server included with Visual Studio.

Note You can also pin any child of a pinned item. For instance, if you look at url and
expand its content by pressing the plus sign (+), you'll see that you can also pin a child ele-
ment, as seen in Figure 3-18.

Bl @ url {http//localhost:48580/Default.aspx} |
ry

5 AbsolutePath | Q, » "/Default.aspx”

& Absolutelri G, - "http://localhost:48580/ Default.aspx”
Authority % + "localhost:48580"

“IF% DnsSafeHost |9 - "localhost”

% Fragment Q-

5 Host 4 - "localhost”

5 HostMameType Dns

5 IsAbsolutelri true

5 lsDefaultPort false

5 IsFile false

5 IsLoopback true

ﬁIsUnc false

% LocalPath 3 + "/Default.aspx” E

5 OriginalString | & + "http://localhost:48580/ Default.aspx”
5 PathAndQuery | @, ~ "/Default.aspx”
-

FIGURE 3-18 Pinned child element within the url DataTip

8. Before stopping the debugger, go back to the Global.ascx.cs if you are not already

there and re-pin the DataTip window. Then stop the debugging session by clicking the

Stop Debugging button in the debug toolbar (-) or by pressing Shift+F5. Now if you
hover your mouse over the blue pushpin in the breakpoint gutter, you'll see the values
from the last debug session which is a nice enhancement over the watch window. Take
a look at Figure 3-19 for what you should see.

}
" Value from last debug session
w g protected void Application BeginRequest(cbject sender, Ev {http://localhost48580/Default.aspx)
authority "localhost:48580"
var url = HttpContext.Current.Request.uUrl; (authority != null true
. = ¢ y =

@ ar authority = mpContext.Current.Request.rver\fa url.LocalPath /Defauttaspr’

var expectedAuthority = url.Port == 48588 2 "WwW.plaluy . mgoeerwr rocmw o pmig g1

FIGURE 3-19 Values from the last debug session for a pinned DataTip

Note As with the breakpoints, you can export or import the DataTips by going to the Debug
menu and selecting Export DataTips or Import DataTips, respectively.

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Using the Minidump Debugger

Many times in real-world situations, you'll have access to a minidump from your product
support team. Apart from their bug descriptions and repro steps, it might be the only thing
you have to help debug a customer application. Visual Studio 2010 adds a few enhancements
to the minidump debugging experience.

Visual Studio 2003 In Visual Studio 2003, you could debug managed application or minidump
files, but you had to use an extension if your code was written in managed code. You had to use
a tool called SOS and load it in the debugger using the Immediate window. You had to attach the
debugger both in native and managed mode, and you couldn’t expect to have information in the
call stack or Locals window. You had to use commands for SOS in the Immediate window to help
you go through minidump files. With application written in native code, you used normal debug-
ging windows and tools. To read more about this or just to refresh your knowledge of the topic,
you can read the Bug Slayer column in MSDN magazine here: http://msdn.microsoft.com/en-us/
magazine/cc164138.aspx.

Let's see the new enhancements to the minidump debugger. First you need to create a crash
from which you'll be able to generate a minidump file:

1. In Solution Explorer in the PlanMyNight.Web project, rename the file Default.aspx to
DefaultA.aspx. Note the A appended to the word “Default.”

2. Make sure you have no breakpoints left in your project. To do that, look in the
Breakpoints window and delete any breakpoints left there using any of the ways you
learned earlier in the chapter.

3. Press F5 to start debugging the application. Depending on your machine speed, soon
after the build process is complete you should see an unhandled exception of type
HttpException. Although the bug is simple in this case, let's go through the steps of
creating the minidump file and debugging it. Take a look at Figure 3-20 to see what
you should see at this point.

requestContext HttpContext, Ttems|ControllerExportEntryliane] - controllerExport;
turn controllerExport.Value; -,

lic override void ReleaseController (IController controller)

2

= Httplontext.Current.Items[ControllerExportEntryName] as Lazy<IContr Troubleshooting tips:
null) Get general help for this exception.

this.container. ReleaseExport(export); B

Search for more Help Online..

a

se.ReleaseController(controller);
Actions:

sate static IEnumerable<string> GetNamespaceFromRoute(RequestContext requestContei ViewDetail..

Enable editing

object routeNamespacesobj; Copy exception detail to the dlipboard

FIGURE 3-20 The unhandled exception you should expect

4.

Chapter 3 From 2003 to 2010: Debugging an Application 93

It is time to create the minidump file for this exception. Go to the Debug menu, and
select Save Dump As as seen in Figure 3-21. You should see the name of the process
from which the exception was thrown. In this case, the process from which the excep-
tion was thrown was Cassini or the Personal Web Server in Visual Studio. Keep the file
name proposed (WebDev.WebServer40.dmp), and save the file on your desktop. Note
that it might take some time to create the file because the minidump file size will be
close to 300 MB.

Debug | Team Data Tools Test Window He

Windows 3
P Continue F5
@ Stop Debugging Shift+F5
Terminate All
& Restart Ctrl+Shift+F5
E; Attach to Process...
Exceptions... Ctrl+Alt+E
= Steplnto F11
= Step Over F10
= Step Out Shift+F11
Toggle Breakpoint Fa
MNew Breakpoint 3
40 Delete All Breakpoints Ctrl+Shift+F9
(O Disable All Breakpoints
Clear All DataTips
Export DataTips ...
Import DataTips ...
Save Dump As...

Options and Settings...

FIGURE 3-21 Saving the minidump file

Stop Debugging by pressing Shift+F5 or the Stop Debugging button.
Next, go to the File menu and close your solution.

In the File menu, click Open and point to the desktop to load your minidump file
named WebDev.WebServer40.dmp. Doing so opens the Minidump File Summary
page, which gives you some summary information about the bug you are trying to fix.
(Figure 3-22 shows what you should see.) Before you start to debug, you'll get basic
information from that page such as the following: process name, process architecture,
operating system version, CLR version, modules loaded, as well as some actions you
can take from that point. From this place, you can set the paths to the symbol files.
Conveniently, the Modules list contains the version and path on disk of your module, so
finding the symbols and source code is easy. The CLR version is 4.0; therefore, you can
debug here in Visual Studio 2010.

94

Part |

10.

Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

WebDev.WebServerd0 dmp X

Minidump File Summary
M

~ Dump Summary Notifications
Dump File WebDev WebServerd0.dmp : C:A\Users\Patrice\Desktop\WebDev.WebServerd0.dmp ILInterpreter is Enabled
Last Write Time 2/22/20101:58:45 AM e
Process Name WebDev.WebServerd0.exe : C:\Program Files\Common Files\Microsoft Shared\DevServer\10.0\WebDev.\WebServer
Process Architecture
Exception Code O:E0434F4D Actions
Exception Information An exception came from the CLR
Heap Information Present P Debug with Mixed
Ll m 3 b Debug with Native Only

[Set symbol paths

System Information 33 Copy allto clipboard

05 Version 617600

CLR Version(s) 40301281
~ Modules
Search
Module Name Module Version Module Path
WebDev\WebServerdD.exe 100301281 C:\Program Files\Common Files\Mi
ntcll.dil 61760016385 CAWindows\System32\ntdll.dil
mscoreedll 40311060 C\Windows\System32\mscoree.dil
kerneB32.dll 61760016481 CAWindows\System32\kemel32.dIl
KERNELBASE.dIl 61760016385 C\Windows\System32\KERNELBAS
advapiB2.dil 61760016385 CAWindows\System32\advapi32.dil
msvertdll 70760016385 CAWindows\System32\msvert.dll
sechost.dll 61760016385 CAWindows\System32\sechost.dil
rpert.dil 61760016385 CA\Windows\System32\rpertd.dil
mscoreeidil 40301281 C:\Windows\Microsoft.NET\Framey
shiwapi.dil 61760016385 CA\Windows\System32\shlwapi.dl
gdiz2dil 61760016385 CAWindows\System32\gdi32.dll
user32.dll 61760016385 CAWindows\System32\user32.dil
Ipkdll 61760016385 CAWindows\System32\lpk.dil
uspl0.dil 1626760016385 C:A\Windows\System32\usp10.dil
imm32.dil 61760016385 CAWindows\System32\imm32.dil

FIGURE 3-22 Minidump summary page

To start debugging, locate the Actions list on the right side of the Minidump File
Summary page and click Debug With Mixed.

You should see almost immediately a first-chance exception like the one shown in
Figure 3-23. In this case, it tells you what the bug is; however, this won't always be the
case. Continue by clicking the Break button.

ﬁNﬁcmsnﬂ Visual Studio
o Afirst chance exception of type 'System.Web.HttpException' occurred in -
J}. PlanMyNight.Web.DLL

Additional information: The controller for path '/Default.aspx’ was not found or
does not implement IController.

Continue Il Ignore

FIGURE 3-23 First-chance exception

You should see a green line indicating which instruction caused the exception. If you
look at the source code, you'll see in your Autos window that the controllerExport vari-
able is null, and just before that we specified that if the variable was null we wanted

to have an HttpException thrown if the file to load was not found. In this case, the file
to look for is Default.aspx, as you can see in the Locals window in the controllerName
variable. You can glance at many other variables, objects, and so forth in the Locals
and Autos windows containing the current context. Here, you have only one call that

Chapter 3 From 2003 to 2010: Debugging an Application 95

belongs to your code, so the call stack indicates that the code before and after is exter-
nal to your process. If you had a deeper chain of calls in your code, you could step back
and forth in the code and look at the variables. Figure 3-24 shows a summary view of
all that.

MefControllerFactary.cs % [0y b 0.dmp
4 Microsoft.Sampl a =) requestContest, string controllerName) ~|
=

Name Lang ~ =
| KERNELBASE.dI753/96170
|| KERNELBASE dNl753196170
[External Code]

DLLIMicrosoft. lanMyNight. Web.Infrastructure.MefControllerFactor ¥

External Code]
erne32.d1756a1194() |=

ntdil dil771363150 |
ntdildilT713b3 ¢80 -
var controllerexport = this.container.Getexports<IControllers(controllerliame) .FirstOrDefault();

if (controllerExport == null)

{
throw new HttpException(
204,
string.Format(CultureInfo. InvariantCulture, "The <ontroller for path "{8}" was not found or does not implement ICont

¥

L] requestContext . HetpContext. [tems[ControllerExpor yName] = control. ports
return contrellerExport.Value;

100% < T]

v ix

|| Name Value Type ~ J | Name Value Type -

controllerExport null @ system.l

requestContextHttpCont {System.Web Http ContextWrapper ® System)\ this {Microsoft.Samples, I cti(®)| Microsol

requestContext HitpCont Count = 2 © System.(requestContext | {System Web Routing RequestContext} © Systeml\
requestContext.HttpCont null @[object | _ controllerName | *Default.aspx” Q +| string

requestContext HttpCont {System.Web. @) System.\| controllerType null)| System.1
requestContet HitpCont '/Default.aspx” Q | string null ®] System.(

this M iyNight Web Infra (| Microsol controllerbxport | null @ Systeml

[P B Watch 1 IR Breakpoints B Command... & Immediate.. B Output

FIGURE 3-24 Autos, Locals, and Call Stack windows, and the next instruction to execute

11. OK, you found the bug, so stop the debugging by pressing Shift+F5 or clicking the
Stop Debugging button. Then fix the bug by reloading the PlanMyNight solution and
renaming the file back to default.aspx. Then rebuild the solution by going to the Build
menu and selecting Rebuild Solution. Then press F5, and the application should be
working again.

Web.Config Transformations

This next new feature, while small, is one that will delight many developers because it saves
them time while debugging. The feature is the Web.Config transformations that allow you to
have transform files that show the differences between the debug and release environments.
As an example, connection strings are often different from one environment to the other;
therefore, by creating transform files with the different connection strings—because ASP.NET
provides tools to change (transform) web.config files—you'll always end up with the right
connection strings for the right environment. To learn more about how to do this, take a look
at the following article on MSDN: http.//go.microsoft.com/fwlink/?Linkld=125889.

Creating Unit Tests

Most of the unit test framework and tools are unchanged in Visual Studio 2010 Professional.
It is in other versions of Visual Studio 2010 that the change in test management and test
tools is really apparent. Features such as Ul Unit Tests, IntelliTrace, and Microsoft Test
Manager 2010 are available in other product versions like Visual Studio 2010 Premium and

96

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Visual Studio 2010 Ultimate. To see which features are covered in the Application Lifecycle
Management and for more specifics, refer to the following article on MSDN: http://msdn.
microsoft.com/en-us/library/ee789810(VS.100).aspx.

Visual Studio 2003 With Visual Studio 2003, your options to create unit tests and execute
them were limited to third-party tools and frameworks like nUnit and other commercial products
created by Microsoft partners.

In this part of the chapter, we'll simply show you how to add a unit test for a class you'll find
in the Plan My Night application. We won't spend time defining what a unit test is or what it
should contain; rather, we'll show you within Visual Studio 2010 how to add tests and execute
them.

You'll add unit tests to the Plan My Night application for the Print Itinerary Add-in. To create
unit tests, open the solution from the companion content folder. If you do not remember
how to do this, you can look at the first page of this chapter for instructions. After you have
the solution open, just follow these steps:

1. In Solution Explorer, expand the project PlanMyNight.Web and then expand the
Helpers folder. Then double-click on the file ViewHelper.cs to open it in the code editor.
Take a look at Figure 3-25 to make sure you are at the right place.

4 8 PlanMyNight.Web

[=d| Properties

5] References

g App_Browsers

3 App_Data

[Areas

[Content

[3 Controllers

[Helpers

> [Liveld
] JsonCacheAttribute.cs
#] MembershipWrappers.cs
] RoutingManager.cs
#] ServiceFactory.cs
#] SessionltineraryContainer.cs
|7] ViewHelpers.cs|
] ViewModelExtensions.cs

m

[A

FIGURE 3-25 The PlanMyNight.Web project and ViewHelper.cs file in Solution Explorer

2. In the code editor, you can add unit tests in two different ways. You can right-click on
a class name or on a method name and select Create Unit Tests. You can also go to the
Test menu and select New Test. We'll explore the first way of creating unit tests. This

Chapter 3 From 2003 to 2010: Debugging an Application 97

way Visual Studio automatically generates some source code for you. Right-click the
GetfriendlyTime method, and select Create Unit Tests. Figure 3-26 shows what it
looks like.

public static string GetFriendlyTime(int totalMinut

{ Refactor >
if (totalMinutes > 8) Organize Usings »
{ =
int hours - totalMinutes / 68; 4 Creste Unit Tests..
int minutes = totalMinutes ¥ 6@; Create Private Accessor 3
string time = string.Empty; B
i (hours » 0) 5, Insert Snippet... Ctrl+K, Ctrl+X
{ B, Surround With... Ctrl+K, Ctrl+S
e e etret e .
, time += string.Format(CultureInfo.Invaria ‘A GoTo Definition -
Find All References Shift+F12
if (minutes > @) [E2 View Call Hierarchy Ctrl+K, Ctrl+T
{
time += string.Format(CultureInfo.Invarial Breakpoint r
H 5= Run To Cursor Chri+FI0
return time.Trim(); # Cut Ctrl+X
} £ Co Crl+C
Ry
return "-"; & Paste Ctrl+V
} Outlining »

FIGURE 3-26 Contextual menu to create unit tests from by right-clicking on a class name

After selecting Create Unit Tests, you'll be presented with a dialog that, by default,
shows the method you selected from that class. To select where you want to create the
unit tests, click on the drop-down combo box at the bottom of this dialog and select
PlanMyNight.Web.Tests. If you didn't have an existing location, you would have simply
selected Create A New Visual C# Test Project from the list. Figure 3-27 shows what you
should be seeing.

Create Unit Tests

Current selection: Filter ~
Types
4 [@(Z PlanMyNight Web .
a [@ {} Microsoft.5amples.PlanMyNight. Web
b [[]%¢ Microsoft.Samples. Web.Accou e

[[] %2 Microsoft.Samples.PlanMyNight Web ActivityHelper

[] 2 Microsoft.Samples.PlanMyNight Web FormsAuthenticationService
=0 Microsoft.Samples.PlanMyNight Web FormsAuthentication
Microsoft.Samples. PlanMyNight Web IMembershipService

b
3
b
3
> Microsoft.Samples.PlanMyNight.Web tineraryHelper
» [[%3 Microsoft.Samples.PlanMyNight Web JsonCacheAttribute
» [% Microsoft.Samples.PlanMyNight Web.MvcApplication
» [[]%3 Microsoft.Samples.PlanMyNight Web RoutingManager
» [% Microsoft.Samples.PlanMyNight Web.ServiceFactory
» [[%3 Microsoft.Samples.PlanMyNight Web SessionltineraryContainer
a Microsoft.Samples.PlanMyNight.Web TimeHelper
% GetFriendlyTime(SystemIn32)
[£] %2 Microseft.Samples. lyNight Web.U
[F1%¢ Microsaft.Samples. IyNight Web ViewModelExtension

> [£] %2 Microsoft.5amples.PlanMyNight Web,_Default
 [E1{} Microsoft.Samples.PlanMyNight.Web.Controllers
» [C1{} Microsoft.Samples.PlanMyNight.WeblInfrastructure
i 1€} Microsoft.Samples.PlanMyNight.Web.Properties
b 1€} MicrosoftSamples.PlanMyMNight.Web.Ux
b 1LY Micenenft S A Mimhe Wk |

3
b

QOutput project:

B

FIGURE 3-27 Selecting the method you want to create a unit test against

98 Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

4. After you click OK, the dialog switches to a test-case generation mode and displays a
progress bar. After this is complete, a new file is created named TimeHelperTest.cs that
has autogenerated code stubs for you to modify.

5. Remove the method and its attributes because you'll create three new test cases for
that method. Remove the following code:

/// <summary>

///A test for GetFriendlyTime

///</summary>

// TODO: Ensure that the UrlToTest attribute specifies a URL to an ASP.NET page
(for example,// http://.../Default.aspx). This is necessary for the unit test to be
executed on the web server,// whether you are testing a page, web service, or a WCF
service.

[TestMethod ()]

[HostType("ASP.NET")]

[AspNetDevelopmentServerHost ("C:\\Users\\Patrice\\Documents\\Chapter 3\\code\\
PTlanMyNight.web", "/™)]

[Ur1ToTest("http://Tocalhost:48580/™)]

public void GetFriendlyTimeTest()

{
int totalMinutes = 0; // TODO: Initialize to an appropriate value
string expected = string.Empty; // TODO: Initialize to an appropriate value
string actual;
actual = TimeHelper.GetFriendlyTime(totalMinutes);
Assert.AreEqual (expected, actual);
Assert.Inconclusive("Verify the correctness of this test method.");
}

6. Add the three simple test cases validating three key scenarios used by PlanMyNight. To
do that, insert the following source code right below the method attributes that were
left behind when you deleted the block of code in step 5:

[TestMethod]
public void ZeroReturnsSlash()
{
Assert.AreEqual("-", TimeHelper.GetFriendlyTime(0));
}
[TestMethod]
pubTlic void LessThan60MinutesReturnsValueInMinutes()
{
Assert.AreEqual ("10m", TimeHelper.GetFriendlyTime(10));
}
[TestMethod ()]
public void MoreThan60MinutesReturnsValueInHoursAndMinutes()
{

Assert.AreEqual ("2h 3m", TimeHelper.GetFriendlyTime(123));

Chapter 3 From 2003 to 2010: Debugging an Application

7. In the PlanMyNight.Web.Tests project, create a solution folder called Helpers. Then
move your TimeHelperTests.cs file to that folder so that your project looks like

Figure 3-28 where you are done.

4 [E PlanMyNight.Web. Tests
> [=d Properties
> [x3] References
4 [Controllers
& AccountControllerFixture.cs
#] HinerariesControllerFixture.cs
#] SearchControllerFixture.cs
& SiteMasterControllerFixture.cs
a4 [Helpers
&) TimeHelperTest.cs
i App.config
& DummyCachingProvider.cs
#] HineraryExtensionFixture.cs
#] MembershipWrappersFixture.cs
] RoutingManagerFixture.cs
] SessionltineraryContainerFixture.cs |
#] UserProfileExtensionsFixture.cs
] ViewModelExtensionsFixture.cs

FIGURE 3-28 TimeHelperTest.cs in its Helpers folder

It is time to execute your newly created tests. To execute only your newly created

tests, go into the code editor and place your cursor on the class named public class
TimeHelperTest. Then you can either go to the Test menu, select Run, and finally select
Test In Current Context or accomplish the same thing using the keyboard shortcut

CTRL+R, T. Look at Figure 3-29 for a reference.

|| Test | Window Help

E_] MNew Test...

I %3 Load Metadata File...
= w3 Create New Test List...

[| = hnreThanEnn

nu

1 Run * || b Testsin Current Context Ctrl+R, T
it Debug P | %, All Tests in Solution Ctrl+R, A
4 Select Active Test Settings 3

Edit Test Settings 3
b Windows L

FIGURE 3-29 Test execution menu

Performing this action executes only your three tests. You should see the Test Results
window (shown in Figure 3-30) appear at the bottom of your editor with the test

results.

[Test Results

e e T S N A S S e

|| [t Cotume | [<Type keyword> |

5]

&) Testunwaming Results: 3/3 passed; Item(s) chacked: 0

Result Test Name B Project
¢ @ Passed LessThan60MinutesReturnsValuelnMinutes PlanMyNight Web Tests
14D Passed MoreThan60MinutesReturnsValuelnHoursAndMinutes PlanMyNight Web Tests
4@ Passed ZeroReturnsSlash PlanMyNight.Web Tests

FIGURE 3-30 Test Results window for your newly created tests

Error Message

929

100 Part | Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

@I More Info Depending on what you select, you might have a different behavior when you
choose the Tests In Current Context option. For instance, if you select a test method like
ZeroReturnsSlash, you'll execute only this test case. However, if you click outside the test class, you
could end up executing every test case, which is the equivalent of choosing All Tests In Solution.

New Threads Window

The emegence of computers with multiple cores and the fact that language features give
developers many tools to take advantage of those cores creates a new problem: the diffi-
culty of debugging concurrency in applications. The new Threads window enables you, the
developer, to pause threads and search the calling stack to see artifacts similar to those you
see when using the famous SysInternals Process Monitor (http://technet.microsoft.com/en-us/
sysinternals/bb896645.aspx). You can display the Threads window by going to Debug and
selecting Windows And Threads while debugging an application. Take a look at Figure 3-31
to see the Threads window as it appears while debugging Plan My Night.

E public Tuple<PagingResult<Activitys, Activityaddress> SearchActivities(NaturalSearchuery query, string token)

/1 request
5 q quest = quest(token, query.Pagesize, query.Page)s]

J category Filter -
var filter = new Filt

maps to use the same category twice
ssionclause();

Threads ~aX
S| < X smncatsuck | ¥ Goupb S i
D ManagedD Category Name Location =]
~ iexplore.exe (id = 2512) : C:\Program Files\internet Exploreniexplore. exe
¥| |29 o | O Worker Thread| Thread BS0 | v

A WebDev.WebServerd.EXE (id = 3460) : C:\Program Files\Common File ot shared\DevServer\10.0\WebDev.WebServerd0.EXE

| |s096 |1 [0 Main Thread | Main Thread ative Transition]
EEZIE | Worker Thread| <No Name> | <not available>
V| |z 3 [_J Worker Thread| Worker Thread | v [Managed to Native Transition]
¢l [4e8 o [Worker Thread| <No Name> | <not available>
S [_| Warker Thread| <No Name> | <not available>
(v (42 [0 | Worker Thread| <No Name> | <not available> 4
[[5176 [71 Worker Thread| <No Name> ot availabl
SEEa] [~ Worker Thread| <No Name> | <not available>
100 % J¥[< (406 |70 [Worker Thread| Worker Thread | Microsoft. B
= DLUMicrosoft. lanh lan,
ta.DLLMicrosoft. lanhlyNight.DataBin PlanM
t2.DLLIMicrosot. Data.Caching.C.
¢ b.DLLIMicrosoft, lanh les Pl
[
RN E =R] Worker Thread| <No Name> it, or join]
el ;

FIGURE 3-31 Displaying the Threads window while debugging Plan My Night

The Threads window allows you to freeze threads and then thaw them whenever you are
ready to let them continue. It can be really useful when you are trying to isolate particular
effects. You can debug both managed code and unmanaged code. If your application uses
thread, you'll definitely love this new feature of the debugger in Visual Studio 2010.

Visual Studio 2003 In Visual Studio 2003, the Thread window was rudimentary. It enabled you
to suspend or switch to a thread. It was tough to know more about those threads because you
didn’t have any more information from within Visual Studio 2003. There was no filtering, call-
stack searching and expansion, and grouping. The columns were in a fixed order. Back then, the
notion of multiple cores existed but wasn't as much in use as it is today. Furthermore, developing
for multicore CPUs wasn't facilitated by the .NET Framework in any way like it is today with .NET
4.0 and libraries like PLINQ.

Chapter 3 From 2003 to 2010: Debugging an Application 101

Summary

In this chapter, you learned how to manage your debugging sessions by using new break-
point enhancements and employing new data-inspection and data-visualization techniques.
You also learned how to use the new minidump debugger and tools to help you solve real
customer problems from the field. The chapter also showed you how to raise the quality of
your code by writing unit tests and how Visual Studio 2010 Professional can help you do this.
Multicore machines are now the norm, and so are multithreaded applications. Therefore, the
fact that Visual Studio 2010 Professional has specific debugger tools for finding issues in
multithreaded applications is great news.

Finally, throughout this chapter you also saw how Visual Studio 2010 Professional has raised
the bar in terms of debugging applications and has given professional developers the tools
to debug today'’s feature-rich experiences. You saw that it is a clear improvement over what
was available in Visual Studio 2003. The exercises in this chapter scratched the surface of how
you'll save time and money by moving to this new debugging environment and showed that
Visual Studio 2010 is more than a small iteration in the evolution of Visual Studio. It repre-
sents a huge leap in productivity for developers. The gap between Visual Studio 2003 and
Visual Studio 2010 in terms of debugging is less severe than in earlier versions. The quantity
of information provided by the debugger, the way to visualize the information, and the ease
of use and configuration of the projects are the biggest changes that help you be more pro-
ductive. You'll also see in the next chapter how easy it is to deploy Web applications, their
databases, IS settings, and all of their configurations.

The various versions of Visual Studio 2010 give you a great list of improvements related to
the debugger and testing. My personal favorites are IntelliTrace—http.//msdn.microsoft.com/
en-us/library/dd264915(VS.100).aspx—which is available only in Visual Studio 2010 Ultimate
and Microsoft Test Manager.IntelliTrace enables test teams to have much better experiences
using Visual Studio 2010 and Visual Studio 2010 Team Foundation Server—http.//msdn.
microsoft.com/en-us/library/bb385901(VS.100).aspx.

Chapter 4

From 2003 to 2010: Deploying
an Application

After reading this chapter on deployment techniques, you will be able to
B Deploy a Web application and an SQL database using Web Deployment Packages
B Deploy a Web application using One-Click Publish

Deploying a Web application is never easy—it should be, but it never is. Whether you are
trying to deploy to your monthly paid host company or to a datacenter, you usually have to
push the files to some location using FTP, using another custom upload tool, or packaging
them in a .zip file. Then someone—either you or a system engineer—has to perform other
configuration steps so that your users can hit your Web application successfully. This chapter
will bring you the latest and greatest (and easiest) ways to deploy your Web application, and
it will show you how to do so while having more control and going through fewer manual
steps. It will also offer you comparisons with all three previous versions of Microsoft Visual
Studio.

Visual Studio 2010 Web Deployment Packages

In this chapter, you'll deploy your application using Web Deployment Packages. You'll also
see some of the pain points of doing this that were present in previous versions of Visual
Studio. We'll take the examples mentioned in this chapter’s introduction and go through the
different steps one had to go through to deploy the application. Then we’ll compare how it

is done in each version of Visual Studio from 2003 all the way up to 2010. If you installed the
companion content at the default location, you'll find the modified Plan My Night application
at the following location: %userprofile%\Documents\Microsoft Press\Moving to Visual Studio
2010\Chapter 4\Code. Double-click the PlanMyNight.sIn file.

Let's start with the example of deploying to a monthly paid shared hosting company. Here
are the big steps one would have to take to deploy a Web application in such a scenario:

1. Get the files that are needed for your application to your Web hosting company
using FTP or their custom control panel upload tool. If you want only the files needed
to execute, you need to sort them out and know exactly which ones you need and
transfer only those files.

2. After the files are copied, you have to go to the control panel and make sure all the
files are in the right place and then go through the configuration of your application

103

104

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

for various Internet Information Services (IIS) settings. Depending on the host company,
you might have to create an application in IIS, select the application pool and its type,
and so forth.

3. If your application has a SQL database, you then have to create it, and perhaps
populate some domain tables by executing SQL scripts.

4. You might also have to create some security settings for SQL and your application in
general.

5. Finally, you'll probably have to modify your web.config to match some of the servers
and modify some database-related configuration options such as your connection
strings.

Similarly, in an enterprise you often have to deploy to datacenters and on servers for which
you won't likely have access to physically or even remotely with remote desktop. In most
enterprises, you won't even have a chance to talk to the engineers doing the deployments
because often it happens during off-peak hours and in other time zones. And the only thing
they have is the reliability of your scripts and your deployment documentation. This means
your deployment scripts must be bulletproof and your deployment documentation needs
to be thorough—because it will be tested by other engineers with little or no knowledge of
your project—so that nothing is assumed.

With any deployment technologies, the ideal situation is to come up with the deployment
packages as you develop your product. If you wait until after the code is completed, it is
extremely hard to do a good job and your work is a lot more error prone. Here is where
Visual Studio 2010 and the Web Deployment Tool come in handy.

Visual Studio 2010 and Web Deployment Packages

Using the Plan My Night application and Visual Studio 2010, you'll examine how as a
developer you can deploy your Web application and get it to a state where you can deploy
it with confidence. Using the tools, you'll be able to test it and refine it using IIS on your
machine and then deploy it to your shared hosting service. In an enterprise, you do this and
then add the deployment package creation in your MSBuild or TFSBuild processes.

What Was Available Before Visual Studio 2010

In Visual Studio 2003, your options to deploy Web applications without buying a specialized
tool were roughly limited to the following three:

1. Using the command xcopy for deployment, also known simply as XCOPY deployment.
2. Using the Copy Project option in Visual Studio 2003.
3. Using the Visual Studio 2003 Web Setup Project option.

Chapter 4 From 2003 to 2010: Deploying an Application 105

Options 1 and 2 were useful for simple deployment, but when things got more complicated
the only options were either option 3 or using a product like InstallShield.

Option 1 was basically a process of manually copying the necessary files using the command
xcopy and then doing the rest of the configuration either through batch files, your favorite
scripting language, or manually.

Option 2 involved doing something similar to option 1, except that you had fewer decisions
to make as to which files were going to your server and how they would get there. You

could use the FrontPage extensions or a file share, and you could choose to just use the files
needed to run the application or all the files in the project or folder in which your application
was residing. You still had to configure similarly to option 1.

Option 3 enabled you to create an MSI and configure pretty much everything for your Web
application, but it didn't give you lots of control over IIS settings, SQL databases, and other
things that most Web applications use. And on top of that, it wasn't as easy and reliable as
one would like.

Look at Figures 4-1, 4-2, and 4-3 for the three most common methods to deploy a Web
application in Visual Studio 2003. Figure 4-1 shows the first option listed.

< Command Prompt !Hu

C:\>xcopy c:\InetpubsunupootsPlanMyNight .Webs ““testserversPlanyMyNight.Web /E
K /R S0 AH o1

FIGURE 4-1 The XCOPY deployment screen

106 Part | Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Figure 4-2 illustrates option 2, the Copy Project method.

Copy Project |X|

Source project folder: http: fflocalhost fPlantyhight . web

Destination project Folder:
I http: fikestserver JPlanfyMight, Web/ . |

Web access method:
' FrontPage
" File share
Path:
chinetpubiwinwroot Copy_of _PlanMyNight. Web _I

Copy!
& Only files needed to run this application
" all project files
&l files in the source project Folder

OF | Cancel Help

FIGURE 4-2 The Copy Project dialog box
And finally, option 3, the creation of a Web Setup Project, is shown in Figure 4-3.

Project Types: Templates:

(1 wisual C# Projects 1 -‘
43 Setup and Deployment Projects %.’.’
(20 other Projects Setup Project Web Setup Merge Module
{23 wisual Studin Solutions Project Project
g
). N =]
2
Setup Wizard Cab Project
Create a Windows Installer web project to which files can be added.
Mame: I FlantyMight . WebDeployment
Location: I CiiDocuments and SettingsiXPMUseriMy Documents)yi LI Browse. .. |
© add ko Salution & Close Salution

Project will be created at C:4...\My Documentstyisual Studio ProjectsiPlanMyNight . WebDeployment.,

FMore | OF | Cancel | Help |

FIGURE 4-3 The New Project dialog box, showing the Web Setup Project option

In Visual Studio 2005 and 2008, new notions regarding Web applications started to emerge.
Starting in the Visual Studio 2005 era, a Web application could be created in two different

Chapter 4 From 2003 to 2010: Deploying an Application 107

ways. It could be created as a Web site directly in the file system—on disk and without a
project file—or as a Web Application Project, like many other normal project types.

Note The Web Application Project became part of Visual Studio 2005 as an add-on a few
months after the product shipped. People requested that Microsoft have both options: a Web
site on disk and a Web Application Project similar to the proven project template that had
shipped in Visual Studio 2003. Those projects are easier to manage in an enterprise environment
and can be easily integrated with MSBuild.

The Web Deployment Project was created as an add-on in Visual Studio 2005 and 2008.
The feature set is pretty much the same in both versions except that the Visual Studio 2008
version had many bug fixes and improvements.

The Web Deployment Project doesn't alter the Web site or the Web Application Project.
Instead, it takes one as input and creates an entirely different project. In fact, it never touches
the original source code, but rather it creates a new project with the necessary files based on
the configuration options you selected. The Web Deployment Project is only a project file
and nothing else. With a few dialogs, it enables you, the developer, to specify how and where
you want to deploy your application.

At build time, it then mainly uses two utilities to turn those options into a Web site match-
ing your selections. Those two command-line tools are called aspnet_compiler and aspnet_
merge. In a nutshell, the first one compiles your projects composing your Web application
and the other one merges their output and copies the files either to a folder or to a virtual
folder in IIS.

You can have one deployment configuration per regular configuration (debug and release)
and any custom configuration you might create. Figure 4-4 shows the beginning of the Web
Deployment Project creation.

Add Web Deployment Project @

Please specify a name and a location for your Web deployment project.

Name:

PlanMyNight.Web.csproj_deployl

Location:
D\ Code\PMN\PlanMyNight2008\Source, E

ok || cancel |

FIGURE 4-4 Add Web Deployment Project dialog

108 Part | Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Now let’s look in Visual Studio 2008 at the Web Deployment Project properties. Figure 4-5
gives you an overall sense of what it can help you with.

Configuration: | Active(Release] -] Platform: [Active(Any CPU) ~| [configuration Manager... |
Configuration Properties Output Folder:
| Compilation| \Releasel E
Output Assemblies
Signing

[Tl Generate debug information
Deployment
Use IIS metabase path for source input

[¥] Allow this precompiled site to be updatable

[Look] [concel][Apply

FIGURE 4-5 Web Deployment Project property page

Because it is a normal project file with MSBuild directives, you can modify “pre” and “post”
build steps as well as run additional scripts. To do that, you have to edit the project file and
modify the appropriate MSBuild targets. Finally, look at Figure 4-6 for a fragment for the
PlanMyNight Web Deployment Project project file in Visual Studio 2008.

. Bl(!"
Microsoft Visual Studio 2008 Web Deployment Project
hetp://qgo.microsofe.com/fwlink/?LinkID=104956

Lo
B <Project ToolsVersion="3.5" DefaultTargets="Build" xmlns="http: microsoft.cc
7 <PropertyGroup>
<Configuration Condition=" '§(Configuration)' == '' ">Debug</Configuration>
<Platform Condition=" '§(Placform)' == '' ">AnyCPU</Platforms

<ProductVersion>9.0.21022</ProductVersion>
<5chemaVersion»2.0</5chemaVersion»
<ProjectGuid>{ }</ProjectGuid>
<SgurceWebPhysicalPath>. . \PlanMyNight .Web</SourceWebPhysicalPath>
<SourceWebProject>{74235ED3-1BD7-494C-B8E2-ATC37DD66C12) | PlanMyNight .Web\PlanMyNi
<SourceWebVirtualPath>/PlanMyNight .Web.csproj</SourcelebVirtualPachy
<TargetFrameworkVersion>v3.5</TargetFrameworkVersion>

</PropertyGroup>

<PropertyGroup Condition=" '$§(Configuration)|$(Platform)' = 'Debug|&nyCEU' ">
<Debug5ymbols>»true<,/DebugSymbols>
<OutputPath>.\Debug</OutputPath>
<EnzbleUpdatesble>true</EnablelUpdateables

22 <UseMerge>true</UseMerge>

23 <SingleAssemblyName>PlanMyNight .Web.csproj_deployl</SingleAssemblyName>

24 | </PropertyGroup>

z <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCEU' ">
2 <DebugSymbols>false</DebugSymbols>

<OutputPath>.\Release<,/OutputPath>
<EnableUndateable>truec/Enablelpdateable>

<UseMerge>true<,/UseMerge>

<SingleAssemblyName>PlanMyNight .Web.csproj_deployl</SingleAssenblyName>

</PropertyGroup>

<ItemGroup>

</ItemGroup>

<Import Project="¢ (MSBuildExtensionsPath)\Microsoft\WebDeployment\v9.0\Microsoft.We
3 <1-- To modify your build process, add your task inside one of the targets below ar
36? Other similar extension points exist. see Microsoft.WebDevlovment.targets.

FIGURE 4-6 Web Deployment package project file source

Chapter 4 From 2003 to 2010: Deploying an Application 109

It might not be apparent, but even though the Web Deployment Project was a huge
improvement over what was in Visual Studio 2003, it was still not easy enough, not inclu-
sive of all needs, and not powerful enough. It was a good step. Here is where the new Web
Deployment Packages, the new Web Application deployment project, and Visual Studio 2010
come to the rescue.

What Are Web Deployment Packages?

A Web deployment package is a compressed (.zip) file that contains all the necessary files
and metadata to set up your application in IIS, copy the application files to their destination,
configure the different applications in IIS, and set up related resources such as localization
resources, certificates, registry settings, installing assemblies in the GAC, and, finally, setting
up databases.

Those packages are then installed on the destination server using the msdeploy tool. You can
read the latest news about the msdeploy tool here: http.//blogs.iis.net/msdeploy/default.aspx.
A good analogy to this type of solution is what MSIs and the Windows installer are for the
client desktop.

Note InstallShield and the Wix Toolset are two other great solutions. They both have pros and
cons, and they both can work with other types of applications. The msdeploy tool is simply more
specialized and therefore a bit easier to work with. As of the writing of this chapter (May 2010),
Wix 3.5 is not out yet and a change in plans potentially is taking the custom action for IIS 7 out of
that release. If it does ship, it will be no earlier than July 2010. (To follow what is going on in the
Wix world, read Rob Mensching’s blog: http://robmensching.com/blog/) Therefore, the Wix tool-
set is not an option | would recommend just yet, unless you are installing on IIS 6. InstallShield is
out already, supports Visual Studio 2010, and can definitely create good packages to deploy Web
applications; however, it isn't free.

In Visual Studio 2010, you create your packages by creating settings in the Package/Publish
Web tab of the project properties page. Those settings allow you to specify what you put
into a deployment package. Let's see this in action.

1. Make sure you have the PlanMyNight solution opened. Then right-click on the
PlanMyNight.Web project, and select Package/Publish Settings. Let’s look at Figure 4-7
to make sure you are at the right place.

110 Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Solution Explorer > o x

Sl Elale
I:; Solution ‘PlanMyNight' (15 projects) =
4 Addins

b [PlanMyNight.AddIns.Emailltinerary
b [PlanMyNight.AddIns.Printitinerary
b 8 PlanMyNight.Addlns.Share
Solution Items

Tests

(Z PlanMyNight.Bing

(Z PlanMyNight.Contracts

(= PlanMyNight.Data

.‘E PlanMyNight.Infrastructure

[PlanMyNight.Velocity

m

= Web
Build
Rebuild F
Clean sErE
Build Deployment Package
Publish...
Package/Publish Settings s
Convert to Web Application
e s =T :s'e
Nemimed Mmmmem - -

FIGURE 4-7 The Package/Publish Settings option

2. Now let's take a look at Figure 4-8 to look at the content of that tab and select the
same settings for the PlanMyNight.Web application you have opened.

PlanMyNight Web* X

Application
Configuration: [Active (Debug) | Platform: [Active (Any CPU) -
Build
T Package/Publish enables you to deploy your Web application to Web servers. -

Leam more about Package/Publish Web
Package/Publish Web*
Ttems to deploy (applies to all methods)

Package/Publish SQL

(Al fles in this project =

Sitverlight Applications
[Exclude generated debug symbols

Lo E Exclude files from the App Data folder
Resources

Items to deploy (applies to Web Deploy only)
Settings

[#]Include all databases configured in Package/Publish SQL tab Dpen Settings
Reference Paths

Open Settings

Signing

m

Web Deployment Package Settings

Create deployment package s< a zip file

Location where packsge will be crested

obj\Debug\Package\PlanyNight Web.zip D
IS Web site/application name to use on the destination server

Default Web Site/PlanhyNight Web_deploy

Physical path of Web application on destination server (used only when IS setings are included):

C:\Users\Patrice\Documents\ Chapter 7\DebuggerStart\code\PlanMyNightWeb_deploy

Password used to encrypt secure IS settings:

FIGURE 4-8 The Package/Publish Web tab

Chapter 4 From 2003 to 2010: Deploying an Application 111

3. Similarly, in the Package/Publish SQL tab you can find the settings related to creating a
package for your database. Click on the Package/Publish SQL tab, or click on the Open
Settings link in the Package/Publish Web tab.

4. Click the Import From Web.Config button, and then copy the same string from the
source connection string to the destination connection string. Make sure your SQL
settings look like Figure 4-9. Save the file.

PlanMyNight Web*
Application
Configuration: [Active (Debug) =] Plstform: [Active (Any CPU) -
Build
Web Web Deploy enables you to deploy databases. For every database, create an entry in the grid below and then set properties for that entry. =
Learn more about Package/Publish SOL
Package/Publish Web*
| Database Entries
| Packag sQLr
Deploy Name 5
Silverlight Applications PlanMyNightEntities-Deployment
ApplicationServices-Deployment
Build Events L el +
Resources .
Settings Import from Web.config] l Add l Remove
RelEsnestals Database Entry Details
Signing
Destination Database Information
Connection string for destination database:
RESS;AttachD DotaDirectory] Security=True; Connect Timeout=30;User Instance=Truq | v | |
This seting is only used to deploy data and schema information to the server. To change the connection string in the
application’s deployed Web.config file use Web.config transform,
Seurce Databa:
Pull data and/or schema from an existing database
Connection string for the source database:
Data Source=\5QL DataDirectory] Security=Trug;Connect Timec ~ | -
Database scripting options:
T 0 v

FIGURE 4-9 The Package/Publish SQL tab

5. Now it's time to build the package. Right-click on the project name, and select Build
Deployment Package. The build process for the application will start. When it is
completed, the output will become the input to the package’s creation. If all goes well,
the package should be created at the location you specified in the package settings.

6. The package folder should contain the package .zip file, a command file that invokes
Web Deploy to make it easier to install the package from the command line, a
SetParameters.xml file containing all the parameters passed to Web Deploy, and a
SourceManifest.xml containing the parameters Visual Studio 2010 used to create the
package.

You have just created the package using Visual Studio 2010, but packages can also be
created by using MSBuild at the command line or MSBuild using Windows PowerShell or
TFSBuild. Now if you have access to the server, you can take this package and the command
file and deploy it. But if the server is a shared hosting company or another datacenter, you
have to publish it differently. And here is where One-Click Publish can help.

112

Part] Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

One-Click Publish

One-Click Publish is a Visual Studio 2010 tool that allows you to deploy a package based on
various technologies. Most importantly, it can use Web Deploy to publish the package you
created in the previous steps. It can also use FTP and FrontPage Extension. Let's see what
the Publish Profile looks like. To do so, right-click on the PlanMyNight.Web Web project and
select Publish. You should see the dialog shown in Figure 4-10, which displays the Publish
Profile information.

Publish Web @
|| X | d

Rename| | Delete Save

Publish profile:

Profilel -]

Publish uses settings from "Package/Publish Web" and "Package/Publish SQL" tabs
in Project Properties.

Find Web hosting provider that supports one-click publish.
Publish

Build configuration: Debug

Use Build Configuration Manager to change configuration

Publish method: | Web Deploy -]

Service URL: '@
e.g. localhost or https://RemoteServer8172/MsDeploy.axd

Site/application: @
e.g, Default Web Site/MyApp or MyDomain.com/MyApp
[C] Mark as IS application on destination

Leave extra files on destination (do not delete)

Credentials
[Allow untrusted certificate
Use this option only for trusted servers

User name:

Password:

[C] Save password

Publish || Close

FIGURE 4-10 Publish Profile dialog

If you publish to a shared hosting company and have Web Deploy installed on its

servers, the hosting company will give you the service URL to use—something like
https:<sharedhost>:8172/MsDeploy.axd. Or you put the name of the server if it was on your
intranet. Finally, the site/application corresponds to the 1ISWebSiteName/IISWebApplication.
The bottom part of the dialog shown in Figure 4-10 is used to enter credentials, if needed,
for your Web hosting company or your intranet.

Chapter 4 From 2003 to 2010: Deploying an Application 113

Note To try it, you just have to delete your database, delete your IS Web application and
settings, and then publish using this tool.

You can do a lot more than use what the Ul gives you access to. Integrating your deploy-

ment in your TFSBuild or MSBuild allows you to change many things at different steps of the
process.

The options offered out of the box have been discussed here in this chapter. Of course, Visual
Studio 2010 has many more ways to deploy other types of applications.

Summary

In this chapter, we reviewed many ways to deploy Web applications. You saw how to do it in
the previous three versions of Visual Studio. You learned that you have a lot more control of
the process and that it's a lot easier in Visual Studio 2010. Web Deploy is a new technology
that allows Web developers to become really proficient at preparing and deploying com-
plex installations and databases in an easy and extensible manner. As you witnessed in these
short examples, you can deploy your software in a confident and timely manner. It is a great
improvement over the XCOPY deployment most of us had to work with in the early days of
ASP.NET.

Finally, remember to keep abreast of all the changes in the msdeploy technologies by follow-
ing the teams’ blog at http://blogs.iis.net/msdeploy/default.aspx. The Wix Toolset is also well
integrated into Visual Studio and is therefore another excellent alternative.

Part Il
Moving from Microsoft

Visual Studio 2005 to
Visual Studio 2010

Authors Patrice Pelland, Ken Haines, and Pascal Pare

From 2005 to 2010: Business Logic and Data (Pascal) 117
From 2005 to 2010: Designing the Look and Feel (Ken) 153
195

From 2005 to 2010: Debugging an Application (Patrice)

115

Chapter 5

From 2005 to 2010: Business
Logic and Data

After reading this chapter, you will be able to

B Use the Entity Framework (EF) to build a data access layer using an existing database or
with the Model-First approach

B Generate entity types from the Entity Data Model (EDM) Designer using the ADO.NET
Entity Framework POCO templates

B Get data from Web services

B |earn about data caching using the Microsoft Windows Server AppFabric (formerly
known by the codename “Velocity")

Application Architecture

The Plan My Night (PMN) application allows the user to manage his itinerary activities and
share them with others. The data is stored in a Microsoft SQL Server database. Activities are
gathered from searches to the Bing Maps Web services.

Let’s have a look at the high-level block model of the data model for the application, which
is shown in Figure 5-1.

117

118 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Bing Maps services

FIGURE 5-1 Plan My Night application architecture diagram

Defining contracts and entity classes that are cleared of any persistence-related code
constraints allows us to put them in an assembly that has no persistence-aware code. This
approach ensures a clean separation between the Presentation and Data layers.

Let's identify the contract interfaces for the major components of the PMN application:

B /ltinerariesRepository is the interface to our data store (a Microsoft SQL Server
database).

B /ActivitiesRepository allows us to search for activities (using Bing Maps Web services).

B /CachingProvider provides us with our data-caching interface (ASP.NET caching or
Windows Server AppFabric caching).

= Note This is not an exhaustive list of the contracts implemented in the PMN application.

PMN stores the user’s itineraries into an SQL database. Other users will be able to comment
and rate each other’s itineraries. Figure 5-2 shows the tables used by the PMN application.

Chapter 5 From 2005 to 2010: Business Logic and Data 119

ltinerary ltineraryRating
Id: bigint IDENTITY Id: bigint IDENTITY
Userld: uniqueidentifier NOT NULL Userld: uniqueidentifier NOT NULL
Name: nvarchar(100) NOT NULL ltineraryld: bigint NOT NULL (FK)
Created: smalldatetime NOTNULL | | Rating: tinyint NOT NULL
Description: nvarchar{1000) NULL Timestamp: datetime NOT NULL
IsPublic: bit NOT NULL
RatingSum: int NOT NULL
Rating: money NULL ltineraryComment

Id: bigint IDENTITY
ltineraryld: bigint NOT NULL (FK)

RatingCount int NOT NULL B
|
|
|
|

It Activit _
nerayAcivies Userld: uniqueidentiier NOT NULL
ltineraryld: bigint NOT NULL (FK) Body: nvarchar(4000) NOT NULL
Activityld: varchar(250) NOT NULL Timestamp: date NOT NULL

IpAddress: varchar(16) NOT NULL

Order intNOT NULL
EstimatedMinutes: smallint NOT NULL
Typeld: int NOT NULL

State: char(2) NOT NULL ZipCode

City: varchar(150) NOT NULL - -

Zip: varchar(50) NOT NULL ZipCode: varchar(5) NOT NULL
Latitude: float(53) NOT NULL City: varchar(150) NOT NULL
Longitude: float{53) NOT NULL St t. . har(150) NOT NULL
Location: varchar(20) MULL ate: varchar(150)

FIGURE 5-2 PlanMyNight database schema

W Important The Plan My Night application uses the ASP.NET Membership feature to provide
secure credential storage for the users. The user store tables are not shown in Figure 5-2. You can
learn more about this feature on MSDN: ASP.NET 4 - Introduction to Membership (http://msdn.
microsoft.com/en-us/library/yh26yfzy(VS.100).aspx).

Note The ZipCode table is used as a reference repository to provide a list of available Zip Codes
and cities so that you can provide autocomplete functionality when the user is entering a search
query in the application.

Plan My Night Data in Microsoft Visual Studio 2005

It would be straightforward to create the Plan My Night application in Visual Studio 2005
because it offers all the required tools to help you to code the application. However, some of
the technologies used back then required you to write a lot more code to achieve the same
goals.

Let's take a look at how you could create the required data layer in Visual Studio 2005. One
approach would have been to write the data layer using ADO.NET DataSet or DataReader

120 Part Il

Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

directly. (See Figure 5-3.) This solution offers you great flexibility because you have complete
control over access to the database. On the other hand, it also has some drawbacks:

You need to know the SQL syntax.

All queries are specialized. A change in requirement or in the tables will force you to
update the queries affected by these changes.

You need to map the properties of your entity classes using the column name, which is
a tedious and error-prone process.

You have to manage the relations between tables yourself.

lanMyNightDatabase.cs | PlantyhightDatabase.xsd | - X

| G microsaft. samples, Flaniyight Daka DAL PlantiyNghtDataSet | | -@Rateltinerarv(iong itineraryId, Guid userld, byte rating, DateTime timestamp) v

<

publie void Rateltinerary(long itineraryld, Guid userld, byte rating, DateTime timestewp)
¢
const string cndInsertRating = "INSERT Tnto ItineraryRating (Userld, TtineraryTd, Rating, Timestamp) " +
"ALUES [BUserTd, BItineraryld, BRating, BTimestemp)":

try
€
using (SglCommection sglConnection = new Sglomnection{global::Microsoft.Samples.PlanMyNight.Data.Pr
¢
using (Sglomeand crdInserc = sqlConnection.CreateCormand ())
1
endInsert. ConandType = ComuandType.Text;
endIngert, CommandText = cwdInsertRating?

emdInsert. Farameters. dd ("BUserTd”, SglDbTyps.Unigqueldentifier] .Value = userld:
emdInsert. Parameters. kdd ("B TtineraryTd”, Sql0bType.Biglnt).Value = itineraryld:
cmdInsert . Parameters. hdd ("6Rating”, SqlDbType.TinyInt).Value = rating:
endInsert, Paraweters. Add ("0 Tinestawp”, SylDbType.DateTime).Value = timestamp;

sqlConnection.Openi) ;
emdTnsert. ExecuteNonduery () L

sglConnection.Close ()
3
i
¥
catch ([SglException)
€
throws

¥
v

FIGURE 5-3 ADO.NET Insert query

Another approach would be to use the DataSet designer available in Visual Studio 2005.
Starting from a database with the PMN tables, you could use the TableAdapter Configuration
Wizard to import the database tables as shown in Figure 5-4. The generated code offers you
a typed DataSet. One of the benefits is type checking at design time, which gives you the
advantage of statement completion. There are still some pain points with this approach:

B You still need to know the SQL syntax, although you have access to the query builder

directly from the DataSet designer.

You still need to write specialized SQL queries to match each of the requirements of
your data contracts.

You have no control of the generated classes. For example, changing the DataSet to
add or remove a query for a table will rebuild the generated TableAdapter classes and
might change the index used for a query. This makes it difficult to write predictable
code using these generated items.

Data

| Niame of the Dataset dlass

Chapter 5 From 2005 to 2010: Business Logic and Data 121

B The generated classes associated with the tables are persistence aware, so you will have
to create another set of simple entities and copy the data from one to the other. This
means more processing and memory usage.

% PlanMyNight2005 - Microsoft Visual Studio

fle Edt Vew Poec fuid Debug Data Toos Text window Communty bep
E3 | 6 Ga @]9 -0 - &3] b vebug - Ay CPU - L NS ER B
QxS BEEES - g

Solution Explorer - Solution Planttyhight20... w & X

15| PlanytightDatabase. s 1 - x
AN .. stnerary] Nk
4 ‘? " = Fe ItineraryComment [Solution PlanMyNight2005' (S prajects)
=4 I
i L]
LL" Usertd Ttinerarytd PlanttyNight Bing
g Neme T Planiyhight, Contracts
g Crested 5 Planiiyhight Data
g Description 5l Properties
i Timestamp
g IsPublic K [References
1=/ RatingCount et [carhing
L '] ItineraryCommentTableAdapter & oA
Rating i Getoata ()] HineraryTatleddapter cs

sl FilBytinerary1d, GotDataBy TtineraryId (@kierary... (501 PlanttyghDatabase xsd

'8 TtineraryTableAdapter (] ,\

e 55 ap.confia
Fil GetData () 4 2] EinghctivitiesReposiory. cs
=2y DeleteByld (@0riginal_Idy = ¥, TtneraryActivities 4] ItinerariesRepostary.cs
2 Fileyctiviey (@Activity_1d) - fapyactes t (#] ReferenceRepository.cs
s FilByCty (@Type_ld, @State, @City) [SHECEECH T Rineranyrd £ PlanMyNight.web
2 Filbyld (@1d) a ¥ Activityrd

Order.
EstmatedMinutes
FK_TtineraryReting_Ttinerary
H

Typeld
State
T.. TtineraryRating City
5 f:muae
Userd
Itneraryid i R
Rating & ltineraryActivitiesTableAdapter
Timestamp il GetData () Froperties -ax

'8 TtineraryRatingTableadapter

Fill GetData ()
= FillsyUserandltinerary (@user_Id, @itinerary.

MyNightDataSet Datsset

Hame PlanMyhightDataSet =|

[

2
|23 Emor Lis | 5 Find Resuls 152 Find Symbol Resuls =] est Resuls |

Ready

FIGURE 5-4 DataSet designer in Visual Studio 2005

In the next sections of this chapter, you'll explore some of the new features of Visual Studio
2010 that will help you create the PMN data layer with less code, give you more control of
the generated code, and allow you to easily maintain and expand it.

with the Entity Framework in Visual Studio 2010

The ADO.NET Entity Framework (EF) allows you to easily create the data access layer for an
application by abstracting the data from the database and exposing a model closer to the
business requirements of the application. The EF has been considerably enhanced in the .NET
Framework 4 release.

See Also The MSDN Data Developer Center offers a lot of resources about the ADO.NET Entity
Framework (http://msdn.microsoft.com/en-us/data/aa937723.aspx) in .NET 4.

You'll use the PlanMyNight project as an example of how to build an application using some
of the features of the EF. The next two sections demonstrate two different approaches to
generating the data model of PMN. In the first one, you let the EF generate the Entity Data
Model (EDM) from an existing database. In the second part, you use a Model First approach,
where you first create the entities from the EF designer and generate the Data Definition
Language (DDL) scripts to create a database that can store your EDM.

122 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

EF: Importing an Existing Database

You'll start with an existing solution that already defines the main projects of the PMN appli-
cation. If you installed the companion content at the default location, you'll find the solution
at this location: %userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\
Chapter 5\Code\ExistingDatabase. Double-click the PlanMyNight.sIn file.

This solution includes all the projects in the following list, as shown in Figure 5-5:

B PlanMyNight.Data: Application data layer

B PlanMyNight.Contracts: Entities and contracts

B PlanMyNight.Bing: Bing Maps services

B PlanMyNight.Web: Presentation layer

B PlanMyNight.AppFabricCaching: AppFabric caching

Solution Explarer > 1 x
_.l
||__Zﬁlution 'PlantdyMight' (5 prajects) |
4 [PlanhtyMight.&ppFabricCaching
[[=d Properties
> [x3] References
4 [F PlanhtyMight.Bing
[[=d Properties
> [z3] References
4 [PlanhyMight.Contracts
[[=d Properties
> [x3 References
4 [5] PlanMyNight.Data
[[=d Properties
> [x3] References
4 B PlanMyNight.Web
[[=d Properties
> [x3 References
5 App_Data
[Contrallers
3 Models
3 Scripts
3 Wiews
ﬁ] Global.asax
= Web.config

v v v v

FIGURE 5-5 PlanMyNight solution

The EF allows you to easily import an existing database. Let's walk through this process.

The first step is to add an EDM to the PlanMyNight.Data project. Right-click the
PlanMyNight.Data project, select Add, and then choose New Item. Select the ADO.NET Entity
Data Model item, and change its name to PlanMyNight.edmx, as shown in Figure 5-6.

Chapter 5 From 2005 to 2010: Business Logic and Data

Add NewItem - PlanhyNight Data
Installed Templates

4 Visual Cé# Tterns
Code
Data
General
Web
Windews Farms
WPF
Reparting
Silverlight
Workfow

Sort by Search nsaled Tl 2]

T : Wi | CH# It
% ADO.NET Entity Data Model Visual G#Ttems ype: Wisuallwtems
A project item far creating an ADONET

Entity Data Madel.

DataSet Wisual C#Items

t@% UMD 0 S0 Classes

Wisual C#Items
Wisual C#Items

Local Database

Local Database Cache Wisual C#Items

Service-hased Database Wisual C#Items

u
@ ML File

Wisual C#Items

XML Scherna

Lji‘ MSLT File

Wisual C#Items

Wisual C#Items

Name: PlantdyNight edms

P

FIGURE 5-6 Add New Item dialog with ADO.NET Entity Data Model selected

The first dialog of the Entity Data Model Wizard allows you to choose the model content.
You'll generate the model from an existing database. Select Generate From Database and

then click Next.

You need to connect to an existing database file. Click New Connection. Select Microsoft
SQL Server Database File from the Choose Data Source dialog, and click Continue. Select
the %userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 5\
ExistingDatabase\PlanMyNight.Web\App_Data\PlanMyNight.mdf file. (See Figure 5-7.)

Entity Data Model Wizard

=]

Iﬁ% Connection Properties

Whicl

-

This
conn
toin

Entity

[54

Enter information to cannect to the selected data source ar click
"Change" to choose a different data source and/for provider.

Data source:

Microsaft SQL Server Database File (SqiClient)

Database file name (new ar existing):

SlanhtyNight WebSpp_Data\PlanktyNight.mdf

Log on to the server

@ Use Windows Authentication

(@ Use $QL Server Authentication
User name;

Password;

Save my passward

| [r——

[rem—|

a?

MNew Cannection...

) that s required to
security risk. Do you want

prlication code,

< Previous Mext »

inish Cancel

FIGURE 5-7 EDM Wizard database connection

123

124

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Leave the other fields in the form as is for now and click Next.

Note You'll get a warning stating that the local data file is not in the current project. Click No to
close the dialog because you do not want to copy the database file to the current project.

From the Choose Your Database Objects dialog, select the Itinerary, ItineraryActivities,
ItineraryComment, ItineraryRating, and ZipCode tables and the UserProfile view. Select the
RetrieveltinerariesWithinArea stored procedure. Change the Model Namespace value to
Entities as shown in Figure 5-8.

Entity Date Model Wizard 7 e

L ﬁ} Choose Your Database Objects

Which database objects do you want to include in your model?

4 W13 Tables|
I aspnet_Applications (dba)
[aspnet_Membership (dbo)
[aspnet_Prafile (dbo)
[E1E3 aspnet_Schemaversions tdba)
[EIE aspnet_Users (dbo)
[Hinerary (dbo)
[T Hinerarpfctivities (dbo)
[ineranyCamment (dbo)
[FI3 HineranyRating (dbo)
[sysdiagrams {dbo)
[T ZipCode (dbo)
. Views
UserProfile (dbo)
[CIE we_aspnet_Applications (dbo)
[CIS wa_aspnet_MembershipUsers (dbo)
[CIS we_aspnet_Profiles (dbo)
[CIE wwe_aspnet_Users (dba)
4 [@1% Stored Procedures
[T asnnet AnuDatalnTahles idhn a4

Pluralize or singularize generated object names

| »

m

Include foreign key colurns in the model
Iodel Namespace:

Entities

FIGURE 5-8 EDM Wizard, Choose Your Database Objects page

Click Finish to generate your EDM.

Fixing the Generated Data Model

You now have a model representing a set of entities matching your database. The wizard has
generated all the navigation properties associated with the foreign keys from the database.

Chapter 5 From 2005 to 2010: Business Logic and Data 125

The PMN application requires only the navigation property ItineraryActivities from the
Itinerary table, so you can go ahead and delete all the other navigation properties. You'll also
need to rename the ltineraryActivities navigation property to Activities. Refer to Figure 5-9
for the updated model.

s Tinerary \ “¢ Minerary Activity \ s ZipCode
= Properties = Properties = Properties
I 4 Itineranyd # ZipCodel
5 Userld B Activityld 5 City
ﬁl\lame ﬁOrder ﬁState
= Created 5 EstimatedMinutes = Mavigation Properties
5 Description /1 """""" Ay 5 Typeld '\
B IsPublic 5 State
2 RatingCount P City
2 RatingSum = Zip
ﬁRating ﬁLatitude
= Mavigation Properties 5 Longitude
Activities = Mavigation Properties
e & :
it o5
i s
* ag RineraryCom...
¢ TineraryRating \
= Properties
= Properties 1
=] 5 Itineranyd
ﬁUserId ﬁUserId
F Itineranyd ﬁB_OdY
2 Rating = Timestamp
B Tirnestarnp 5 [pAddress
= Mavigation Properties = Navigation Propetties
b

A N e BN T

FIGURE 5-9 Model imported from the PlanMyNight database

Notice that one of the properties of the ZipCode entity has been generated with the name
ZipCodel because the table itself is already named ZipCode and the name has to be unique.
Let's fix the property name by double-clicking it. Change the name to Code, as shown in
Figure 5-10.

s ZipCode

= praperties
wlcesd
57 City
ﬁState

= Mavigation Properties
¢

FIGURE 5-10 ZipCode entity

126

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Build the solution by pressing Ctrl+Shift+B. When looking at the output window, you'll notice
two messages from the generated EDM. You can discard the first one because the Location
column is not required in PMN. The second message reads as follows:

The table/view ‘dbo.UserProfile’ does not have a primary key defined and no valid
primary key could be inferred. This table/view has been excluded. To use the entity,
you will need to review your schema, add the correct keys, and uncomment it.

When looking at the UserProfile view, you'll notice it does not explicitly define a primary key
even though the UserName column is unique.

You need to modify the EDM manually to fix the UserProfile view mapping so that you can
access the UserProfile data from the application.

From the project explorer, right-click the PlanMyNight.edmx file and then select Open With.
Choose XML (Text) Editor from the Open With dialog as shown in Figure 5-11. Click OK to
open the XML file associated with your model.

Open With - PlantyNight.edrmx ._@._@

Choose the program you want to use to open this file:

ADOMET Entity Data Model Designer (Default) Add...

Automatic Editor Selector (XhL) —
HML (Text) Editor

XML (Text) Editar with Encading Eerngis
Source Code (Text) Editor
Source Code (Text) Editar With Encoding
HTrL Editar

HTrAL Editor with Encoding
Binary Editar

Resource Editar

Ok l ’ Cancel

FIGURE 5-11 Open PlanMyNight.edmx in the XML Editor

Note You'll get a warning stating that the PlanMyNight.edmx file is already open. Click Yes to
close it.

The generated code was commented out by the code-generation tool because there was no
primary key defined. To be able to use the UserProfile view from the designer, you need to
uncomment the UserProfile entity type and add the Key tag to it. Search for UserProfile in
the file. Uncomment the entity type, add a Key tag and set its name to UserName, and make
the UserName property not nullable. Refer to Listing 5-1 to see the updated entity type.

Chapter 5 From 2005 to 2010: Business Logic and Data 127

LISTING 5-1 UserProfile Entity Type XML Definition

<EntityType Name="UserProfile">
<Key>
<PropertyRef Name="UserName"/>
</Key>
<Property Name="UserName" Type="uniqueidentifier" Nullable="false" />
<Property Name="FullName" Type="varchar" MaxLength="500" />
<Property Name="City" Type="varchar" MaxLength="500" />
<Property Name="State" Type="varchar" MaxLength="500" />
<Property Name="PreferredActivityTypeld" Type="int" />
</EntityType>

If you close the XML file and try to open the EDM Designer, you'll get the following error
message in the designer: “The Entity Data Model Designer is unable to display the file you
requested. You can edit the model using the XML Editor.”

There is a warning in the Error List pane that can give you a little more insight into what this
error is all about:

Error 11002: Entity type 'UserProfile” has no entity set.

You need to define an entity set for the UserProfile type so that it can map the entity type to
the store schema. Open the PlanMyNight.edmx file in the XML editor so that you can define

an entity set for UserProfile. At the top of the file, just above the Itinerary entity set, add the

XML code shown in Listing 5-2.

LISTING 5-2 UserProfile EntitySet XML Definition

<EntitySet Name="UserProfile" EntityType="Entities.Store.UserProfile"
store:Type="Views" store:Schema="dbo" store:Name="UserProfile">
<DefiningQuery>
SELECT
[UserProfile].[UserName] AS [UserName],
[UserProfile].[FullName] AS [FullName],
[UserProfile].[City] AS [City],
[UserProfile].[State] AS [State],
[UserProfile].[PreferredActivityTypeId] as [PreferredActivityTypeld]
FROM [dbo].[UserProfile] AS [UserProfile]
</DefiningQuery>
</EntitySet>

Save the EDM XML file, and reopen the EDM Designer. Figure 5-12 shows the UserProfile
view in the Entities.Store section of the Model Browser.

Tip You can open the Model Browser from the View menu by clicking Other Windows and
selecting the Entity Data Model Browser item.

128 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Type here to search =

4 |4 PlanMyNightedmx
Ll Entities
4 [Entity Types
&2 Tinerary
&2 Tinerarylctivity
&2 TtineraryComment
&2 TineraryRating
%2 ZipCode
3 Complex Types
3 Associations
L [a] EntityCentainer: PlanMyNightEntitic
4 | Entities.Store
4 [0 Tables / Views
[Itinerary
[KineraryActivities
[KineraryComment
[tineraryRating
4 [UserProfile
{E UserMName
[city
[E] FullName
(5] PreferredActivityTypeld
[E] state
[ZipCode
[Stored Procedures
3 Constraints

FIGURE 5-12 Model Browser with the UserProfile view

Now that the view is available in the store metadata, you add the UserProfile entity and map
it to the UserProfile view. Right-click in the background of the EDM Designer, select Add, and
then choose Entity. You'll see the dialog shown in Figure 5-13.

Add Entity 5

Properties

Entity narne:
UserProfile

Base type:
(Mone) =

Entity Set:

UserProfiles

Key Property
Create key property

Property narne:

UserMarme

Property type:
Guid -

—r— - —

FIGURE 5-13 Add Entity dialog

Chapter 5 From 2005 to 2010: Business Logic and Data 129

Complete the dialog as shown in Figure 5-13, and click OK to generate the entity.

You need to add the remaining properties: City, State, and PreferredActivityTypeld. To do
so, right-click the UserProfile entity, select Add, and then select Scalar Property. After the
property is added, set the Type, Max Length, and Unicode field values. Table 5-1 shows the

expected values for each of the fields.

TABLE 5-1 UserProfile Entity Properties

Name Type Max Length
FullName String 500
City String 500
State String 500
PreferredActivityTypeld Int32 NA

Unicode
False
False
False

NA

Now that you have created the UserProfile entity, you need to map it to the UserProfile view.
Right-click the UserProfile entity, and select Table Mapping as shown in Figure 5-14.

Add 3
Renarme

Cut Crl+3
Copy Ctrl+C
Paste Crl +4f
Delete Del

i %<

X {

Collapse

Table Mapping
Stored Procedure Mapping

=

Show in Model Browser

Update kodel frorm Database..,

Generate Database from hodel..
Add Code Generation Iern..,
Walidate
Properties Alt+Enter

FIGURE 5-14 Table Mapping menu item

Then select the UserProfile view from the drop-down box as shown in Figure 5-15. Ensure
that all the columns are correctly mapped to the entity properties. The UserProfile view
of our store is now accessible from the code through the UserProfile entity.

Mapping Details - UserPrafile X

Column Operator Value / Property
BB |4 Tables
+ 2 Wops o Ut e A T S

P Userarne : Guid
[FullName : String
5 City: St
5 State : String

5 Preferredéctivit Typeld : Int32

E3E I 3E 4

FIGURE 5-15 UserProfile mapping details

130 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Stored Procedure and Function Imports

The Entity Data Model Wizard has created an entry in the storage model for the
RetrieveltinerariesWithinArea stored procedure you selected in the last step of the wizard.
You need to create a corresponding entry to the conceptual model by adding a Function
Import entry.

From the Model Browser, open the Stored Procedures folder in the Entities.Store section.
Right-click RetrieveltineraryWithinArea, and then select Add Function Import. The Add
Function Import dialog appears as shown in Figure 5-16. Specify the return type by selecting
Entities and then select the Itinerary item from the drop-down box. Click OK.

Add Function Import @

Function Import MName:

RetrieveltinerariesWithinArea

Stored Procedure Mame:

Retripwalis PR Y

Returns a Collection Of
@) Mone
@ Scalars:

©) Complex: Update

@ Entities: ’hinelary ~

Stored Procedure Column Information
Get Column Information

Click on "Get Column Information” above to retrieve the stored
procedure’s schema. Once the schema is available, click on "Create Mew
Complex Type" below to create a compatible complextype. You can
also always update an existing complex type to match the returned
schema. The changes will be applied to the model once you click on
0K,

Create Mew Complex Type

Ok] ’ Cancel

FIGURE 5-16 Add Function Import dialog

Chapter 5 From 2005 to 2010: Business Logic and Data 131

The RetrieveltinerariesWithinArea function import was added to the Model Browser as shown
in Figure 5-17.

Model Browser v 1x

Type here to search -

4 |4 PlanMyNightedmx
Ll Entities
(3 Entity Types
3 Complex Types
E3 Associations
4 (@] EntityCentainer: PlanMyNightEntities
b [Entity Sets
b E3 Association Sets
4 [Function Impaorts
Rl RetrieveltinerariesWithinArea
f@d lat
'@ lon
@ page
pageSize
'@ radius
'@ total
_ @ typeld
4 | Entities.Store
b £ Tables / Views
4 [0 Stored Procedures
4 D RetrieveltinerariesWithindrea
lat
'@ lon
@ page
pageSize
radius
'@ total
@ typeld
E3 Constraints

FIGURE 5-17 Function Imports in the Model Browser

You can now validate the EDM by right-clicking on the design surface and selecting Validate.
There should be no error or warning.

EF: Model First

In the prior section, you saw how to use the EF designer to generate the model by import-
ing an existing database. The EF designer in Visual Studio 2010 also supports the ability

to generate the Data Definition Language (DDL) file that will allow you to create a data-
base based on your entity model. In this section, you'll use a new solution to learn how to
generate a database script from a model.

132 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

You can start from an empty model by selecting the Empty model option from the Entity
Data Model Wizard. (See Figure 5-18.)

Note To get the wizard, right-click the PlanMyNight.Data project, select Add, and then choose
New Item. Select the ADO.NET Entity Data Model item.

Entity Data Model Wizard -7l

k ﬁ Choose Model Contents

What should the model contain?

u

Generate [3
frarn d...

Creates an empty madel as 3 starting point for visually designing a conceptual madel fram the toalbox,
Classes are generated from the madel when the project is compiled. You can specify a database connection
Ister to map the conceptual madel to the storage model.

FIGURE 5-18 EDM Wizard: Empty model

Open the PMN solution at %userprofile%\Documents\Microsoft Press\Moving to Visual
Studio 2010\Chapter 5\Code\ModelFirst by double-clicking the PlanMyNight.sIn file.

The PlanMyNight.Data project from this solution already contains an EDM file named
PlanMyNight.edmx with some entities already created. These entities match the data schema
you saw in Figure 5-2.

Chapter 5 From 2005 to 2010: Business Logic and Data 133

The Entity Model designer lets you easily add an entity to your data model. Let's add the
missing ZipCode entity to the model. From the toolbox, drag an Entity item into the designer,
as shown in Figure 5-19. Rename the entity as ZipCode. Rename the /d property as Code,
and change its type to String.

o PlanyNight - Microsoft Visual Studio

File Edit View Project Build Debug Team Dita
IR R N e F e o) I e e

ol PlanMyhlightedmy® X

Test Tools Window Help

[ESEE=R<=

=== e

ity Framework
Rk Pointer
L Asseciation
@ Entity
Ly Inheritance
4 General

(4. ZipCode

There are no usable
cantrols in this group,
Drag an item onta this

tet to add it to the

toolbo,

= Navigation Properties

&)

4 Tinerary

= properties

E=)e]

“ Description
5 sPublic

“ RatingCount
5 RatingSurn

F Rating

= Navigation Properties

o —

= Properties
¥ HineranId
B activingd
P Order
F5F EstirnatedMinutes
5 State
S City
“7ip
S Latitude.
5 Longitude
P Typeld

“4: RineraryComment

= Praperties
=)0
7 ineranyId
2 Userld
5 Body
F Timestarmp
 Ipaddress
= Navigation Properties

S
53 Solution ‘PlarhyNight' (5 projects)
4 (3 PlanhyNight. AppF abricCaching
b [Prapetties
b [Refersnces
4 [PlanMyMight Bing
b Praperties
b [References
4 [PlanMyNight, Contracts
b Properies
b [References
light Data

“#; RineraryRating

= Properties
=)0
5 Userld
2 HineranyId
5 Rating

 Timestarnp

& Navigation Properties

FIGURE 5-19 Entity Model designer

1= Mavigation Properties
L

Il b [References

4 Properties

4 & PlantyNight.ecr
] PlanhyNightDesigner.cs
b (A Planhyight Web
& Solution... [EELT

PlanMyNight.ZipCode.Code Praperty
e

Unicode False -

P
Concurrency Mads None
Default Value (None)
Documentation

Entity Key True
Name Code i
Name

SHOEL «

The name of the property.

You need to add the City and State properties to the entity. Right-click the ZipCode entity,
select Add, and then choose Scalar Property. Ensure that each property has the values shown

in Table 5-2.

TABLE 5-2 ZipCode Entity Properties

Name Type
Code String
City String
State String

Fixed Length

False
False

False

Max Length Unicode
5 False
150 False
150 False

Add the relations between the ItineraryComment and Itinerary entities. Right-click the
designer background, select Add, and then choose Association. (See Figure 5-20.)

134

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Add Association

Association Mame:

Fi_itineraryCommentltinerary

End End

Entity: Entity:

’ItineraryComment v] ’Itinerary v]
Multiplicity: Multiplicity:

[Many) | [1ione -
[] Mavigation Property: [[] Mavigation Property:

Itinerary ItineraryCornments

[] &dd fareign key properties to the ‘TineranyCormrment’ Entity

ItineraryComment can have 1 (One) instance of Itinerary, -

Itinerary can have * (Many) instances of ItineranyComrment,

Ok l ’ Cancel

FIGURE 5-20 Add Association dialog for FK_ItineraryCommentlitinerary

Set the association name to FK_ItineraryCommentltinerary and then select the entity
and the multiplicity for each end, as shown in Figure 5-20. After the association is created,
double-click the association line to set the Referential Constraint as shown in Figure 5-21.

Referential Constraint
Principal:
Ttinerany - Ok
Cependent:

- Delet
ItineraryComment Ea

Cancel

Principal Key Dependent Property
Id Itineraryld

FIGURE 5-21 Association Referential Constraint dialog

Chapter 5 From 2005 to 2010: Business Logic and Data 135

Add the association between the ItineraryRating and Itinerary entities. Right-click the
designer background, select Add, and then choose Association. Set the association name to
FK_ItineraryltineraryRating and then select the entity and the multiplicity for each end as
in the previous step, except set the first end to ItineraryRating. Double-click on the associa-
tion line, and set the Referential Constraint as shown in Figure 5-21. Note that the Dependent
field will read ItineraryRating instead of ItineraryComment.

Create a new association between the ItineraryActivity and Itinerary entities. For the
FK_ltineraryltineraryActivity association, you also want to create a navigation property
and name it Activities, as shown in Figure 5-22. After the association is created, set the
Referential Constraint for this association by double-clicking on the association line.

Add Assaociation

Association Mame:

FE_Ttinerargfctivityltinerary

End End

Entity: Entity:

’ItineraryActivity v] ’Itinerary v]
Multiplicity: Multiplicity:

[Many) | [Lione -]
[[] Mavigation Property: MNavigation Property:

Ttinerary Avctivities
[] 2dd fareign key properties to the ‘Tinerangsfctivity' Erntity

Itinerarydctivity can have 1 (One) instance of Itinerany, -
Itinerary can have * (Many) instances of Itinerangfctivity, Use

Ttinerary.Activities to access the Itineraryfctivity instances|

QK l ’ Cancel

FIGURE 5-22 Add Association dialog for FK_ItineraryActivityltinerary

Generating the Database Script from the Model

Your data model is now completed, but there is no mapping or store associated with it. The
EF designer offers the possibility of generating a database script from our model.

136 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Right-click on the designer surface, and choose Generate Database From Model as shown in

ﬁCreated
5 Description

5 IsPublic
5 RatingCount

Figure 5-23.
2 State
= Mavigation Properties
q

Add
Diagram
Zoom
Grid

Select All

Mapping Details

)

Model Browser

Walidate
Properties

Scalar Property Format

Update hodel frorm Database..,

Generate Database from Model...

Add Code Generation Iern..,

Alt+Enter

e -

FIGURE 5-23 Generate Database From Model menu item

The Generate Database Wizard requires a data connection. The wizard uses the connection
information to translate the model types to the database type and to generate a DDL script

targeting this database.

Select New Connection, select Microsoft SQL Server Database File from the Choose Data
Source dialog, and click Continue. Select the database file located at %userprofile%\
Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 5\Code\ModelFirst\Data\

PlanMyNight.mdf. (See Figure 5-24.)

= Body

ﬁTimestan

5 [paddres:
= Mavigation P

- p
“¢ Winerary)

= Properties

4 Itinerar
B Activity
ﬁOrder
ﬁEstimai
ﬁState
57 City
B Zip
5 Latitud
= Longity
5 Typeld
= Mavigatior

Chapter 5

Connection Properties

Enter information to connect to the selected data source or click
"Change" to choose a different data source andfor provider,

Data source:

Micrasoft SQL Server Database File (SqiClient)

Database file name (hew or existing):

=nts\SourcelDataiModelFirstyPlanhyMight.mdf Browyse..,

Log on to the server

@ Use Windows Authentication

() Use SOL Server Authentication

User name;
Password:
Save my password
Test Connection] [QK H Cancel]

FIGURE 5-24 Generate a script database connection

After your connection is configured, click Next to get to the final page of the wizard, as

From 2005 to 2010: Business Logic and Data

137

shown in Figure 5-25. When you click Finish, the generated T-SQL PlanMyNight.edmx.sql file
is added to your project. The DDL script will generate the primary and foreign key constraints

for your model.

Generate Database Wizard

k 5 Summary and Settings

Save DDL As: PlanMyhlight.edmycsql

DoL

-- Entity Designer DDL Script for SQL Server 2005, 2008, and Azure

-- Date Created: 02/03/2010 22:58:49

- Generated from EDMX file: CAUsers\DocumentsWisual Studio 20104Projects
\ChapterS\PlanhdyNight Dats\PlanhdyNight edmx

SET QUOTED_IDENTIFIER: OFF;
GO

USE [Planhylight];

GO

IF SCHEMA_ID(N'dbo') IS MULL EXECUTE(M'CREATE SCHEMA [dba]');
GO

-- Dropping existing FOREIGN KE constraints

s

FIGURE 5-25 Generated T-SQL file

138

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

The EDM is also updated to ensure your newly created store is mapped to the entities. You
can now use the generated DDL script to add the tables to the database. Also, you now have
a data layer that exposes strongly typed entities that you can use in your application.

Important Generating the complete PMN database would require adding the remaining
tables, stored procedures, and triggers used by the application. Instead of performing all these
operations, we will go back to the solution we had at the end of the “EF: Importing an Existing
Database” section.

POCO Templates

The EDM Designer uses T4 templates to generate the code for the entities. So far, we have let
the designer create the entities using the default templates. You can take a look at the code
generated by opening the PlanMyNight.Designer.cs file associated with PlanMyNight.edmx.
The generated entities are based on the EntityObject type and decorated with attributes to
allow the EF to manage them at run time.

Note T4 stands for Text Template Transformation Toolkit. T4 support in Visual Studio 2010 allows
you to easily create your own templates and generate any type of text file (Web, resource, or
source). To learn more about the code generation in Visual Studio 2010, visit Code Generation
and Text Templates (http://msdn.microsoft.com/en-us/library/bb126445(VS.100).aspx).

The EF also supports POCO entity types. POCO classes are simple objects with no attributes
or base class related to the framework. (Listing 5-3, in the next section, shows the POCO
class for the ZipCode entity.) The EF uses the names of the types and the properties of these
objects to map them to the model at run time.

Note POCO stands for Plain-Old CLR Objects.

ADO.NET POCO Entity Generator

Let's re-open the %userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\
Chapter 5\Code\ExistingDatabase\PlanMyNight.sIn file.

Open the PlanMyNight.edmx file, right-click on the design surface, and choose Add Code
Generation Item. This opens a dialog like the one shown in Figure 5-26, where you can select
the template you want to use. Select the ADO.NET POCO Entity Generator template, and
name it PlanMyNight.tt. Then click the Add button.

Chapter 5 From 2005 to 2010: Business Logic and Data 139

Note You might get a security warning about running this text template. Click OK to close the
dialog because the source for this template is trusted.

Add New ltem - PlanMyNightData & = 19 [
Installed Templates Sort by: | Highest Ranked - Search Online Templates 2|

Online Templates

éﬁ ADO.NET C# POCO Entity Generator Type: Visual G2
4 Templates A Microsoft Entity Framework project item ta generate a strongly-typed Created By: Microsoft
ASP.NET ObjectContext class and entity classes with persistence ignorance in C... Version: 1.1
Database Downloads: 12031
Other Silverlight Client Access Policy File Rating: (5 Votes)
Silverlight & Adds item template for clientaccesspolicyxml file format for cross- More Information
Windows Forms domain services. Report Extension to Microsoft
Workflow
WoE *‘ WPF About Box (CS)
Every application has an AboutBox, but there isn't a common one for

WPF Applications... until now, Create an AboutBox for a WPF Applicat...

<85 WCF Flowchart Service Template
2 tem template for creating a Flowchart Workflow Service e T S—

&, 40088t oot G

G, ADONET POCO Entiy Gensrator

&, 400NET s Tty e

- |
Name: PlanlMyNight.tt

FIGURE 5-26 Add New Item dialog

Two files, PlanMyNight.tt and PlanMyNight.Context.tt, have been added to your project, as
shown in Figure 5-27. These files replace the default code-generation template, and the code
is no longer generated in the PlanMyNight.Designer.cs file.

|.; Solution 'PlanhdyMight' (3 projects)
b [E PlanhyMight.AppFabricCaching
» [Z PlanhdyMight.Bing
b (5 PlanhyMight.Contracts
(5 PlanMyNight.Data
[[=d Properties
> [z3 References
|5 App.Config
4 |3] PlanhyMight.Context.tt
%) PlantyMight.Context.cs
& PlanMyMight.edmsx
4 |3] PlankyMight.tt
% Itinerary.cs
) Hinerarlctivity.cs
%) HineraryComment.cs
) hineraryRating.cs
%) PlanhyMight.cs
%) UserProfile.cs
) ZiCod.cs

b 8 PlanhyMight Web

FIGURE 5-27 Added templates

The PlanMyNight.tt template produces a class file for each entity in the model. Listing 5-3
shows the POCO version of the ZipCode class.

140 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

LISTING 5-3 POCO Version of the ZipCode Class

namespace Microsoft.Samples.PlanMyNight.Data
{
public partial class ZipCode

{
#region Primitive Properties
public virtual string Code
{
get;
set;
}
pubTlic virtual string City
{
get;
set;
}

public virtual string State
{

get;

set;

}

#endregion

Tip C# 3.0 introduced a new feature called automatic properties. The backing field is created at
compile time if the compiler finds empty get or set blocks.

The other file, PlanMyNight.Context.cs, generates the ObjectContext object for the
PlanMyNight.edmx model. This is the object you'll use to interact with the database.

Tip The POCO templates will automatically update the generated classes to reflect the changes
to your model when you save the .edmx file.

Moving the Entity Classes to the Contracts Project

We have designed the PMN application architecture to ensure that the presentation layer
was persistence ignorant by moving the contracts and entity classes to an assembly that has
no reference to the storage.

Visual Studio 2005 Even though it was possible to extend the XSD processing with code-
generator tools, it was not easy and you had to maintain these tools. The EF uses T4 templates to
generate both the database schema and the code. These templates can easily be customized to
your needs.

Chapter 5 From 2005 to 2010: Business Logic and Data

The ADO.NET POCO templates split the generation of the entity classes into a separate tem-
plate, allowing you to easily move these entities to a different project.

You are going to move the PlanMyNight.tt file to the PlanMyNight.Contracts project. Right-

click the PlanMyNight.tt file, and select Cut. Right-click the Entities folder in the PlanMyNight.

Contracts project, and select Paste. The result is shown in Figure 5-28.

Solution Explorer
&= 8a
[PlanMyNight.AppFabricCaching
[PlanMyNight.Bing
a [PlanMyNight.Cantracts
[[=d Properties
> [x3] References
[Data
4 [Entities
4 |3] PlankyMight.tt
% Itinerary.cs
) Hinerarpdctivity.cs
%) HineraryComment.cs
%) HineraryRating.cs
%) PlanhyMight.cs
%) UserProfile.cs
%) FipCode.cs
4 [PlanMyNight.Data
[[=d Properties
> [x3] References
[J Caching
|5 App.Config
4 |3] PlanhyMight.Context.tt
%) PlantyMight.Context.cs
i |.d PlanMyMight.edrmx |
b R PlanMyMight.Web

0 x

m

FIGURE 5-28 POCO template moved to the Contracts project

The PlanMyNight.tt template relies on the metadata from the EDM model to generate the
entity type’s code. You need to fix the relative path used by the template to access the

EDMX file.

Open the PlanMyNight.tt template and locate the following line:

string inputFile = @"PlanMyNight.edmx";

Fix the file location so that it points to the PlanMyNight.edmx file in the PlanMyNight.Data

project:

string inputFile = @"..\..\PlanMyNight.Data\PlanMyNight.edmx";

The entity classes are regenerated when you save the template.

You also need to update the PlanMyNight.Context.tt template in the PlanMyNight.Contracts
project because the entity classes are now in the Microsoft.Samples.PlanMyNight.Entities

142

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

namespace instead of the Microsoft.Samples.PlanMyNight.Data namespace. Open the
PlanMyNight.Context.tt file, and update the using section to include the new namespace:

using System;

using System.Data.Objects;

using System.Data.EntityClient;

using Microsoft.Samples.PlanMyNight.Entities;

Build the solution by pressing Ctrl+Shift+B. The project should now compile successfully.

Putting It All Together

Now that you have created the generic code layer to interact with your SQL database, you
are ready to start implementing the functionalities specific to the PMN application. In the
upcoming sections, you'll walk through this process, briefly look at getting the data from the
Bing Maps services, and get a quick introduction to the Microsoft Windows Server AppFabric
Caching feature used in PMN.

There is a lot of plumbing pieces of code required to get this all together. To simplify the
process, you'll use an updated solution where the contracts, entities, and most of the con-
necting pieces to the Bing Maps services have been coded. The solution will also include the
PlanMyNight.Data.Test project to help you validate the code from the PlanMyNight.Data
project.

Note Testing in Visual Studio 2010 will be covered in Chapter 7.

Getting Data from the Database

At the beginning of this chapter, we decided to group the operations on the Itinerary entity
into the /ltinerariesRepository repository interface. Some of these operations are

B Searching for Itinerary by Activity
B Searching for Itinerary by ZipCode
B Searching for Itinerary by Radius

B Adding a new ltinerary
Let's take a look at the corresponding methods in the IltinerariesRepository interface:

B SearchByActivity allows searching for itineraries by activity and returning a page of
data.

B SearchByZipCode allows searching for itineraries by Zip Code and returning a page of
data.

Chapter 5 From 2005 to 2010: Business Logic and Data 143

B SearchByRadius allows searching for itineraries from a specific location and returning a
page of data.

B Add allows you to add an itinerary to the database.

Open the PMN solution at %userprofile%\Documents\Microsoft Press\Moving to Visual
Studio 2010\Chapter 5\Code\Final by double-clicking the PlanMyNight.sin file.

Select the PlanMyNight.Data project, and open the ItinerariesRepository.cs file. This is the
lltinerariesRepository interface implementation. Using the PlanMyNightEntities Object
Context you generated earlier, you can write LINQ queries against your model, and the EF
will translate these queries to native T-SQL that will be executed against the database.

Note LINQ stands for Language Integrated Query and was introduced in the .NET Framework 3.5.
It adds native data querying capability to the .NET Framework so that you don't have to worry
about learning or maintaining custom SQL queries. LINQ allows you to use strongly typed objects,
and the Visual Studio IntelliSense lets you select the properties or methods that are in the current
context as shown in Figure 5-29. To learn more about LINQ, visit the .NET Framework Developer
Center (http://msdn.microsoft.com/en-us/netframework/aa904594.aspx).

public PagingResult<Itinerary> SearchByActivity(string activityId, int pageSize, int pageNumber)
{

using (var ctx = new PlanbyNightEntities())

{

ctx.ContextOptions.ProxyCreationEnabled = false;

var query = from itinerary in ctx.Itineraries.Include("Activities")
where itinerary.Activities.Any(t => t.|

} 2 Activity -

} e
B City
“% Equals
BF EstimatedMinutes
“% GetHashCode
@ GetType
 Ttineraryld
2 Latitude -

FIGURE 5-29 IntelliSense support for LINQ queries

Navigate to the SearchByActivity function definition. This method must return a set of itin-
eraries where the IsPublic flag is set to true and where one of their activities has the same
activityld that was passed in the argument to the function. You also need to order the result
itinerary list by the rating field.

Visual Studio 2005 Implementing each method to retrieve the itinerary in Visual Studio 2005
would have required writing tailored SQL. With the EF and LINQ, any query becomes trivial and
changes can be easily implemented at the code level!

Using standard LINQ operators, you can implement SearchByActivity as shown in Listing 5-4.
Add the highlighted code to the SearchByActivity method body.

144

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

LISTING 5-4 SearchByActivity Implementation

public PagingResult<Itinerary> SearchByActivity(string activityId, int pageSize, int
pageNumber)
{

using (var ctx = new PlanMyNightEntities())

{

ctx.ContextOptions.ProxyCreationEnabled = false;

var query = from itinerary in ctx.Itineraries.Include("Activities")
where itinerary.Activities.Any(t => t.ActivityId == activityId)
&& itinerary.IsPublic
orderby itinerary.Rating
select itinerary;

return PageResults(query, pageNumber, pageSize);
}
}

Note The resulting paging is implemented in the PageResults method:

private static PagingResult<Itinerary> PageResults(IQueryable<Itinerary> query, int
page, int pageSize)
{

int rowCount = rowCount = query.Count();

if (pageSize > 0)

{
query = query.Skip((page - 1) * pageSize)
.Take(pageSize);
}
var result = new PagingResult<Itinerary>(query.ToArray())
{

PageSize = pageSize,
CurrentPage = page,
TotalItems = rowCount
};
return result;

}

IQueryable<Itinerary> is passed to this function so that it can add the paging to the base query
composition. Passing /Queryable instead of [Enumerable ensures that the T-SQL created for the
query against the repository will be generated only when query.ToArray is called.

The SearchByZipCode function method is similar to the SearchByActivity method, but it also
adds a filter on the Zip Code of the activity. Here again, LINQ support makes it easy to imple-
ment, as shown in Listing 5-5. Add the highlighted code to the SearchByZipCode method
body.

Chapter 5 From 2005 to 2010: Business Logic and Data

LISTING 5-5 SearchByZipCode Implementation

public PagingResult<Itinerary> SearchByZipCode(int activityTypeld, string zip, int

pageSize, int pageNumber)

{

using (var ctx = new PlanMyNightEntities())

{

ctx.ContextOptions.ProxyCreationEnabled = false;

var query = from itinerary in ctx.Itineraries.Include("Activities')
where itinerary.Activities.Any(t => t.Typeld == activityTypeld &&

t.Zip == zip)

The SearchByRadius function calls the RetrieveltinerariesWithinArea import function that

&& ditinerary.IsPublic
orderby itinerary.Rating
select itinerary;

return PageResults(query, pageNumber, pageSize);

145

was mapped to a stored procedure. It then loads the activities for each itinerary found. You

can copy the highlighted code in Listing 5-6 to the SearchByRadius method body in the

ItinerariesRepository.cs file.

LISTING 5-6 SearchByRadius Implementation

public PagingResult<Itinerary> SearchByRadius(int activityTypeld,

{

double longitude, double Tatitude, double radius,
int pageSize, int pageNumber)

using (var ctx = new PlanMyNightEntities())

{

ctx.ContextOptions.ProxyCreationEnabled = false;

// Stored Procedure with output parameter
var totalOutput = new ObjectParameter(''total", typeof(int));
var items = ctx.RetrieveltinerariesWithinArea(activityTypeld,
latitude, longitude, radius, pageSize, pageNumber, totalOutput).ToArray(Q);

foreach (var item 1in items)

{
item.Activities.ToList() .AddRange(this.Retrieve(item.Id).Activities);
}

int total = totalOutput.Value == DBNull.Value ? 0 : (int)totalOutput.Value;
return new PagingResult<Itinerary>(items)

{
TotalItems = total,

146 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

PageSize = pageSize,
CurrentPage = pageNumber
b
}
}

The Add method allows you to add Itinerary to the data store. Implementing this function-
ality becomes trivial because your contract and context object use the same entity object.
Copy and paste the highlighted code in Listing 5-7 to the Add method body.

LISTING 5-7 Add Implementation

public void Add(Itinerary itinerary)
{
using (var ctx = new PlanMyNightEntities())
{
ctx.Itineraries.AddObject(itinerary);
ctx.SaveChanges();
}
}

There you have it! You have completed the ItinerariesRepository implementation using the
context object generated using the EF designer. Run all the tests in the solution by pressing
Ctrl+R, A. The tests related to the /tinerariesRepository implementation should all succeed.

Getting Data from the Bing Maps Web Services

PMN relies on the Bing Maps services to allow the user to search for activities to add to
her itineraries. To get a Bing Maps Key to use in the PMN application, you need to create a
Bing Maps Developer Account. You can create a free developer account on the Bing Maps
Account Center.

See Also Microsoft Bing Maps Web services is a set of programmable Simple Object Access
Protocol (SOAP) services that allow you to match addresses to the map, search for points of
interest, integrate maps and imagery, return driving directions, and incorporate other location
intelligence into your Web application. You can learn more about these services by visiting the
site for the Bing Maps Web Services SDK (http://msdn.microsoft.com/en-us/library/cc980922.
aspx).

Visual Studio 2005 In Visual Studio 2005, if you had to add a reference to a Web service you
would have selected the Add Web Service Reference from the contextual menu to bring up the
Add Web Reference dialog and then added a reference to a Web service to your project. (See
Figure 5-30.)

Add Web Reference

Qo D @& &

Chapter 5 From 2005 to 2010: Business Logic and Data

Navigate to a web service URL and click Add Reference to add all the available services.

LRL: |th.r\ettwehservicasfv1fmetadatafqencndaservicat;anmdesarwce‘wsd\\ v\ 51

Methods
» Geocode ()
= ReverseGeocode ()

"GeocodeService" Description

Web services found at this URL:

1 Service Found:

- geocodsssrvice

Web reference pame:

GeocodeService

#Add Reference

|

FIGURE 5-30 Visual Studio 2005 Add Web Reference dialog

147

Introduced in the .NET Framework 3.0, the Windows Communication Foundation (WCF) ser-
vices brought the ASMX Web services and other communication technologies into a unified

programming model.

Visual Studio 2010 provides tools for working with WCF services. You can bring up the new
Add Service Reference dialog by right-clicking on a project node and selecting Add Service
Reference as shown in Figure 5-31. In this dialog, you first need to specify the service meta-
data address in the Address field and then click Go to view the available service endpoints.

You can then specify a namespace for the generated code in the Namespace text box and

then click OK to add the proxy to your project.

Add Service Reference

=]

To see a list of available services on a specific server, enter a service URL and click Go. To browse for available

services, click Discover.

Address:

http://staging.dev.virtualearth.net/webservices/vL/geacodeservice/GeacodeServ | Discover |-

Services:

Operations:

(& 4] GeacodeService
5° IGeacodeService

@ Geacode
@ReverseGeocode

Lservice(s) found at address

Namespace:

“hitp://staging.dev.virtualearth.net/webservices/v1/geacodeservice/GeocodeService.sve/mex.

GeocodeService

Cancel

FIGURE 5-31 Add Service Reference dialog

148

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Tip Click the Discover button to look for WCF services in the current solution.

See Also Click the Advanced button to access the Service Reference Settings dialog. This
dialog lets you tweak the configuration of the WCF service proxy. You can add the .NET
Framework 2.0 style reference by clicking the Add Web Service button. To learn more about
these settings, visit MSDN - Configure Service Reference Dialog Box (http://msdn.microsoft.
com/en-us/library/bb514724(VS.100).aspx).

The generated WCF proxy can be used in the same way you used the ASMX-style proxy, as
shown in Listing 5-8.

LISTING 5-8 Using a Web Service Proxy

public BingCoordinate GeocodeAddress(ActivityAddress address, string token)
{

Microsoft.Samples.PTanMyNight.Bing.VEGeocodingService.GeocodeResponse geocodeResponse
= null;

// Make the geocode request

using (var geocodeService = new
Microsoft.Samples.PlanMyNight.Bing.VEGeocodingService.GeocodeServiceClient())

{
try
{
geocodeResponse = geocodeService.Geocode(geocodeRequest);
geocodeService.Close();
}
catch
{
geocodeService.Abort();
3
3
if (geocodeResponse != null & geocodeResponse.Results != null & geocodeResponse.
Results.Length > 0)
{

var location = geocodeResponse.Results[0].Locations[0];
return new BingCoordinate { Latitude = (float)location.Latitude, Longitude =
(float)location.Longitude };
}

return default(BingCoordinate);

}

Chapter 5 From 2005 to 2010: Business Logic and Data 149
Parallel Programming

With the advances in multicore computing, it is becoming more and more important

for developers to be able to write parallel applications. Visual Studio 2010 and the .NET
Framework 4.0 provide new ways to express concurrency in applications. The Task Parallel
Library (TPL) is now part of the Base Class Library (BCL) for the .NET Framework. This means
that every .NET application can now access the TPL without adding any assembly reference.

PMN stores only the Bing Activity ID for each ItineraryActivity to the database. When it's
time to retrieve the entire Bing Activity object, a function that iterates through each of the
ItineraryActivity instances for the current Itinerary is used to populate the Bing Activity entity
from the Bing Maps Web services.

One way of performing this operation is to sequentially call the service for each activity in the
Itinerary, as shown in Listing 5-9. This function waits for each call to RetrieveActivity to com-
plete before making another call, which has the effect of making its execution time linear.

LISTING 5-9 Activity Sequential Retrieval

public void PopulateItineraryActivities(Itinerary itinerary)

{
foreach (var item in itinerary.Activities.Where(i =>i.Activity == null))
{
item.Activity = this.RetrieveActivity(item.ActivityId);
b
}

In the past, if you wanted to parallelize this task, you had to use threads and then hand off
work to them. With the TPL, all you have to do now is use a Parallel.ForEach that will take
care of the threading for you, as seen in Listing 5-10.

LISTING 5-10 Activity Parallel Retrieval

public void PopulateltineraryActivities(Itinerary itinerary)

{
Parallel.ForEach(itinerary.Activities.Where(i =>i.Activity == null),
item =>
{
jtem.Activity = this.RetrieveActivity(item.ActivityId);
1)3

150

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

See Also The .NET Framework 4.0 now includes the Parallel LINQ libraries (in System.Core.
dll). PLINQ introduces the .AsParallel extension to perform parallel operations in LINQ queries.
You can also easily enforce the treatment of a data source as if it was ordered by using the
.AsOrdered extensions. Some new thread-safe collections have also been added in the System.
Collections.Concurrent namespace. You can learn more about these new features from Parallel
Computing on MSDN (http://msdn.microsoft.com/en-us/concurrency/default.aspx).

AppFabric Caching

PMN is a data-driven application that gets its data from the application database and the
Bing Maps Web services. One of the challenges you might face when building a Web applica-
tion is managing the needs of a large number of users, including performance and response
time. The operations that use the data store and the services used to search for activities can
increase the usage of server resources dramatically for items that are shared across many
users. For example, many users have access to the public itineraries, so displaying these will
generate numerous calls to the database for the same items. Implementing caching at the
Web tier will help reduce usage of the resources at the data store and help mitigate latency
for recurring searches to the Bing Maps Web services. Figure 5-32 shows the architecture for
an application implementing a caching solution at the front-end server.

Application /
Web Tier

Bing Maps services Data Tier

FIGURE 5-32 Typical Web application architecture

Using this approach reduces the pressure on the data layer, but the caching is still coupled
to a specific server serving the request. Each Web tier server will have its own cache, but you
can still end up with an uneven distribution of the processing to these servers.

Windows Server AppFabric caching offers a distributed, in-memory cache platform. The
AppFabric client library allows the application to access the cache as a unified view event if

Chapter 5 From 2005 to 2010: Business Logic and Data 151

the cache is distributed across multiple computers, as shown in Figure 5-33. The API provides
simple get and set methods to retrieve and store any serializable common language runtime
(CLR) objects easily. The AppFabric cache allows you to add a cache computer on demand,
thus making it possible to scale in a manner that is transparent to the client. Another benefit
is that the cache can also share copies of the data across the cluster, thereby protecting data
against failure.

Application /
Web Tier

AppFabric
Cache Tier

Bing Maps services Data Tier

FIGURE 5-33 Web application using Windows Server AppFabric caching

See Also Windows Server AppFabric caching is available as a set of extensions to the .NET
Framework 4.0. For more information about how to get, install, and configure Windows
Server AppFabric, please visit Windows Server AppFabric (http://msdn.microsoft.com/en-us/
windowsserver/ee695849.aspx).

See Also PMN can be configured to use either ASP.NET caching or Windows Server
AppFabric caching. A complete walkthrough describing how to add Windows Server
AppFabric caching to PMN is available here: PMIN: Adding Caching using Velocity (http://
channel9.msdn.com/learn/courses/VS2010/ASPNET/EnhancingAspNetMvcPlanMyNight/
Exercise-1-Adding-Caching-using-Velocity/).

152 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Summary

In this chapter, you used a few of the new Visual Studio 2010 features to structure the data
layer of the Plan My Night application using the Entity Framework version 4.0 to access a
database. You also were introduced to automated entity generation using the ADO.NET
Entity Framework POCO templates and to the Windows Server AppFabric caching extensions.

In the next chapter, you will explore how the ASP.NET MVC framework and the Managed
Extensibility Framework can help you build great Web applications.

Chapter 6

From 2005 to 2010: Designing
the Look and Feel

After reading this chapter, you will be able to
B Create an ASP.NET MVC controller that interacts with the data model

B (Create an ASP.NET MVC view that displays data from the controller and validates user
input

B Extend the application with an external plug-in using the Managed Extensibility
Framework

Web application development in Microsoft Visual Studio has certainly made significant
improvements over the years since ASP.NET 1.0 was released. Visual Studio 2005 and .NET
Framework 2.0 included things such as more efficient view state, partial classes, and generic
types (plus many others) to help developers create efficient applications that were easy to
manage.

The spirit of improvement to assist developers in creating world-class applications is very
much alive in Visual Studio 2010. In this chapter, we'll explore some of the new features as we
add functionality to the Plan My Night companion application.

Note The companion application is an ASP.NET MVC 2 project, but a Web developer has a
choice in Visual Studio 2010 to use this new form of ASP.NET application or the more traditional
ASP.NET (referred to in the community as Web Forms for distinction). ASP.NET 4.0 has many
improvements to help developers and is still a very viable approach to creating Web applications.

We'll be using a modified version of the companion application’s solution to work our way
through this chapter. If you installed the companion content in the default location, the
correct solution can be found at Documents\Microsoft Press\Moving to Visual Studio 2010\
Chapter 6\ in a folder called UserInterface-Start.

Introducing the PlanMyNight.Web Project

The user interface portion of Plan My Night in Visual Studio 2010 was developed as an
ASP.NET MVC application, the layout of which differs from what a developer might be accus-
tomed to when developing an ASP.NET Web Forms application in Visual Studio 2005. Some

153

154 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

items in the project (as seen in Figure 6-1) will look familiar (such as Global.asax), but others
are completely new, and some of the structure is required by the ASP.NET MVC framework.

File Edit View Project Build Debug Team Data Tools Test Window Help

HE Rt A = AT R = 50| b [Debug ~| [any cpu || [|ty again S B
PR (% (R KD | 5 T3 ESS < = 2 [[XHTWML10 Transition -| | @ _J§ NewWorkitem= 3 = (g _ £ Publish: | Creste Publish Settings -] % |
SiteMaster & X p Solution Explorer -1 x
‘Server Objects & Events <[(No Events) J = ol =E
<IDOCTYPE html PUBLIC "~//M3C//0TD XHTHL 1.6 Strict//EN" "HELp://was.us.org/ TR/tRI1/DTD/xhtml1-str/%| [Solution PlanMyNightPro’ (15 proje]
<@ Master Language="C#" Inherits="System.Web.Mvc.ViewMasterPage” %> N addins 2
Skl xmlns="http: //wmee.u3.0rg/1999/xhtnl" xnl:lang="en" lang="en"> s ™ Solution kems
i<heads » PaTests
<title><asp:ContentPlaceHolder ID="TitleContent” runat="server” /></title> @ PlanMyNight B
<meta http-equiv="content-type" content="text/html; charset=UTF-8" /> b Ten vy Right Bing
<meta http-equiv="content-language” content="en-US" /> A @ PlanMyhight Contracts
<meta http-cquiv="X-UA-Compatible” content="IE=8" /> b (& PlanMyNight Data
<meta name="description” content="Plan My Night: Select an activity type and enter a location to (& PlanMyNight Infrastructure
<link href="<%-Url.Content ("~/Content/Styles/Site.css")%>" rel="styleshest” type="text/css" medi| | » (G PlanMyNightVelocity
<& Ajox.RegisterClientScriptInclude(Url.Content("~/Content /Scripts/jquery-1.3.2.min.3s"), *http 4 (B PlanMyNight Web
<asp:ContentPlaceholder 1D="HtmlHeadContent” runat="server" /> » &g Properties
</head> » [References
I<body> App_Browsers
5 <div id="container”s =i
B <div id="header"> v L5 Aep_Dats
B cdiv id="logo"> b [Areas
<hi>">Plan My Nightc/a></hl> » [Content
</div> » [Controllers
<hr /> 5 £ Helpers
E <div id="navigation"> 3 Infrastructure
& wb>) » £ ViewModels
<lir">Searche/ar</ 11> T D vies
<% if(Request.IsAuthenticated) { % =
<1i>c%=Html .ActionLink<AccountControllers(c => c.Index(null), "My Profile™)¥ b [l Defauitaspe
<1i id="liMyItineraries"><¥=Html. ActionLink<ItinerariesController>(c => c.Ini [5] Emorntm
)% [faviconico
<LirAbout b o) Globalasax
 [#] NotFound.htm
</div> o
5 [Web.config
E <div id="toolbar">
% btm) bettacterConteallersie s - |nsinShabue/ N % hs
00% < 4] i O B - .
@ Design | 0 Splt |8 Sowrce 2 soleton Eplre :

FIGURE 6-1 PlanMyNight.Web project view
Here are the items required by ASP.NET MVC:

B Areas This folderis used by the ASP.NET MVC framework to organize large Web
applications into smaller components, without using separate solutions or projects. This
feature is not used in the Plan My Night application but is called out because this folder
is created by the MVC project template.

B Controllers During request processing, the ASP.NET MVC framework looks for con-
trollers in this folder to handle the request.

B Views The Views folder is actually a structure of folders. The layer immediately inside
the Views folder is named for each of the classes found in the Controllers folder, plus a
Shared folder. The Shared subfolder is for common views, partial views, master pages,
and anything else that will be available to all controllers.

See Also More information about ASP.NET MVC components, as well as how its request
processing differs from ASP.NET Web Forms, can be found at http://asp.net/mvc.

In most cases, the web.config file is the last file in a project’s root folder. However, it has
received a much-needed update in Visual Studio 2010: Web.config Transformation. This fea-
ture allows for a base web.config file to be created but then to have build-specific web.config

Chapter 6 From 2005 to 2010: Designing the Look and Feel 155

files override the settings of the base at build, deployment, and run times. These files appear
under the base web.config file, as seen in Figure 6-2.

File Edit View Project Build Debug Team XML Data Tools Test Window Help

SERIER= 1= 1 e SN P e 18 [sgan BlEle i et o
O :
EEEY FO% %
eleass
<2xml version="1.0"2> =2z e
= Solution "PlanMyNight' (13 projects)
E1<!-- For more information on using web.config transformation visit D.h Addi yRight G2 prjects)
[http://go.microsoft. com/fulink/2LinkId=125889 --3 b ik Addins
b 7 Solution ltems
[El<configuration smlns:xdt="http://schemas.microsoft. com/XML-Document-Transforn™> b L Tests
B <l » (& PlanMyNight.Bing
In the example below, the "SetAttributes” transform will change the value of o (3 PlanMyNight.Contracts
“connectionString” to use "ReleaseSQLServer” only when the "Match” locator » @ PlanMyNight Data
finds an atrribute "name” that has a value of “MyDB" M renvyNightinfrastructure
Il v 3 PlanmyNightvelocity
<connectionStrings> = §
<add name="1yDB" 4+ (@ PanMyNight Web
connectionString="Data Source=ReleasesQLServer;Initial Catalog=MyReleaseDS;Integrated i[5 Properties
xdt:Transforn="setattributes” xdt:Locator="Match(nane)"/> b [References
</connectionStrings> b (3 App_Browsers
> b [App_Data
[l <system.web> > [Areas
/ <compilation xdt:Transforn="Removeattributes(debug)” /> = 3 Content
prass
Controll
In the example below, the "Replace” transform will replace the entire " E H°‘" roflers
<customErrors> section of your web.config file > 'elpers
Note that because there is only one customErrors section under the i [Infrastructure
<system.web> node, there is ne need to use the "xdt:locator” attribute. » [ViewModels
b 3 Views
<customErrors defaultRedirect="GenericError.htm" [Z] Default.aspe
mode="Renoteonly" xdt:Transforn="Replace"> @ Error.ntm
<error statusCode="50@" redirect="InternalError.htu"/> [favicon.co
</customErrors>
N b 4] Global.asax
/system.web> \l:l NotFound.htm
</configurations a [Web.config
%] Web.Debug.config
%) Web.Release.config
100% - 4|] r &3 Solution Explorer [AR
Ttem(s) Saved Lnd Col 50 Ch50

FIGURE 6-2 A web.config file with build-specific files expanded

Visual Studio 2005 When working on a project in Visual Studio 2005, do you recall needing to
remember not to overwrite the web.config file with your debug settings? Or needing to remem-
ber to update web.config when it was published for a retail build with the correct settings?

This is no longer an issue in Visual Studio 2010. The settings in the web.Release.config file will

be used during release builds to override the values in web.config, and the same goes for
web.Debug.config in debug builds.

Other sections of the project include the following:

B Content A collection of folders containing images, scripts, and style files

B Helpers Includes miscellaneous classes, containing a number of extension methods,
that add functionality to types used in the project

B [nfrastructure Contains items related to dealing with the lower level infrastructure of
ASP.NET MVC (for example, caching and controller factories)

B ViewModels Contains data entities filled out by controller classes and used by views
to display data

156 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Running the Project

If you compile and run the project, you should see a screen similar to Figure 6-3.

PR search | amout @smmn)
ight
Search
I \i I\Advan(ediiarth
e.g.: “Bars in Manhattan, NY’
Actuties Hineranes Your current itinerary [Errer—

Please provide a search criteria...

Vour ftinerary is currently empty.

Perform a search and then select activities to build an itinerary...

00

developer & platform evangelism

FIGURE 6-3 Default page of the Plan My Night application

The searching functionality and the ability to organize an initial list of itinerary items all work,
but if you attempt to save the itinerary you are working on, or if you log in with Windows
Live ID, the application will return a 404 Not Found error screen (as shown in Figure 6-4).

Server Error in '/' Application.

The resource cannot be found.

Description: HTTP 404. The resource you are looking for (or one of ts dependencies) could have been removed, had fts name changed, or is temporarily unavaiable. Please review the folowing URL
and make sure that it is spelled correctly.

Requested URL: /AccountlLiveld

Version Information: Microsoft.NET Framework Version:s.0,30128; ASP.NET Version:4.0.30128.1

FIGURE 6-4 Error screen returned when logging in to the Plan My Night application

You get this error message because currently the project does not include an account
controller to handle these requests.

Chapter 6 From 2005 to 2010: Designing the Look and Feel 157

Creating the Account Controller

The AccountController class provides some critical functionality to the companion Plan My
Night application:

B [t handles signing users in and out of the application (via Windows Live ID).

B |t provides actions for displaying and updating user profile information.

To create a new ASP.NET MVC controller:

1. Use Solution Explorer to navigate to the Controllers folder in the PlanMyNight.Web
project, and click the right mouse button.

2. Open the Add submenu, and select the Controller item.

||:;| Controller... [} Ctrl+M, Ctrl+C
| i Newltem.. Ctrl+Shift+ A
[5 Bdsting Iem... Shift+Alt+A
4 MNew Folder

Add ASP.NET Folder »
| ¥ Class.. Shift+Alt+C

Controller Name:

AccountlController

7] Add action methods for Create, Update, and Details scenarios

Note Leave the Add Action Methods For Create, Update, And Delete Scenarios check box blank.
Selecting the box inserts some “starter” action methods, but because you will not be using the
default methods, there is no reason to create them.

158

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

After you click the Add button in the Add Controller dialog box, you should have a basic
AccountController class open, with a single Index method in its body:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Mvc;

namespace Microsoft.Samples.PlanMyNight.Web.Controllers

{

public class AccountController : Controller
{
//
// GET: /Account/

public ActionResult Index()
{

return View();

3

Visual Studio 2005 A difference to be noted from developing ASP.NET Web Forms applica-
tions in Visual Studio 2005 is that ASP.NET MVC applications do not have a companion code-
behind file for each of their .aspx files. Controllers like the one you are currently creating perform
the logic required to process input and prepare output. This approach allows for a clear separa-
tion of display and business logic, and it's a key aspect of ASP.NET MVC.

Implementing the Functionality

To communicate with any of the data layers and services (the Model), you'll need to add
some instance fields and initialize them. Before that, you need to add some namespaces to
your using block:

using System.IO;

using Microsoft.Samples.PlanMyNight.Data;

using Microsoft.Samples.PlanMyNight.Entities;

using Microsoft.Samples.PlanMyNight.Infrastructure;
using Microsoft.Samples.PlanMyNight.Infrastructure.Mvc;
using Microsoft.Samples.PlanMyNight.Web.ViewModels;
using System.Collections.Specialized;

using WindowsLiveId;

Chapter 6 From 2005 to 2010: Designing the Look and Feel 159

Now, let’s add the instance fields. These fields are interfaces to the various sections of your
Model:

public class AccountController : Controller

{

private
private
private
private
private

readonlyI WindowsLivelogin windowsLogin;

readonlyIl MembershipService membershipService;
readonlyI FormsAuthentication formsAuthentication;
readonlyI ReferenceRepository referenceRepository;
readonlyI ActivitiesRepository activitiesRepository;

Note Using interfaces to interact with all external dependencies allows for better portability of
the code to various platforms. Also, during testing, dependencies can be mimicked much easier
when using interfaces, making for more efficient isolation of a specific component.

As mentioned, these fields represent parts of the Model this controller will interact with to
meet its functional needs. Here are the general descriptions for each of the interfaces:

IWindowsLiveLogin Provides functionality for interacting with the Windows Live ID
service.

IMembershipService Provides user profile information and authorization methods. In
your companion application, it is an abstraction of the ASP.NET Membership Service.

IFormsAuthentication Provides for ASP.NET Forms Authentication abstraction.

IReferenceRepository Provides reference resources, such as lists of states and other
model-specific information.

IActivitiesRepository An interface for retrieving and updating activity information.

You'll add two constructors to this class: one for general run-time use, which uses the
ServiceFactory class to get references to the needed interfaces, and one to enable tests to
inject specific instances of the interfaces to use.

public AccountController()

this(

new ServiceFactory().GetMembershipService(),

new WindowsLivelLogin(true),

new FormsAuthenticationService(),

new ServiceFactory().GetReferenceRepositoryInstance(),
new ServiceFactory().GetActivitiesRepositoryInstance())

pub1icAccountController(
IMembershipService membershipService,

160

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

IWindowsLivelLogin windowsLogin,
IFormsAuthentication formsAuthentication,
IReferenceRepository referenceRepository,
TActivitiesRepository activitiesRepository)

this.membershipService = membershipService;
this.windowsLogin = windowsLogin;
this.formsAuthentication = formsAuthentication;
this.referenceRepository = referenceRepository;
this.activitiesRepository = activitiesRepository;

Authenticating the User

The first real functionality you'll implement in this controller is that of signing in and out of
the application. Most of the methods you'll implement later require authentication, so this is
a good place to start.

The companion application uses a few technologies together at the same time to give

the user a smooth authentication experience: Windows Live ID, ASP.NET Forms Authentication,
and ASP.NET Membership Services. These three technologies are used in the LivelD action
you'll implement next.

Start by creating the following method in the AccountController class:

public ActionResult LiveId()
{

return Redirect("~/");

3

This method will be the primary action invoked when interacting with the Windows Live ID
services. Right now, if it is invoked, it will just redirect the user to the root of the application.

Note The call to Redirect returns RedirectResult, and although this example uses a string to
define the target of the redirection, various overloads can be used for different situations.

A few different types of actions can be taken when Windows Live ID returns a user to your
application. The user can be signing in to Windows Live ID, signing out, or clearing the
Windows Live ID cookies. Windows Live ID uses a query string parameter called action on the
URL when it returns a user, so you'll use a switch to branch the logic depending on the value
of the parameter.

Chapter 6 From 2005 to 2010: Designing the Look and Feel 161

Add the following to the Liveld method above the return statement:

string action = Request.QueryString["action"];
switch (action)

{
case "logout":
this.formsAuthentication.SignOut(Q);
return Redirect("~/");
case "clearcookie":
this.formsAuthentication.SignOut(Q);
string type;
byte[] content;
this.windowsLogin.GetClearCookieResponse(out type, out content);
return new FileStreamResult(new MemoryStream(content), type);
}

See also Full documentation of the Windows Live ID system can be found on the http://dev.
live.com/ Web site.

The code you just added handles the two sign-out actions for Windows Live ID. In both cases,
you use the IFormsAuthentication interface to remove the ASP.NET Forms Authentication
cookie so that any future http requests (until the user signs in again) will not be considered
authenticated. In the second case, you went one step further to clear the Windows Live 1D
cookies (the ones that remember your login name but not your password).

Handling the sign-in scenario requires a bit more code because you have to check whether
the authenticating user is in your Membership Database and, if not, create a profile for

the user. However, before that, you must pass the data that Windows Live ID sent you

to your Windows Live ID interface so that it can validate the information and give you a
WindowsLiveLogin.User object:

default:
// Tlogin
NameValueCollection tokenContext;
if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
{
tokenContext = Request.Form;
}
else
{
tokenContext = new NameValueCollection(Request.QueryString);
tokenContext["stoken"] =
System.Web.HttpUtility.Ur1Encode(tokenContext["stoken"]);
}

var livelIdUser = this.windowsLogin.ProcessLogin(tokenContext);

162

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

At this point in the case for logging in, either liveldUser will be a reference to an authenti-
cated WindowsLivelLogin.User object or it will be null. With this in mind, you can add your
next section of the code, which takes action when the liveldUser value is not null:

if (liveIdUser != null)

{

var returnUrl = liveIdUser.Context;

var userId = new Guid(liveIdUser.Id).ToString();

if (!this.membershipService.ValidateUser(userId, userId))

{
this.formsAuthentication.SignIn(userId, false);
this.membershipService.CreateUser(userId, userId, string.Empty);
var profile = this.membershipService.CreateProfile(userId);
profile.FulTlName = "New User";
profile.State = string.Empty;
profile.City = string.Empty;
profile.PreferredActivityTypeld = 0;
this.membershipService.UpdateProfile(profile);
if (string.IsNullOrEmpty(returnUrl1)) returnUrl = null;
return RedirectToAction("Index", new { returnUrl = returnUrl });

}

else

{
this.formsAuthentication.SignIn(userld, false);
if (string.IsNullOrEmpty(returnUrl1)) returnUrl = "~/";

return Redirect(returnUrl);
}
}
break;

The call to the ValidateUser method on the IMembershipService reference allows the
application to check whether the user has been to this site before and whether there will be
a profile for the user. Because the user is authenticated with Windows Live ID, you are using
the user’s ID value (which is a GUID) as both the user name and password to the ASP.NET
Membership Service.

If the user does not have a user record with the application, you create one by calling the
CreateUser method and then also create a user settings profile via CreateProfile. The profile is
filled with some defaults and saved back to its store, and the user is redirected to the primary
input page so that he can update the information.

Note Controller.RedirectToAction determines which URL to create based on the combination of
input parameters. In this case, you want to redirect the user to the Index action of this controller,
as well as pass the current return URL value.

The other action that takes place in this code is that the user is signed in to ASP.NET Forms
authentication so that a cookie will be created, providing identity information on future
requests that require authentication.

Chapter 6 From 2005 to 2010: Designing the Look and Feel 163

The settings profile is managed by ASP.NET Membership Services as well and is declared in
the web.config file of the application:

<system.web>

<profile enabled="true">

<properties>

<add name="FullName" type="string" />

<add name="State" type="string" />

<add name="City" type="string" />

<add name="PreferredActivityTypeId" type="int" />
</properties>

<providers>

<clear />

<add name="AspNetSql1ProfileProvider"
type="System.Web.Profile.SqlProfileProvider,

System.Web, Version=4.0.0.0, Culture=neutral,
Pub1icKeyToken=b03f5f7f11d50a3a"
connectionStringName="ApplicationServices"

applicationName="/" />
</providers>
</profile>

</system.web>

At this point, the LivelD method is complete and should look like the following code. The
application can now take authentication information from Windows Live ID, prepare an
ASP.NET MembershipService profile, and create an ASP.NET Forms Authentication ticket.

public ActionResult LiveId()

{

string action = Request.QueryString["action"];
switch (action)

{
case "logout":
this.formsAuthentication.SignOut(Q);
return Redirect("~/");
case "clearcookie":
this.formsAuthentication.SignOut(Q);
string type;
byte[] content;
this.windowsLogin.GetClearCookieResponse(out type, out content);
return new FileStreamResult(new MemoryStream(content), type);
default:
// login
NameValueCollection tokenContext;
if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
{

tokenContext = Request.Form;

}

else

164 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

{
tokenContext = new NameValueCollection(Request.QueryString);
tokenContext["stoken"] =
System.Web.HttpUtility.Ur1Encode(tokenContext["stoken"]);
}

var liveIdUser = this.windowsLogin.ProcessLogin(tokenContext);

if (TiveIdUser != null)

{
var returnUrl = TivelIdUser.Context;
var userId = new Guid(liveIdUser.Id).ToString(Q;
if (!this.membershipService.ValidateUser(userId, userId))
{
this.formsAuthentication.SignIn(userId, false);
this.membershipService.CreateUser(userId, userId, string.Empty);
var profile = this.membershipService.CreateProfile(userId);
profile.FulTName = "New User";
profile.State = string.Empty;
profile.City = string.Empty;
profile.PreferredActivityTypeld = 0;
this.membershipService.UpdateProfile(profile);
if (string.IsNul10rEmpty(returnUr1)) returnUrl = null;
return RedirectToAction("Index", new { returnUrl = returnUrl });
}
else
{
this.formsAuthentication.SignIn(userId, false);
if (string.IsNullOrEmpty(returnUr1)) returnUrl = "~/";
return Redirect(returnUrl);
}
}
break;
}
return Redirect(“~/");
}

Of course, the user has to be able to get to the Windows Live ID login page in the first place
before logging in. Currently in the Plan My Night application, there is a Windows Live ID
login button. However, there are cases where the application will want the user to be redi-
rected to the login page from code. To cover this scenario, you need to add a small method
called Login to your controller:

public ActionResult Login(string returnUrl)
{
var redirect = HttpContext.Request.Browser.IsMobileDevice ?
this.windowsLogin.GetMobiTleLoginUr1(returnUrl)
this.windowsLogin.GetLoginUrl(returnUrl);
return Redirect(redirect);

Chapter 6 From 2005 to 2010: Designing the Look and Feel 165

This method simply retrieves the login URL for Windows Live and redirects the user to that
location. This also satisfies a configuration value in your web.config file for ASP.NET Forms
Authentication in that any request requiring authentication will be redirected to this method:

<authentication mode="Forms">
<forms loginUrl="~/Account/Login" name="XAUTH" timeout="2880" path="~/" />
</authentication>

Retrieving the Profile for the Current User

Now with the authentication methods defined, which satisfies your first goal for this
controller—signing users in and out in the application—you can move on to retrieving data
for the current user.

The Index method, which is the default method for the controller based on the URL map-
ping configuration in Global.asax, will be where you retrieve the current user’s data and
return a view displaying that data. The /ndex method that was initially created when the
AccountController class was created should be replaced with the following:

[Authorize()]
[AcceptVerbs(HttpVerbs.Get)]
public ActionResult Index(string returnUrl)
{
var profile = this.membershipService.GetCurrentProfile();
var model = new ProfileViewModel
{
Profile = profile,
ReturnUr1 = returnUrl ?? this.GetReturnUr1()
1

this.InjectStatesAndActivityTypes(model);

return View("Index", model);

Visual Studio 2005 Attributes, such as [Authorize()], might not have been in common use
in Visual Studio 2005; however, ASP.NET MVC makes use of them often. Attributes allow for
metadata to be defined about the target they decorate. This allows for the information to be
examined at run time (via reflection) and for action to be taken if deemed necessary.

The Authorize attribute is very handy because it declares that this method can be invoked
only for http requests that are already authenticated. If a request is not authenticated, it will
be redirected to the ASP.NET Forms Authentication configured login target, which you just
finished setting up. The AcceptVerbs attribute also restricts how this method can be invoked,
by specifying which Http verbs can be used. In this case, you are restricting this method to
HTTP GET verb requests. You've added a string parameter, returnUrl, to the method signature
so that when the user is finished viewing or updating her information, she can be returned to
what she was looking at previously.

166

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Note This highlights a part of the ASP.NET MVC framework called Model Binding, details of
which are beyond the scope of this book. However, you should know that it attempts to find a
source for returnUrl (a form field, routing table data, or query string parameter with the same
name) and binds it to this value when invoking the method. If the Model Binder cannot find

a suitable source, the value will be null. This behavior can cause problems for value types that
cannot be null, because it will throw an InvalidOperationException.

The main portion of this method is straightforward: it takes the return of the
GetCurrentProfile method on the ASP.NET Membership Service interface and sets up a

view model object for the view to use. The call to GetReturnUrl is an example of an exten-
sion method defined in the PlanMyNight.Infrastructure project. It's not a member of the
Controller class, but in the development environment it makes for much more readable code.
(See Figure 6-5.)

File Edit View Refactor Project Build Debug Team Data Tools Test Window Help

Haia=id=h" U IR - R R =R = N A T ~|[any cru || [# |GetReturmUH 5 2
R 2083 bl 65 R0 % (125 RES [Newworkiem= 3 = 4y [F

[TRENIENSEI itcMoster & Source Control Explorer
g Microsoft. Samples PlanhyNi 0 Exiensions [% GetAbsoluteUrl(ControllerBase controller, string path)
return LinkBuilder.BuildUrlFromExpression<Ts(

controller.ControllerContext. RequestContext,
controller.Url.RouteCollection,
action);

¥
e public static string GetAbsoluteUrl(this Controllerfase controller, string path)

return String.Concat(controller.ControllerContext. HttpContext.Request.Url. Scheme,
[':7/*, controller.controllerContext . HttpContext.Request. Servervariables["HTTP_HOST"], path);

¥
E public static bool IsAjaxCall(this Controller controller)

return Istring. TshullorEmpty(controller.Request.ContentType) 8&
controller. Request.ContentType. Contains("application/json”);

s10idig wiesy 4N s10ichg uounjos iy Swadol B

¥
- E public static string GetReturnUrl(this Controller controller)
if (controller.Request.ServerVariables != null &2
15tring. IsMullorEmpty (controller.Request. ServerVar iables["HTTP_REFERER"]))

return controller.Request.ServerVariables["HTTP_REFERER"];

return "n/"

W% -4 i,
Ready Ln21 Col17 Ch17

FIGURE 6-5 Example of extension methods in MvcExtensions.cs

Visual Studio 2005 In .NET Framework 2.0, which Visual Studio 2005 used, extension meth-
ods did not exist. Rather than calling this.GetReturnUrl() and also having the method appear in
IntelliSense for this object, you would have to type MvcExtensions.GetReturnUrl(this), pass-
ing in the controller as a parameter. Extension methods certainly make the code more readable
and do not require the developer to know the static class the extension method exists under. For
IntelliSense to work, the namespace needs to be listed in the using clauses.

Chapter 6 From 2005 to 2010: Designing the Look and Feel 167

InjectStatesAndActivityTypes is a method you need to implement. It gathers data from the
reference repository for names of states and the activity repository. It makes two collections
of SelectListitem (an HTML class for MVC): one for the list of states, and the other for the list
of different activity types available in the application. It also sets the respective value.

private void InjectStatesAndActivityTypes(ProfileViewModel model)
{
var profile = model.Profile;
var types = this.activitiesRepository.RetrieveActivityTypes().Select(
o => new SelectListItem {
Text = o.Name,
Value = 0.Id.ToString(Q),
Selected = (profile != null && 0.Id ==
profile.PreferredActivityTypeld)
}).ToList(Q);

types.Insert(0, new SelectListItem { Text = "Select...", Value = "0" });
var states = this.referenceRepository.RetrieveStates().Select(
0 => new SelectListItem {
Text = o.Name,
Value = o.Abbreviation,
Selected = (profile != null && o.Abbreviation ==
profile.State)
}).ToList(Q);

states.Insert(0, new SelectListItem {
Text = "Any state",
Value = string.Empty
s

model.PreferredActivityTypes = types;
model.States = states;

Visual Studio 2005 In Visual Studio 2005, the InjectStatesAndActivities method takes longer
to implement because a developer cannot use the LINQ extensions (the call to Select) and
Lambda expressions, which are a form of anonymous delegate that the Select method applies to
each member of the collection being enumerated. Instead, the developer would have to write
out his own loop and enumerate each item manually.

Updating the Profile Data

Having completed the infrastructure needed to retrieve data for the current profile, you can
move on to updating the data in the model from a form submission by the user. After this,

168

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

you can create your view pages and see how all this ties together. The Update method is
simple; however, it does introduce some new features not seen yet:

[Authorize()]

[AcceptVerbs(HttpVerbs.Post)]
[ValidateAntiForgeryToken()]

public ActionResult Update(UserProfile profile)

{

var returnUrl = Request.Form["returnUrl1"];
if (!ModelState.IsValid)
{

// validation error

return this.IsAjaxCall() ? new JsonResult { JsonRequestBehavior =

JsonRequestBehavior.AlTowGet, Data = ModelState }
: this.Index(returnuUrl);

}
this.membershipService.UpdateProfile(profile);
if (this.IsAjaxCal1(Q))
{

return new JsonResult { JsonRequestBehavior = JsonRequestBehavior.AllowGet,

Data = new { Update = true, Profile = profile, ReturnUrl = returnUrl } };
}
else
{
return RedirectToAction("UpdateSuccess", "Account”, new { returnUrl =
returnUrl });
}
}

The ValidateAntiForgeryToken attribute ensures that the form has not been tampered with.
To use this feature, you need to add an AntiForgeryToken to your view's input form. The
check on the ModelState to see whether it is valid is your first look at input validation. This is
a look at the server-side validation, and ASP.NET MVC offers an easy-to-use feature to make
sure that incoming data meets some rules. The UserProfile object that is created for input to
this method, via MVC Model Binding, has had one of its properties decorated with a
System.ComponentModel.DataAnnotations.Required attribute. During Model Binding, the
MVC framework evaluates DataAnnotation attributes and marks the ModelState as valid
only when all of the rules pass.

In the case where the ModelState is not valid, the user is redirected to the Index method
where the ModelState will be used in the display of the input form. Or, if the request was an
AJAX call, a JsonResult is returned with the ModelState data attached to it.

Visual Studio 2005 Because in ASP.NET MVC requests are routed through controllers rather
than pages, the same URL can handle a number of requests and respond with the appropri-
ate view. In Visual Studio 2005, a developer would have to create two different URLs and call a
method in a third class to perform the functionality.

Chapter 6 From 2005 to 2010: Designing the Look and Feel 169

When the ModelState is valid, the profile is updated in the membership service and a

JSON result is returned for AJAX requests with the success data, or in the case of "normal”
requests, the user is redirected to the UpdateSuccess action on the Account controller. The
UpdateSuccess method is the final method you need to implement to finish off this controller:

public ActionResult UpdateSuccess(string returnUrl)

{
var model = new ProfileViewModel
{
Profile = this.membershipService.GetCurrentProfile(),
ReturnUrl = returnUr]
};
return View(model);
}

The method is used to return a success view to the browser, display some of the updated
data, and provide a link to return the user to where she was when she started the
profile update process.

Now that you've reached the end of the Account controller implementation, you should
have a class that resembles the following listing:

using System;

using System.Collections.Specialized;

using System.IO;

using System.Ling;

using System.Web;

using System.Web.Mvc;

using Microsoft.Samples.PlanMyNight.Data;

using Microsoft.Samples.PlanMyNight.Entities;

using Microsoft.Samples.PlanMyNight.Infrastructure;
using Microsoft.Samples.PlanMyNight.Infrastructure.Mvc;
using Microsoft.Samples.PlanMyNight.Web.ViewModels;
using WindowsLiveld;

namespace Microsoft.Samples.PlanMyNight.Web.Controllers

{
[Hand1eErrorWithContentType()]
[OutputCache(NoStore = true, Duration = 0, VaryByParam = "*")]
pubTlic class AccountController : Controller
{

private readonly IWindowsLiveLogin windowsLogin;

private readonly IMembershipService membershipService;
private readonly IFormsAuthentication formsAuthentication;
private readonly IReferenceRepository referenceRepository;
private readonly IActivitiesRepository activitiesRepository;

pubTlic AccountController()
this(

170 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

new ServiceFactory() .GetMembershipService(),

new WindowsLivelLogin(true),

new FormsAuthenticationService(),

new ServiceFactory().GetReferenceRepositoryInstance(),
new ServiceFactory().GetActivitiesRepositoryInstance())

pubTic AccountController(IMembershipService membershipService,

IWindowsLivelLogin windowsLogin,
IFormsAuthentication formsAuthentication,
IReferenceRepository referenceRepository,
TActivitiesRepository activitiesRepository)

this.membershipService = membershipService;
this.windowsLogin = windowsLogin;
this.formsAuthentication = formsAuthentication;
this.referenceRepository = referenceRepository;
this.activitiesRepository = activitiesRepository;

pubTlic ActionResult LiveId()

{

string action = Request.QueryString["action"];
switch (action)
{
case "logout":
this.formsAuthentication.SignOut();
return Redirect("~/");
case "clearcookie":
this.formsAuthentication.SignOut();
string type;
byte[] content;
this.windowsLogin.GetClearCookieResponse(out type, out content);
return new FileStreamResult(new MemoryStream(content), type);

default:

// login

NameValueCollection tokenContext;

if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")

{
tokenContext = Request.Form;

}

else

{
tokenContext = new NameValueCollection(Request.QueryString);
tokenContext["stoken"] =
System.Web.HttpUtility.Ur1Encode(tokenContext["stoken"]);

}

var TiveldUser = this.windowsLogin.ProcessLogin(tokenContext);
if (liveldUser != null)
{

var returnUrl = TiveIdUser.Context;

var userId = new Guid(liveIdUser.Id).ToStringQ);

Chapter 6 From 2005 to 2010: Designing the Look and Feel 171

if (!this.membershipService.ValidateUser(userId, userId))

{
this.formsAuthentication.SignIn(userId, false);
this.membershipService.CreateUser(
userId, userId, string.Empty);
var profile =
this.membershipService.CreateProfile(userId);
profile.FullName = "New User";
profile.State = string.Empty;
profile.City = string.Empty;
profile.PreferredActivityTypeld = 0;
this.membershipService.UpdateProfile(profile);
if (string.IsNullOrEmpty(returnUr1)) returnUrl = null;
return RedirectToAction("Index", new { returnUrl =
returnUrl });
}
else
{
this.formsAuthentication.SignIn(userId, false);
if (string.IsNullOrEmpty(returnUr1)) returnUrl = "~/";
return Redirect(returnUrl);
}
}
break;
}
return Redirect("~/");
}
public ActionResult Login(string returnUrl)
{
var redirect = HttpContext.Request.Browser.IsMobileDevice ?
this.windowsLogin.GetMobileLoginUrl(returnUrl)
this.windowsLogin.GetLoginUr1(returnUrl);
return Redirect(redirect);
}
[Authorize()]

[AcceptVerbs (HttpVerbs.Get)]
public ActionResult Index(string returnUrl)

{
var profile = this.membershipService.GetCurrentProfile();
var model = new ProfileViewModel
{
Profile = profile,
ReturnUr1l = returnUrl ?? this.GetReturnUrl1()
};
this.InjectStatesAndActivityTypes(model);
return View("Index", model);
}
[Authorize()]

[AcceptVerbs (HttpVerbs.Post)]
[ValidateAntiForgeryToken()]

172 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

public ActionResult Update(UserProfile profile)

{
var returnUrl = Request.Form["returnUr1"];
if (!ModelState.IsValid)
{
// validation error
return this.IsAjaxCall() 7?
new JsonResult { JsonRequestBehavior =
JsonRequestBehavior.AlTowGet, Data = ModelState }
: this.Index(returnUrl);
}
this.membershipService.UpdateProfile(profile);
if (this.IsAjaxCal1(Q))
{
return new JsonResult {
JsonRequestBehavior = JsonRequestBehavior.AllowGet,
Data = new {
Update = true,
Profile = profile,
ReturnUrl = returnUrl } };
}
else
{
return RedirectToAction("UpdateSuccess",
"Account", new { returnUrl = returnUrl });
}
}
public ActionResult UpdateSuccess(string returnUrl)
{
var model = new ProfileViewModel
{
Profile = this.membershipService.GetCurrentProfile(),
ReturnUrl = returnUrl
iE
return View(model);
}

private void InjectStatesAndActivityTypes(ProfileViewModel model)
{
var profile = model.Profile;
var types = this.activitiesRepository.RetrieveActivityTypes()
.SeTect(o => new SelectListItem { Text = o.Name,
Value = 0.Id.ToString(Q),
Selected = (profile != null &&
0.Id == profile.PreferredActivityTypeld) })
.ToList(Q);
types.Insert(0, new SelectListItem { Text = "Select...", Value = "0" });
var states = this.referenceRepository.RetrieveStates().Select(
o => new SelectListItem {
Text = o.Name,
Value = o.Abbreviation,
Selected = (profile != null &&
o.Abbreviation == profile.State) })
.ToList(Q);

Chapter 6 From 2005 to 2010: Designing the Look and Feel 173

states.Insert(0,
new SelectListItem { Text = "Any state",
Value = string.Empty });
model.PreferredActivityTypes = types;
model.States = states;

Creating the Account View

In the previous section, you created a controller with functionality that allows a user to update
her information and view it. In this section, you're going to walk through the Visual Studio
2010 features that enable you to create the views that display this functionality to the user.

To create the Index view for the Account controller:

1. Navigate to the Views folder in the PlanMyNight.Web project.

2. Click the right mouse button on the Views folder, expand the Add submenu, and select
New Folder.

3. Name the new folder Account.

4. Click the right mouse button on the new Account folder, expand the Add submenu,
and select View.

5. Fill out the Add View dialog box as shown here:

(" Add View -

View name:

Index
[F] Createa partial view [.ascx)
Create a strongly-typed view

View data class:
ProfileViewModel -

View content:

Empty

Select master page

~(Views/Shared/Site.Master D

ContentPlaceHolder ID:

MainContent

Add l l Cancel

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

6. Click OK. You should see an HTML page with some <asp:Content> controls in the

markup:
b Pl i Ve S -
Fil View Project Build Debug Team Data Tools Test Window Help
E IR P [Debug ~|{Any cPU % [ty again =G Rl
1% % 8|5 0ES 2 | [XHTWLLD Transition -| | @ <[Publish: [Create Publish Settings <] 143 i <
[T] AccountController.cs Rl 5olution Explorer
Server Objects & Events | tNo Events) B = ele e
<@ Page Title="" Language="C#" NasterPagerile="~/Views/Shared/Site.Master” F|| (3 Solution "PlanMyNight' (13 projects)
Inherits="System.lieb.Mvc.ViewPagecProfileViewiodels" %> 1o 2 Addins
[T > = Solution kems
E<asp:Content ID="Content1® ContentPlacetolderID="TitleContent" runat="server"s b Tests
</35;f‘("::tént> b (3 PlanMyNight Bing
b (3 PlanMyNight.Contracts
E<asp:Content ID="Content2” ContentPlaceHolderID="MainContent” runat="server”> » (5l PlanMyNight Data
b (G PlanMyNightInfrastructure
<h2>Indesxs/h2> b (3 PlanMyNightVelocity
4 (3 PlanMyNight Web
</asp:Content> 3 » B Properties
b [References
<asp:Content ID="Content3" ContentPlaceHolderID="HtmlHeadContent” runat="server”>
</asp:Content> > 3 App.Browsers
» [App_Data
> [Areas
» [Content
[Controllers
5 [Helpers
b 3 Infrastructure
F b O ViewModels
4 [Views
4 |5 Account|
] Indexaspx.
o [Hineraries
b £ Search
b £ Shared
|2 Web.config
&= [Default.aspe
"% - 4 I} > 5]
@ Design | 01 Spit [@ Source | [<%@Pagex> B | 3 sorton o e

—_—

You might notice that it doesn't look much different from what you are used to seeing in Visual
Studio 2005. By default, ASP.NET MVC 2 uses the ASP.NET Web Forms view engine, so there
will be some commonality between MVC and Web Forms pages. The primary differences at
this point are that the page class derives from System.Web.Mvc.ViewPage<ProfileViewModel>
and there is no code-behind file. MVC does not use code-behind files, like ASP.NET Web Forms
does, to enforce a strict separation of concerns. MVC pages are generally edited in markup
view; the designer view is primarily for ASP.NET Web Forms applications.

For this page skeleton to become the main view for the Account controller, you should
change the title content to be more in line with the other views:

<asp:Content ID="Contentl" ContentPlaceHolderID="TitleContent" runat="server">
Plan My Night - Profile
</asp:Content>

Next you need to add the client scripts you are going to use in the content placeholder for
the HtmlHeadContent:

<asp:Content ID="Content3" ContentPlaceHolderID="HtmlHeadContent" runat="server">

<% Ajax.RegisterClientScriptInclude(
Url.Content("~/Content/Scripts/jquery-1.3.2.min.js"),
"http://ajax.Microsoft.com/ajax/jQuery/jquery-1.3.2.min.js"); %>

<% Ajax.RegisterClientScriptInclude(
Url.Content("~/Content/Scripts/jquery.validate.js"),

"http://ajax.microsoft.com/ajax/jquery.validate/1.5.5/jquery.validate.min.js"); %>

<% Ajax.RegisterCombinedScriptInclude(
Url.Content("~/Content/Scripts/MicrosoftMvclQueryValidation.js"), "pmn"); %>

Chapter 6 From 2005 to 2010: Designing the Look and Feel 175

<% Ajax.RegisterCombinedScriptInclude(
Url.Content("~/Content/Scripts/ajax.common.js"), "pmn"); %>
<% Ajax.RegisterCombinedScriptInclude(
Url.Content("~/Content/Scripts/ajax.profile.js"), "pmn"); %>
<%= Ajax.RenderClientScripts() %>
</asp:Content>

This script makes use of extension methods for the System.Web.Mvc.AjaxHelper, which are
found in the PlanMyNight.Infrastructure project, under the MVC folder.

With the head content set up, you can look at the main content of the view:

<asp:Content ContentPlaceHolderID="MainContent" runat="server'">
<div class="panel" id="profileForm">
<div class="innerPanel">
<h2>My Profile</h2>
<% Html.EnableClientValidation(); %>
<% using (Html.BeginForm("Update", "Account™)) %>
<% { %>
<%=Htm1.AntiForgeryToken()%>
<div class="items">
<fieldset>
<p>
<Tlabel for="FullName">Name:</label>
<%=Htm1.EditorFor(m => m.Profile.FullName)%>
<%=Htm1.ValidationMessage("Profile.FullName",
new { @class = "field-validation-error-wrapper" })%>
</p>
<p>
<label for="State">State:</label>
<%=Htm1.DropDownListFor(m => m.Profile.State, Model.States)%>
</p>
<p>
<label for="City">City:</Tabel>
<%=Htm1.EditorFor(m => m.Profile.City, Model.Profile.City)%>
</p>
<p>
<label for="PreferredActivityTypeld">Preferred activity:</Tabel>
<%=Htm1.DropDownListFor(m =>
m.Profile.PreferredActivityTypeld,
Model.PreferredActivityTypes)%>
</p>
</fieldset>
<div class="submit">
<%=Htm1.Hidden("returnUr1", Model.ReturnUrl)%>
<%=Htm1.SubmitButton("submit", "Update")%>
</div>
</div>
<div class="toolbox"></div>
<% } %>
</div>
</div>
</asp:Content>

Aside from some inline code, this looks to be fairly normal HTML markup. We're going to
focus our attention on the inline code pieces to demonstrate the power they bring (as well as
the simplicity).

176 Part Il

Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Visual Studio 2005 In Visual Studio 2005, it was more commonplace to use server-side con-
trols to display data, and other display-time logic. However, because ASP.NET MVC view pages
do not have a code-behind file, server-side logic executed in the view at render time must be
done in the same file with the markup. ASP.NET Web Forms controls can still be used. Our exam-
ple makes use of the <asp:Content> control. However, the functionality of ASP.NET Web Forms
controls is generally limited because there is no code-behind file.

MVC makes a lot of use of what is known as HTML helpers. The methods contained under
System.Web.Mvc.HtmlIHelper emit small, standards-compliant HTML tags for various uses.
This requires the MVC developer to type more markup than a Web Forms developer in some
cases, but the developer has more direct control over the output. The strongly typed version
of this extension class (Htm/Helper<TModel>) can be referenced in the view markup via the
ViewPage<TModel>.Html property.

These are the HTML methods used in this form, which are only a fraction of what is available
by default:

Html.EnableClientValidation enables data validation to be performed on the client side
based on the strongly typed ModelState dictionary.

Html.BeginForm places a <form> tag in the markup and closes the form at the end
of the using section. It takes various parameters for options, but the most common
parameter is the name of the action and the controller to invoke that action on. This
allows the MVC framework to generate the specific URL to target the form to at run
time, rather than having to input a string URL into the markup.

Html.AntiForgeryToken places a hidden field in the form with a check value that is also
stored in a cookie in the visitor's browser and validated when the target of the form has
the ValidateAntiForgeryToken attribute. Remember that you added this attribute to the
Update method in the controller.

Html.EditorFor is an overloaded method that inserts a text box into the markup. This is
the strongly typed version of the Html.Editor method.

Html.DropDownlListFor is an overloaded method that places a drop-down list into the
markup. This is the strongly typed version of the Html.DropDownList method.

Html.ValidationMessage is a helper that will display a validation error message when a
given key is present in the ModelState dictionary.

Html.Hidden places a hidden field in the form, with the name and value that is passed in.

Html.SubmitButton creates a Submit button for the form.

Note With the Index view markup complete, you only need to add the view for the
UpdateSuccess action before you can see your results.

Chapter 6 From 2005 to 2010: Designing the Look and Feel 177

To create the UpdateSuccess view:

1. Expand the PlanMyNight.Web project in Solution Explorer, and then expand the Views
folder.

2. Click the right mouse button on the Account folder.
3. Open the Add submenu, and click View.
4. Fill out the Add View dialog box so that it looks like this:

r ™
Add View -

View name:

UpdateSuccess|

[F] Createa partial view [.ascx)
Create a strongly-typed view

View data class:
ProfileViewModel -

View content:

Empty

Select master page

~(Views/Shared/Site.Master D

ContentPlaceHolder ID:

MainContent

[Add l l Cancel]

- =/

After the view page is created, fill in the title content so that it looks like this:

<asp:Content ContentPlaceHolderID="TitleContent" runat="server">Plan My Night - Profile
Updated</asp:Content>

And the placeholder for MainContent should look like this:

<asp:Content ContentPlaceHolderID="MainContent" runat="server">
<div class="panel" id="profileForm">
<div class="1innerPanel">
<h2>My Profile</h2>
<div class="items">
<p>Your profile has been successfully updated.</p>
<h3>» <a href="<%=Htm1.AttributeEncode (Model.ReturnUrl ??
Url.Content("~/"))%>">Continue</h3>
</div>
<div class="toolbox"></div>
</div>
</div>
</asp:Content>

178 Part Il

Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

To see the views created, you must perform an edit to the Site.Master file (located in the
Views/Shared folder from the Web project'’s root). Line 33 of the file is commented out, and
the comment tags should be removed so that it matches the following example:

<%=Htm1.ActionLink<AccountController>(c =>c.Index(null), "My Profile")%>

With this last view created, you can now compile and launch the application. Click the Sign In
button, as seen in the top right corner of Figure 6-6, and sign in to Windows Live ID.

SEARCH

i

ABOUT

\i l | Advanced Search

Total extimates tme: -

Your current itinerary

Please provide a search criteria...

Vour itinerary is currently empty.

Perform a search and then select activities to build an itinerary...

00

Geveloper & platform evangelism

FIGURE 6-6 Plan My Night default screen

After you've signed in, you should be redirected to the Index view of the Account controller

you created, shown in Figure 6-7.

4

My Profile

Name: New Uses

State: (Any state El
City:
Preferred activity

[Select. [v]

Update

niscy Sistement

SEARCH | MYPROFILE | MYTTINERARIES

s el New Usest

000

eveioper & platiorm evangetism

FIGURE 6-7 Profile settings screen returned from the /ndex method of the Account controller

Chapter 6 From 2005 to 2010: Designing the Look and Feel 179

If instead you are returned to the search page, just click the My Profile link, located in the
links at the center and top of the interface. To see the new data-validation features at work,
try to save the form without filling in the Full Name field. You should get a result that looks
like Figure 6-8.

My Profile

| | o Y

State: IWashington E’

City: |Redmond |

Preferred activity: IRestaurantB

Update

FIGURE 6-8 Example of failed validation during Model Binding checks

Because you enabled client-side validation, there was no post back. To see the server-side
validation work, you would have to edit the Index.aspx file in the Account folder and com-
ment out the call to Html.EnableClientValidation. The tight integration and support of AJAX
and other JavaScript in MVC applications allows for server-side operations such as validation
to be moved to the client side much more easily than they were previously.

Visual Studio 2005 In ASP.NET MVC applications, the value of the ID attribute for a particular
HTML element is not transformed, like it is in ASP.NET Web Forms 2.0. In Visual Studio 2005, a
developer would have to make sure to set the UniquelD of a control/element into a JavaScript
variable so that it could be accessed by external JavaScript. This was done to make sure the

ID was unique. However, it was always an extra layer of complexity added to the interaction
between ASP.NET 2.0 Web Forms controls and JavaScript. In MVC, this transformation does not
happen, but it is up to the developers to ensure uniqueness of the ID. It should also be noted
that ASP.NET 4.0 Web Forms now supports disabling the ID transformation on a per-control
basis, if the developer so wishes.

180

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

With the completed Account controller and related views, you have filled in the missing
“core” functionality of Plan My Night, while taking a brief tour of some new features in Visual
Studio 2010 and MVC 2.0 applications. But MVC is not the only choice for Web developers.
ASP.NET Web Forms has been the primary application type for ASP.NET since it was released,
and it continues to be improved upon in Visual Studio 2010. In the next section, we'll explore
creating an ASP.NET Web Form with the Visual Designer to be used in the MVC application.

Using the Designer View to Create a Web Form

Applications will encounter an unexpected condition at some point in their lifetime of use.
The companion application is no different, and when it does encounter an unexpected con-
dition, it returns an error screen like that shown in Figure 6-9.

P[ﬁ?gﬂm SEARCH | ABOUT =

Ooops! An error has occurred while processing your request
! Den't worry, this was our fault, net yours.

L5858, wantto try again?

Error Details

System ArgumerntNulException: Value cannt be nul. Parameter mame velue o ystem Web.Coching CocheEnty.ctor(Sring k
Valu lependency, C allback
slidingExpiration, (a:ha[tempnnn!y pnnmy Boolean isPublic) at Syst: b rmmg r ey isPublic, sc ey,
Object value, C DateTime C riority,
G (ha‘lemRemuvedCal\ba(kunRemuve(a\lba(K Boclesn replace) ot System e Cazhmg Cache Insert(Sting key, Object value,

at

key Obfect

les.PlanhyNight Web, Net(a(g dd(String container, Stvmg key, ommva\ugnmesmn
manuq in C:\code\PMN\code - End of Chapt iyNig| BN
Microsoft.Samples.PlanMyNight. Data. Caching,C mnmrym] inC End of
Chapter\P ight Data\Caching\C: 70at
Mis oft. les. Web.Controllers.Iti Controller Detaile(l 1t64 id) in C
Chapt b\ 71 st \ambda , method(Closure, (nntm\lean;e Umezt[]]at

tem Web. M Dispatcher.Execute(C Object{] parameters) at

tem Web.Myvc. Reflected) i nHEvCDnlExt(unthev(untExL IDictionary’2 parameters

o ontec contrcllerConter, AttonDescrptor actionDescriptor,
lD\((mna{,\/ Earamaer;} at System.Web, Mv(CDn(mHErA((mn[nvuker <>< \spI'yCIassd <InvokeActionMethodWithFilters> b_a() at
iter(IActionFilter filter, ActionExecutingContext preContext, Func 1

i,

pre
b Mye.C <>c D\sp\ay(\assd e D\sp\ay(\assf<InwkaAmvnMethudWlmeltevpb <0

=
(Dn(muatmn) st 5ys(em Weh Mvn CnnthevA(UunInwkev<>(" DisplayClssed.<>c_DisplayCiasst <invo Aot ehod Wb itesss b_c

1 ontrollerContext controllerContext, IList 1 fifters,
At!mnDe;u\ptnra:!mnDe;mptm]D\:tmnaryl parameters) at Syst, b.Mve.C ontrollerContext
controllerContext, String actianName)

Q0

deveioper & platiorm evangelism U

FIGURE 6-9 Example of an error screen in the Plan My Night application

Currently, a user who sees this screen really has only the option of trying his action again or
using the navigation links along the top area of the application. (Of course, that might also
cause another error.) Adding an option for the user to provide feedback allows the develop-
ers to gain information about the situation that might not be apparent by using the standard
exception message and stack trace. To show a different way to create a user interface com-
ponent for Plan My Night, the error feedback page is going to be created as an ASP.NET Web
Form using primarily the Designer view in Visual Studio. Before you can begin designing the
form, you need to create a base form file to work from.

Chapter 6 From 2005 to 2010: Designing the Look and Feel

To create a new Web form:

181

1. Open the context menu on the PlanMyNight.Web project (by clicking the right mouse
button), open the Add submenu, and select New Item.

2. In the Add New Item dialog box, select Web Form Using Master Page and call the item
ErrorFeedback.aspx in the Name field.

p —— w
Add New Ftem - PlanhyNightWeb e
Installed Templates Sort by: [search Installed Templates 2|
4 Visual C# ; | Type: Visual C#
Code ch] MVC2 Controller Class Visual C# ypes Tsne
. = A form for Web Applications that is built
= = from a Master Page
General 52| wve2view Content age Visual C*
4 Web
Mvc2 E MVC 2 View Master Page Visual C#
Windows Forms
WPF MVC 2 View Page Visual C#
Reporting
Silverlight MVC 2 View User Control Visual C#
Workflow
Online Templates Web Form Visual C#
S| Web Form using Master Page Visual C#
Web User Control Visual C#
I
el Class Visual C#
D Master Page Visual C#
Nested Master Page Visual C# +
Name: ErrorFesdback.aspx
Add Cancel
s)

L = —_—

3. The dialog screen to associate a master page with this Web form will appear. On the

Project Folders side, ensure that the main PlanMyNight.Web folder is selected and then
select the WebForms.Master item on the right.

p
Select a Master Page
-~

[EeR =)

e —— I

Project folders:

Contents of folder:

@ PlanMyNight. Web
» (23 App_Browsers
» (3 App_Data
1 Al Areas
» £3 Content
» 3 Controllers
1 [Helpers
» 3 Infrastructure
» [Properties
» [References
» £ ViewModels
& 3 Views

.

& WebForms Master|

182

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

4. The resulting page can be shown in the source mode (or Design view) instead of Split
view. Switch the view to Split (located at the bottom of the window, just like in previous
Visual Studio versions). When you are done, the screen should look similar to this:

File Edit View Project Build Debug Team Data Format Tools Test Window Help

il S ¥ a9 - - E-E | b [Debyg ~|[Any cPU |1 [try again QG TR Bl
1R %% [k 2| B W EE = 2 | [xHTML10 Transition ~| | & ;j Publish: | Create Publish Settings ~| 4] <

[T g Site.Master UpdateSuccess.

Index.aspx AccountController.cs ~ Solution Explorer ~1x By

Client Objects & Events <[NoEvents J=l 2= |22 i
%@ Page Title="" Langusge="C#" MasterPageFile="n/WebForms.Master” AutoEventWireup="true” CodeBehind=fl [Solution ‘PlanMyNight (13 proje » S
<asp:Content ID="Contentl" ContentPlaceHolderTD="TitleContent” runat="server"> N5 2 addin @

</aspiContent>

<asp:Content ID="Content2” ContentPlaceHolderID="HtmlHeadContent™ runat="server">

</asp:Content>

<aspiContent ID="Content3" ContentPlaceHolderID="MainContent” runat="server”> =
</aspiContent>

b i Solution ltems.

b Tests

b (G PlanMyNight Bing

b (5 PlanMyNight Contracts
b & PlanMyNight Data

b (& PlanMyNight Infrastructure
b (& PlanMyNight Velocity
4 (@ PlanMyNight Web
4l Properties

53 References

(3 App_Browsers

(3 App_Data

[Areas

[Content

100% - 4| 0 v
=

m

1 ‘WebForms Master|
Plan My SEARCH M [Controllers
1 3 Helpers
3 Infrastructure
3 ViewModels
3 Views
] Default.aspx
[8] Error.ntm
=] ErrorFeedback.aspx
) favicon.ico
All rights reserved. | Terms of Use | Privacy Statement 4] Global.asax
© 2009 Microsoft Corporation. [5] NotFound.htm
- [Web.config

< it 3 i 1 WehEnrme Mactar
e
Stz [EEEE @S | 5 Solution Explorer [Ty

MY PROFILE | MY ITINERARIES | ABOUT

Note Split view is recommended so that you can see the source the designer is generating and
to add extra markup as needed.

It's a good idea to pin the control toolbox open on the screen because you'll be dragging
controls and elements to the content area during this section. The toolbox, if not present
already, can be found under the View menu.

Start by dragging a div element (under the HTML group) from the toolbox into the
MainContent section of the designer. A div tab will appear, indicating that the new element
you added is the currently selected element. Open the context menu for the div, and choose
Properties (which can also be opened by pressing the F4 key). With the Properties window
open, edit the (Id) property to have a value of profileForm. (Casing is important.) Also, change
the Class property to have a value of panel. After editing the values, the size of your content
area will have changed, because CSS is applied in the Design view.

Chapter 6 From 2005 to 2010: Designing the Look and Feel 183

Visual Studio 2005 A much-needed update to the Web Forms designer surface from Visual
Studio 2005 is the application of CSS. This allows the developer to see in real-time how the style
changes are applied, without having to run the application. When viewed in Visual Studio 2005,
the designer for the search.aspx page will appear similar to Figure 6-10.

%% PlanMyNight 2005 - Microsoft Visual Studio
Fle Edt View FProject Buld Debug Data Format Layout Tooks Window Community Help

+ Any CPU - | [alert - @f@%{*ﬂvz

2, | T 1.0 Tanstional(- | & |

[ERERA =" N- I EENE N RN = RN N o)

Search.aspx*a | ServiceFactory.cs @ | Windowslivelogin.cs 8 Memk

Plan My Night

[Ja‘n\dx; uopnos @‘ sa)

~Lagon
ID property is nok specified

Content - Contentl. (Custom)

Search

B JE_[SmpleSubrmitl]| Advanced Search

E IE |

e.g: “Bars in Manhattan, [T

Select an activity type and enter a location to constrain your search by.

Activity: Phctivity Validanonbessage]

Address
L
< | B
@ Desion | @ Source | 4]
Ready

FIGURE 6-10 Designer view of an ASP.NET Web page in Visual Studio 2005

Drag another div inside the first one, and set its class property to innerPanel. In the markup
panel, add the following markup to the innerPanel.

<h2>Error Feedback</h2>

After the close of the <h2> tag, add a new line and open the context menu. Choose Insert
Snippet, and follow the click path of ASP.NET > formr. This will create a server-side form
tag for you to insert Web controls into. Inside the form tag, place a div tag with the class
attribute set to items and then a fieldset tag inside the div tag.

Next drag a TextBox control (found under Standard) from the toolbox and drop it inside the
fieldset tag. Set the ID of the text box to FullName. Add a <label> tag before this control in
the markup view, set its for property to the ID of the text box, and set its value to Full Name:
(making sure to include the colon). To set the value of a <label> tag, place the text between
the <label> and </label> tags. Surround these two elements with a <p>, and you should

have something like Figure 6-11 in the Design view.

184

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

T
Pla?M['lyt SEARCH | MY PROFILE | MY ITINERARIES | ABOUT

Error Feedback

fieldset]

Full Name:

FIGURE 6-11 Current state of ErrorFeedback.aspx in the Design view

Add another text box and label it in a similar manner as the first, but set the ID of the text box to
EmailAddress and the label value to Email Address: (making sure to include the colon). Repeat
the process a third time, setting the TextBox ID and label value to Comments. There should now
be three labels and three single-line TextBox controls in the Design view. The Comments control
needs multiline input, so open its property page and set TextMode to Multiline, Rows to 5, and
Columns to 40. This should create a much wider text box in which the user can enter comments.

Use the Insert Snippet feature again, after the Comments text box, and insert a “div with
class” tag (HTML>divc). Set the class of the div tag to submit, and drag a Button control from
the toolbox into this div. Set the Button's Text property to Send Feedback.

The designer should show something similar to what you see in Figure 6-12, and at this point
you have a page that will submit a form.

ht SEARCH | MY PROFILE | MY ITINERARIES | ABOUT

02 [inciontent (Cust
Error Feedback

Full Name: |
Email Address: |

Comments:

Send Feedback

S o e rvecl | i of Use | Fi vy Siatement @ o O

© 2009 Microsoft Corporation.
B developer & platform evang

FIGURE 6-12 The ErrorFeedback.aspx form with a complete field set

Chapter 6 From 2005 to 2010: Designing the Look and Feel 185

However, it does not perform any validation on the data being submitted. To do this, you'll
take advantage of some of the validation controls present in ASP.NET. You'll make the Full
Name and Comments boxes required fields and perform a regex validation of the e-mail
address to ensure that it matches the right pattern.

Under the Validation group of the toolbox are some premade validation controls you'll use.
Drag a RequiredFieldValidator object from the toolbox, and drop it to the right of the Full
Name text box. Open the properties for the validation control, and set the ControlToValidate
property to FullName. (It's a drop-down list of controls on the page.) Also, set the CssClass to
field-validation-error. This changes the display of the error to a red triangle used elsewhere

in the application. Finally, change the Error Message property to Name is Required. (See
Figure 6-13.)

File Edit View Project Build Debug Team Data Format Tools Test Window Help

S SH@ % aB]9- - -8-5[p [ody |ayceu 13 ey again R EEER R |
[55_1\%% \Pg@\EEE@;[H(Nm[n\menyle} a2 € [[Paragroph | [Segoc UL Arial T -|[95% || B z U |A Z|=-|= E\a‘,,\iﬁ;[El

4 [GEUESTEEE R Site.css UserProfile Etension.cs i UserProfile.cs @ Site.Master Properties ~1Xx
WebForms Mastr| 1 SystemWeb.ULWebC

§ B
(Expressions) El
()

AccessKey
BackColor

SEARCH | MY PROFILE | MY ITINERARIES | ABC|

0[d)g UoN|o it

BorderColar
Error Feedback BorderStyle NotSet
BorderWidth

ClientiDMode Inherit

ControlToYalidate FullName
Full Name: CssClass errorShort
Display Static

Email Address: | EnableClientseript LIRS

Enabled True
EnableTheming True
Comments: Ensblelienstate True
EmorMessage Nameis Required
Font

ForeColor

Height
InitialValue

v SetFocusOnError False
SkinlD.

Tablndex 0

Send Feedback ©

EnableClientScript

< n]
Indicates whether to perform validation on the

@ Design |3 Split | @ Source | \i‘ <form> || <div.items> || <fieldset> || <p> | <aspRequiredFieldValidat...> client in up-level browsers.

Ha CallStack {8 Immediate Window & Find Symbol Results B4 Locals i Watch 1

Drag border or press arrow keys to move. Drag margin handles to resize margins. Press SHIFT or CTRL for more options.

FIGURE 6-13 Validation control example

Repeat these steps for the Comments box, but substitute the ErrorMessage and
ControlToValidate property values as appropriate.

For the Email Address field, you want to make sure the user types in a valid e-mail address,
so for this field drag a RegularExpressionValidator control from the toolbox and drop it next
to the Email Address text box. The property values are similar for this control in that you set
the ControlToValidate property to EmailAddress and the CssClass property to field-validation-
error. However, with this control you define the regular expression to be applied to the input
data. This is done with the ValidationExpression property, and it should be set like this:

[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-Z]{2,4}

186

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

The error message for this validator should say something like “Must enter a valid e-mail
address.”

The form is complete. To see it in the application, you need to add the option of provid-
ing feedback to a user when the user encounters an error. In Solution Explorer, navigate the
PlanMyNight.Web project tree to the Views folder and then to the Shared subfolder. Open
the Error.aspx file in the markup viewer, and go to line 35. This is the line of the error screen
where you ask the user if she wants to try her action again and where you'll put the option
for sending the feedback. After the question text in the same paragraph, add the following
markup:

or send feedback?

This will add an option to go to the form you just created whenever there is a general error
in the MVC application. To see your form, you'll have to cause an error in your application.

To cause an error in the Plan My Night application:

1. Start the application.

2. After the default search page is up, type the following into the browser address bar:
http://www.planmynight.net:48580/Itineraries/Details/38923828.

3. Because it is highly unlikely such an itinerary ID exists in the database, an error screen
will be shown.

Night SEARCH ABOUT

Ooops! An error has occurred while processing your request
Don't worry, this was our fault, not yours.

/!\

=% Want to try again or send feedback?

i

Error Details

System.ArgumentNullException: Value cannot be null. Parameter name: value at System.Web.Caching.CacheEntry..ctor(String
key, Object value, CacheDependency deEendency, CacheltemRemovedCallback onRemovedHandler, DateTime
uttAbsoluteExpiration, TimeSpan slidingExpiration, CacheltemPriority priority, Boolean isPublic) at
System.Web.Caching.Cachelnternal.Dolnsert(Boolean isPublic, String key, Object value, CacheDependency dependencies,
DateTime utcAbsoluteExpiration, TimeSpan slidingExpiration, CacheltemPriority priority, CacheltemRemovedCallback
onRemoveCallback, Boolean replace) at System Web.Caching.Cache.Insert(String key, Object value, CacheDependency
dependencies, DateTime absoluteExpiration, TimeSpan slidingExpiration) at
Microsoft.Samples.PlanMyNight.Web.Infrastructure.AspNetCachingProvider.Add(String container, String key, Object value,
TimeSpan timeout) in C:\code\PMN\code - End of Chapter\PlanMyNight Web\Infrastructure\AspNetCachingProvider cs:line 33 at
Microsoft.Samples.PlanMyNight.Data.Caching.CachedIfinerariesRepository.Retrieve(Int64 itineraryld) in C:\code\PMN\code - End
of Chapter\PlanMyNight. ata\Ca(hing\Ca(hedIlinerariesReposhor?/.(s:line 70 at
Microsoft.Samples.PlanMyNight.Web.Controllers.ItinerariesController.Details(Int64 id) in C:\code\PMN\code - End of
Chapter\PlanMyNight.web\Controllers\ItinerariesController.cs:line 71 at lambda_method(Closure , ControllerBase , Object[]) at
System.Web.Mvc.ActionMethodDispatcher.Execute(ControllerBase controller, Object[] parameters) a
System.Web.Mvc.ReflectedActionDescriptor.Execute(ControllerContext controllerContext, IDictionary'2 parameters) at
System.Web.Mvc.ControllerActionInvoker.InvokeActionMethod(ControllerContext controllerContext, ActionDescriptor
actionDescriptor, IDictionary'2 parameters) at

System.Web.Mvc.ControllerActionInvoker.< >c_ DisplayClassd.<InvokeActionMethodWithFilters>b__a() at
S‘vs(em.Web.Mv(.ControIIerAdionInvoker.lnvokeAdionMethodFiIter(lActionFiIterﬁlter, ActionExecutingContext preContext, -
‘ i v

Chapter 6 From 2005 to 2010: Designing the Look and Feel 187

4. With the error screen visible, click the link to go to the feedback form. Try to submit the
form with invalid data.

Error Feedback

Full Name: | | '8 Name is Required

Email Address: |some0ne@somewhere.c0m|
Comments:
this is some feedback i

Send Feedback

ASP.NET uses client-side script (when the browser supports it) to perform the validation, so
no postbacks occur until the data passes. On the server side, when the server does receive
a postback, a developer can check the validation state with the Page./sValid property in the
code-behind. However, because you used client-side validation (which is on by default), this
will always be true. The only code in the code-behind that needs to be added is to redirect
the user on a postback (and check the Page./sValid property, in case client validation missed
something):

protected void Page_Load(object sender, EventArgs e)

{
if (this.IsPostBack && this.IsValid)
{
this.Response.Redirect("/", true);
}
}

This really isn't very useful to the user, but our goal in this section was to work with the
designer to create an ASP.NET Web Form. This added a new interface to the PlanMyNight
Web project, but what if you wanted to add new functionality to the application in a more
modular sense, such as some degree of functionality that can be added or removed without
having to compile the main application project. This is where an extensibility framework like
the Managed Extensibility Framework (MEF) can show the benefits it brings.

188 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Extending the Application with MEF

A new technology available in Visual Studio 2010 as part of the .NET Framework 4 is the
Managed Extensibility Framework (MEF). The Managed Extensibility Framework pro-

vides developers with a simple (yet powerful) mechanism to allow their applications to be
extended by third parties after the application has been shipped. Even within the same appli-
cation, MEF allows developers to create applications that completely isolate components,
allowing them to be managed or changed independently. It uses a resolution container to
map components that provide a particular function (exporters) and components that require
that functionality (importers), without the two concrete components having to know about
each other directly. Resolutions are done on a contract basis only, which easily allows compo-
nents to be interchanged or introduced to an application with very little overhead.

See Also MEF's community Web site, containing in-depth details about the architecture, can
be found at http://mef.codeplex.com.

The companion Plan My Night application has been designed with extendibility in mind, and
it has three "add-in” module projects in the solution, under the Addins solution folder. (See
Figure 6-14.)

File Edit View Project Build Debug Team Data Tools Test Window Help

- S Her % B9 - -8 5P [0k | [AycPu 118 [ty agein)| G e
[E] 20668 5 e s Q0% % K| 5 B ES J NewWorkken- 3 = 1

[e S e g AsphetCachingProvider.cs Ermoraspx Indexaspx Solution Explorer 4 x
0 Addl A <] 3 Areabame = mllsl R
nanespace Microsoft.Samples.PlanfyNight.AddIns.Enailltinerary 23 Solution ‘PlanMyNight' 15 projects)
{ < 4 i Addins
using System.ComponentModel.Composition; 4 (@ PlanMyNight Addlns Emailltinerary

using System.ieb.Myc; » Eal Properties
using System.Web.Routing;

%0g100) -
sniadoig B

i [References
public class RouteTableConfiguration L5 App.Data
(3 Controllers
public const string ArealName = "PlanMyNight.AddIns.EmailTtinerary”; [Notifications
[Resources
[Export(typeof(Routecollection))] [Views
public Routecollection RouteCollectionConfiguration 4] HineraryContestualActionsExport.cs
] RouteTableConfiguration.cs|
get (@ PlanMyNight Addins Printltinerary
t b [l Properties
b [References
(3 App_Data
areaContext.MapRoute((3 Controllers
"ItineraryEmail, b O Views
“Itineraries/Email/{action}",) MineraryContertuslActionsExport.cz
new { controller = "Enailltinerary” }, &) RouteTableConfiguration.cs
new[] { "Microsoft.Samples.PlanMyliight.AddIns.Emailltinerary.Contre @ Plany Night Addins Share

[l Properties

var routes = new RouteCollection();
var areaContext = new AreaRegistrationContext(Areallame, routes);

return routes;
[References

(5 App_Data

3 Controllers

3 Models

3 Views

] RouteTableConfiguration.cs

) SharingContextualActionsExport.cs

e,
3 Solution Explorer [RTINS T

FIGURE 6-14 The Plan My Night application add-ins

PlanMyNight.Addins.Emailltinerary adds the ability to e-mail itinerary lists to anyone the user
sees fit to receive them. PlanMyNight.Addins.Printltinerary provides a printer-friendly view
of the itinerary. Lastly, PlanMyNight.Addins.Share adds in social-media sharing functions (so
that the user can post a link to an itinerary) as well as URL-shortening operations. None of

Chapter 6 From 2005 to 2010: Designing the Look and Feel 189

these projects reference the main PlanMyNight.Web application or are referenced by it. They
do have references to the PlanMyNight.Contracts and PlanMyNight.Infrastructure projects,
so they can export (and import in some cases) the correct contracts via MEF as well as use
any of the custom extensions in the infrastructure project.

Note Before doing the next step, if the Web application is not already running, launch the
PlanMyNight.Web project so that the Ul is visible to you.

To add the modules to your running application, run the DeployAllAddins.bat file, found

in the same folder as the PlanMyNight.sIn file. This will create new folders under the Areas
section of the PlanMyNight.Web project. These new folders, one for each plug-in, will con-
tain the files needed to add their functionality to the main Web application. The plug-ins
appear in the application as extra options under the current itinerary section of the search
results page and on the itinerary details page. After the batch file is finished running, go to
the interface for PlanMyNight, search for an activity, and add it to the current itinerary. You
should notice some extra options under the itinerary panel other than just New and Save.
(See Figure 6-15.)

Your current itinerary Total estimated time: 30m
Palomino
1420 5th Ave Ste 350 X2

Seatth_e. WA i_ Phone: (206) 623-1300
Time: | ZOimin Set Time

Il Terrazzo Carmine

411 1st Ave S ®5
Seattle, WA | Phone: (206) 467-7797
Time: | 10imin Set Time

New | [Save | g3 Email | dgi Print
FIGURE 6-15 Location of the e-mail add-in in the Ul

190 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

The social sharing options will show in the interface only after the itinerary is saved and
marked public. (See Figure 6-16.)

Itinerary: Seattle Restaurants i | Public ¥

Add activities to my itinera i

Total estimated time: 30m + 6 minutes of travel time.

A. Palomino
1420 5th Ave Ste 350
Seattle, WA | Phone: (206) 623-1300
Estimated time: 20 minutes.

i Travel estimated time: 6 minutes.

B. Il Terrazzo Carmine
411 1stAve S
Seattle, WA | Phone: (206) 467-7797
Estimated time: 10 minutes.

Edit | Make Private | Email | Shorten URL | Share | Rate:

FIGURE 6-16 Location of the social-sharing add-in in the Ul

Visual Studio 2005 Visual Studio 2005 does not have anything that compares to MEF. To sup-
port plug-ins, a developer would have to either write the plug-in framework from scratch or pur-
chase a commercial package. Either of the two options led to proprietary solutions an external
developer would have to understand in order to create a component for them. Adding MEF to
the .NET Framework helps to cut down the entry barriers to producing extendible applications
and the plug-in modules for them.

Print Itinerary Add-in Explained

To demonstrate how these plug-ins wire into the application, let's have a look at the
Printltinerary.Addin project. When you expand the project, you should see something like
the structure shown in Figure 6-17.

Chapter 6 From 2005 to 2010: Designing the Look and Feel 191

G Solution ‘PlanMyNight' (15 projects)
¢ Addins
[> |§ PlanMyNight.AddIns.Emailltinerary |
4 M.% PlanMyNight.AddIns.Printltinerary
> [=d Properties
> [x3] References
3 App_Data
4 [Controllers
& PrintltineraryController.cs
4 [Views
4 [Printltinerary
] Print.aspx
i3 Web.config
#] HineraryContextualActionsExport.cs
] RouteTableConfiguration.cs
b 8 PlanMyNight.Addlns.Share
olution Items
i Tests

(Z PlanMyNight.Bing

[PlanMyNight.Contracts
[PlanMyNight.Data

[PlanMyNight Infrastructure
[PlanMyNight.Velocity

8 PlanMyNight.Web

v v W VW T W W

FIGURE 6-17 Structure of the Printltinerary project

Some of this structure is similar to the PlanMyNight.Web project (Controllers and Views).
That's because this add-in will be placed in an MVC application as an area. If you look more
closely at the PrintltineraryController.cs file in the Controller folder, you can see it is similar in
structure to the controller you created earlier in this chapter (and similar to any of the other
controllers in the Web application). However, some key differences set it apart from the con-
trollers that are compiled in the primary PlanMyNight.Web application.

Focusing on the class definition, you'll notice some extra attributes:

[Export("PrintItinerary", typeof(IController))]
[PartCreationPolicy(CreationPolicy.NonShared)]

These two attributes describe this type to the MEF resolution container. The first attribute,
Export, marks this class as providing an /Controller under the contract name of Printitinerary.
The second attribute declares that this object supports only nonshared creation and cannot
be created as a shared/singleton object. Defining these two attributes are all you need to
do to have the type used by MEF. In fact, PartCreationPolicy is an optional attribute, but it
should be defined if the type cannot handle all the creation policy types.

192

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Further into the PrintltineraryController.cs file, the constructor is decorated with an
ImportingConstructor attribute:

[ImportingConstructor]
public PrintItineraryController(IServiceFactory serviceFactory) :
this(
serviceFactory.GetItineraryContainerInstance(),
serviceFactory.GetItinerariesRepositoryInstance(),
serviceFactory.GetActivitiesRepositoryInstance())
{
}

The ImportingConstructor attribute informs MEF to provide the parameters when creating
this object. In this particular case, MEF provides an instance of IServiceFactory for this object
to use. Where the instance comes from is of no concern to the this class and really assists
with creating modular applications. For our purposes, the IServiceFactory contracted is being
exported by the ServiceFactory.cs file in the PlanMyNight.Web project.

The RouteTableConfiguration.cs file registers the URL route information that should be
directed to the PrintltineraryController. This route, and the routes of the other add-ins, are
registered in the application during the Application_Start method in the Global.asax.cs file of
PlanMyNight.Web:

// MEF Controller factory
var controllerFactory = new MefControllerFactory(container);
ControllerBuilder.Current.SetControllerFactory(controllerFactory);

// Register routes from Addins
foreach (RouteCollection routes in container.GetExportedValues<RouteCollection>())

{

foreach (var route in routes)
{
RouteTable.Routes.Add(route);
}
}

The controllerFactory, which was initialized with an MEF container containing path informa-
tion to the Areas subfolder (so that it enumerated all the plug-ins), is assigned to be the
controller factory for the lifetime of the application. This allows controllers imported via MEF
to be usable anywhere in the application. The routes these plug-ins respond to are then
retrieved from the MEF container and registered in the MVC routing table.

The ItineraryContextualActionsExport.cs file exports information to create the link
to this plug-in, as well as metadata for displaying it. This information is used in the

Chapter 6 From 2005 to 2010: Designing the Look and Feel 193

ViewModelExtensions.cs file, in the PlanMyNight.Web project, when building a view model
for display to the user:

// get addin Tlinks and toolboxes
var addinBoxes = new List<RouteValueDictionary>Q);
var addinLinks = new List<ExtensionLink>();

addinBoxes.AddRange (AddinExtensions.GetActionsFor("ItineraryToolbox", model.Id == 0 ? null :
new { id = model.Id }));

addinLinks.AddRange (AddinExtensions.GetLinksFor("ItineraryLinks", model.Id == 0 ? null : new
{ id = model.Id }));

The call to AddinExtensions.GetLinksFor enumerates over exports in the MEF Export provider
and returns a collection of them to be added to the local addinLinks collection. These are
then used in the view to display more options when they are present.

Summary

In this chapter, we explored a few of the many new features and technologies found in Visual
Studio 2010 that were used to create the companion Plan My Night application. We walked
through creating a controller and its associated view and how the ASP.NET MVC framework
offers Web developers a powerful option for creating Web applications. We also explored
how using the Managed Extensibility Framework in application design can allow plug-in
modules to be developed external to the application and loaded at run time. In the next
chapter, we'll explore how debugging applications has been improved in Visual Studio 2010.

Chapter 7

From 2005 to 2010: Debugging
an Application

After reading this chapter, you will be able to
B Use the new debugger features of Microsoft Visual Studio 2010
B (Create unit tests and execute them in Visual Studio 2010
B Compare what was available to you as a developer in Visual Studio 2005

As we were writing this book, we realized how much the debugging tools and developer
aids have evolved over the last three versions of Visual Studio. Focusing on debugging an
application and writing unit tests just increases the opportunities we have to work with Visual
Studio 2010.

Visual Studio 2010 Debugging Features

In this chapter, you'll go through the different debugging features using a modified Plan
My Night application. If you installed the companion content at the default location, you'll
find the modified Plan My Night application at the following location: %userprofile%\
Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 7\Code. Double-click the
PlanMyNight.sIn file.

First, before diving into the debugging session itself, you'll need to set up a few things:

1. In Solution Explorer, ensure that PlanMyNight.Web is the startup project. If the project
name is not in bold, right-click on PlanMyNight.Web and select Set As StartUp Project.

2. To get ready for the next steps, in the PlanMyNight Web solution open the Global.asax.cs
file by clicking the triangle beside the Global.asax folder and then double-clicking the
Global.asax.cs file, as shown in Figure 7-1:

195

196

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Solution Explorer > o x
i@ 2EEa e 2=
[PlanMyNight.Data -

[
3 @ PlanMyNight.Infrastructure
b [5 PlanMyNight.Velocity
4 8 PlanMyNight.Web
[=d| Properties
5] References —
g App_Browsers
3 App_Data
[Areas
[Content
[Controllers
[d Helpers
3 Infrastructure
3 ViewModels
[Views
|:=—| Default.aspx
%) Default.aspx.cs
|#] Error.htm
|8 favicon.ico
4 ,a] Global.asax
|§_ Global.asax.cs |
[#] MotFound.htm
[Web.config L

m

[

4

@ LRI SIS [, Team Explorer BE Server Explorer

FIGURE 7-1 Solution Explorer before opening the file Global.asax.cs

Managing Your Debugging Session

Using the Plan My Night application, you'll examine how a developer can manage and share
breakpoints. And with the use of new breakpoint enhancements, you'll learn how to inspect
the different data elements in the application in a much faster and more efficient way. You'll
also look at new minidumps and the addition of a new intermediate language (IL) inter-
preter that allows you to evaluate managed code properties and functions during minidump
debugging.

New Breakpoint Enhancements

At this point, you have the Global.ascx.cs file opened in your editor. The following steps walk
you through some ways to manage and share breakpoints:

1. Navigate to the Application_BeginRequest(object sender, EventArgs e) method, and set a
breakpoint on the line that reads var url = HttpContext.Current.Request.Url; by clicking
in the left margin or pressing F9. Look at Figure 7-2 to see this in action:

Chapter 7 From 2005 to 2010: Debugging an Application 197

El protected void Application_BeginRequest(object sender, Eventirgs e)
1
] ar url = HttpContext.Current.Request.Url;

var authority = HttpContext.Current.Request.ServerVariables["HT

FIGURE 7-2 Creating a breakpoint

Press F5 to start the application in debug mode. You should see the developer Web
server starting in the system tray and a new browser window opening. The application
should immediately stop at the breakpoint you just created. The Breakpoints window
might not be visible even after starting the application in debug mode. If that is the
case, you can make it visible by going to the Debug menu and selecting Windows and
then Breakpoints, or you can use the keyboard shortcut: Ctrl+D+B.

You should now see the Breakpoints window as shown in Figure 7-3:

Breakpoints
New= | X | £ 5 | & '@ | 43 2 | Columns~ | Search: | ~| 1n Column: [Al visible - %
Name) Labels Cendition Hit Count

(no condition) break always

IERE TS B Call Hicrarchy B Output &% Find Results1 & Find Symbol Results

FIGURE 7-3 Breakpoints window

In the same method, add three more breakpoints so that the editor and the
Breakpoints window look like those shown in Figure 7-4:

Bl protected void Application_BeginRequest(object sender, Eventargs e)
) ar url = HttpContext.Current.Request.Url;
var authority = HttpContext.Current.Request.ServerVariables["HTTP_HOST"].
@ ar expectedAuthority = url.Port == 48588 ? "www.planmynight.net:48580"

var pathAndQuery = url.PathAndQuery;
if (pathandQuery == "/default.aspx")

pathandQuery = "/";

°
{
var redirectTe = string.Concat(url.Scheme, "://", expectedauthority,
2
1
1
1
}
W00% = 4| m

New~ | X |)3 | @& | = | Columns~ |Search:| </ In Column: |Allvisib

Name Labels Condition Hit Count

T

{no condition) break always

i] 3 (no condition) break always
[#1@ Global.asax.cs, line 90 character 13 (no condition) break always
7@ Global.asax.cs, line 97 character 13 {no condition) break always

FIGURE 7-4 Code editor and Breakpoints window with three new breakpoints

198 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Visual Studio 2005 As a reader and a professional developer who used Visual Studio 2005
often, you probably noticed a series of new buttons as well as new fields in the Breakpoints win-
dow in this exercise. As a reminder, take a look at Figure 7-5 for a quick comparison of what it
looks like in Visual Studio 2005.

Breakpoints
Mew = X 9 & 53 # | Columns ~
Mame Condition Hit Count Process

0 BingMaps3e {no condition) break always
BingMapsSe {no condition) break always
0 BingMapsSe {no condition) break always

FIGURE 7-5 Visual Studio 2005 Breakpoints window

4. Notice that the Labels column is now available to help you index and to search break-
points. It is a really nice and useful feature that Visual Studio 2010 brings to the table. To
use this feature, you simply right-click on a breakpoint in the Breakpoints window and
select Edit Labels or use the keyboard shortcut Alt+F9, L, as shown in Figure 7-6:

pPaLnANuUyUEry = !y
;lmmi = T @
] %] Go To Source Code Alt+F9, 5
{ :
var red 'iﬂ Go To Disassembly Alt+F9, A g, exp
@ [RESpONS Location...
1 ¥ Condition...
1 Hit Count...
t Filter..
100 % - 4
When Hit... E—
Breakpoints Edit labels... Alt+F9, L
New ~ -
B SE I 1= —wm I
MName Sort by N t Count
RFI J Global.asax.cs, line 100 cha/Serere

vrocorraroory—oreak always

Global.asax.cs, line 88 character 13 (no condition] break always
0 Global.asax.cs, line 90 character 13 (no condition] break always
0 Global.asax.cs, line 97 character 13 (no condition] break always

FIGURE 7-6 Edit Labels option

5. In the Edit Breakpoint Labels window, add labels for the selected breakpoint (which
is the first one in the Breakpoints window). Type ContextRequestUrl in the Type A
New Label text box, and click Add. Repeat this operation on the next breakpoint, and
type a label name of url. When you are done, click OK. You should see a window that

Chapter 7 From 2005 to 2010: Debugging an Application 199

looks like Figure 7-7 while you are entering them, and to the right you should see the
Breakpoints window after you are done with those two operations:

Edit breakpoint labels @

Type a new label:

| Add |

Or choose among existing labels:

ContextRequestUrl
url

[T | ——r—

.Breakpoints
New~ | X | 915 | & @ | 23 % | Columns~ | Search: | '|]nCnIumn:@

MName Labels
o {Global.asax.cs, line 100 character 1? ContextRequestUrl,url
o Global.asax.cs, line 88 character 13
i o Global.asax.cs, line 90 character 13
o Global.asax.cs, line 97 character 13

Condition Hit Count

(no condition) break always
(no condition) break always
(no condition) break always
(

no condition) break always

FIGURE 7-7 Adding labels that show up in the Breakpoints window

Note You can also right-click on the breakpoint in the left margin and select Edit Labels
to accomplish the same tasks I just outlined.

Note You'll see that when adding labels to a new breakpoint you can choose any of the
existing labels you have already entered. You'll find these in the Or Choose Among Existing

Labels area, which is shown in the Edit Breakpoint Labels dialog box on the left in the pre-
ceding figure.

6. Using any of the ways you just learned, add labels for each of the breakpoints, and
make sure your Breakpoints window looks like Figure 7-8 after you're done.

Breakpoints

New'|X|Pﬁ|%°|-@ﬁ|&)lumm'|'&aﬂch

MName Labels

o Global.asax.cs, line 100 character 17
o Global.asax.cs, line 88 character 13

o Global.asax.cs, line 90 character 13
o Global.asax.cs, line 97 character 13

ContextRequestUrl,url
url

expectedAuth
redirectTo,url

FIGURE 7-8 Breakpoints window with all labels entered

200 Part I

10.

. In the Breakpoints window, click the Export button

Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

When you have a lot of code and are in the midst of a debugging session, it would be
great to be able to filter the displayed list of breakpoints. That's exactly what the new
Search feature in Visual Studio 2010 allows you to do.

To see the Search feature in action, just type url in the search text box and you'll see
the list of breakpoints is filtered down to breakpoints containing ur/ in one of their
labels.

In a team environment where you have many developers and testers working together,
often two people at some point in time are working on the same bugs. In Visual Studio
2005, the two people needed to sit near each other, send one another screen shots, or
send one another the line numbers of where to put breakpoints to refine where they
should look while debugging a particular bug.

Important One of the great new additions to breakpoint management in Visual Studio
2010 is that you can now export breakpoints to a file and then send them to a colleague,
who can then import them into his own environment. Another scenario that this feature is
useful for is to share breakpoints between machines. We'll see how to do that next.

a to export your breakpoints to a
file, and then save the file on your desktop. Name the file breakexports.xml.

. Delete all the breakpoints either by clicking the Delete All Breakpoints Matching

The Current Search Criteria button P or by selecting all the breakpoints and click-

ing the Delete The Selected Breakpoints button X . The only purpose of deleting
them is to simulate two developers sharing them or one developer sharing breakpoints

between two machines.

You'll now import your breakpoints by clicking the Import button 9 and loading
them from your desktop. Notice that all your breakpoints with all of their properties are
back and loaded in your environment. For the purposes of this chapter, delete all the
breakpoints.

Inspecting the Data

When you are debugging your applications, you know how much time one can spend step-
ping into the code and inspecting the content of variables, arguments, and so forth. Maybe
you can remember when you were learning to write code, a while ago, when debuggers
weren't a reality or when they were really rudimentary. Do you remember (maybe not—you
might not be as old as we are) how many printf or WriteLn statements you had to write to
inspect the content of different data elements?

Chapter 7 From 2005 to 2010: Debugging an Application 201

Visual Studio 2005 In Visual Studio 2005, things were already a big improvement from the
days of writing all kinds of statements to the console, because Visual Studio had a real debug-
ger with new functionalities. New data visualizers allowed you to see XML as a well-formed XML
snippet and not as a long string. Furthermore, with those data visualizers, you could view arrays
in a more useful way, with the list of elements and their indices, and you accomplished that by
simply hovering your mouse over the object. Take a look at Figure 7-9 for an example:

IEnumerab = Ells o EEiEE
List<ListItems> statelL:E ¥ states|{Dimensions:[S0T} o () :
= @ [Microsoft, Samples.PlanMyNight. Entities, State[1] | {Dimensions: [S0T¢
foreach (Ztate state in st
{

W [0] |4{Microsoft,Samples.PlaniyMight Entities. State}

W [1] |{Microsoft,Samples.Planiyiight. Entities. Statet

7 abbrevistion < - "ak® [MyMight.Entities, State}

abbrevistion < - "ak" MyNight Entities State}

2 Mame 3, » "alaska” MyMight.Entities. State} 0 x|[ca
& name 3, » "alaska" MyMight.Entities. State}
wo[o] [qFIrosore, sampies, Faniyiight, Entities, State
@ [7] |{Microsoft,Samples.Planfyiight Entities, State}
W [8] |{Microsoft,Samples.Planiyiight Entities, State}
@ [9] |{Microsoft,Samples.PlaniyMight Entities, State}
@ [10] | {Microsoft, Samples, PlaniyMight Entities, State}
[11] | {Microsoft, Samples, PlanfyMight Entities, Statet
@ [12] | {Microsoft, Samples, PlaniyMight Entities, State}
[13] | {Microsoft, Samples. PlaniyMight Entities, State}
W [14] | {Microsoft, Samples. PlanlyMight Entities, Statet

| B B B R R E R DR

FIGURE 7-9 Collection view versus an array view in the debugger in Visual Studio 2010 and in Visual
Studio 2005

Although those DataTip data visualization techniques are still available in Visual Studio 2010,
a few great enhancements have been added that make DataTips even more useful. The
DataTip enhancements have been added in conjunction with another new feature of Visual
Studio 2010, multimonitor support. Floating DataTips can be valuable to you as a developer.
Having the ability to put DataTips on a second monitor can make your life a lot easier while
debugging, because it keeps the data that always needs to be in context right there on the
second monitor. The following steps demonstrate how to use these features:

1. In the Global.ascx.cs file, insert breakpoints on lines 89 and 91, lines starting with the
source code var authority and var pathAndQuery, respectively.

2. You are now going to experiment with the new DataTip features. Start the debugger by
pressing F5. When the debugger hits the first breakpoint, move your mouse over the
word url and click on the pushpin, as seen in Figure 7-10:

é protected void Application BeginRequest(cbject sender, Eventirgs e)

{
var url = HttpContext.Current.Request.Url;
5] < urll {http://localhost485680/Defaultaspx} o |rvervariables["HTTP_HOST"[;|
var expectedAuthority = url.Port == 48588 ¢ “www.planmynight.net:48588" : "planmynight.net”;

] ar pathAndQuery = url.PathAndQuery;

if (pathandQuery == "/default.aspx")

pathAndQuery = “/";

FIGURE 7-10 The new DataTip pushpin feature

202

Part 1l

3.

4.

Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

To the right of the line of code, you should see the pinned DataTip (as seen in the fol-
lowing figure on the left). If you hover your mouse over the DataTip, you'll get the
DataTip management bar (as seen in Figure 7-11 on the right):

enger, CVENTArgs e)
x

@ url {http://localhost48580/Default.aspx} | ¥
Servervdriduies| niiF_nusi |; w8

@ url {http://localhost:48580/Default.aspx} "wew. planmynight.net:48588" : "planmyn

SServervariauies| niiE_nusi |G Unpin from source |

FIGURE 7-11 On the left is the pinned DataTip, and on the right is the DataTip management bar

Note You should also see in the breakpoint gutter a blue pushpin indicating that the

DataTip is pinned. The pushpin should look like this: ¥4~ . Because you have a break-
point on that line, the pushpin is actually underneath it. To see the pushpin, just toggle
the breakpoint by clicking on it in the gutter. Toggle once to disable the breakpoint and
another time to get it back.

Note If you click the double arrow pointing down in the DataTip management bar, you
can insert a comment for this DataTip, as shown in Figure 7-12. You can also remove the
DataTip altogether by clicking the X button in the DataTip management bar.

@ url {http://localhost:48580/Default.aspx}
! @ authority Q. -"localhost:48580" *
! @ (authority != null)| true i = R e P vt

2
Type a comment here

FIGURE 7-12 Inserting a comment for a DataTip

@ url {http://localhost:48580/Default.aspx} XJ
7

One nice feature of the new DataTip is that you can insert any expression to be evalu-
ated right there in your debugging session. For instance, right-click on the DataTip
name, in this case url, select Add Expression, type authority, and then add another one
like this: (authority != null). You'll see that the expressions are evaluated immediately
and will continue to be evaluated for the rest of the debugging session every time

your debugger stops on those breakpoints. At this point in the debugging session, the
expression should evaluate to null and false, respectively.

Press F10 to execute the line where the debugger stopped, and look at the url DataTip
as well as both expressions. They should contain values based on the current context,
as shown in Figure 7-13:

I
=] protected void Application_BeginRequest(object sender, EventArgs e)

i
var url = HttpContext.Current.Request.Url; @ ¢ ul {http://localhost48580/ Default.aspx}

ar_authority — HttpContext.Current.Request.SNERNUN Q.+ "localhost48580"

var expectedAuthority = url.Port == 48588 ?

o
ar pathAndQuery — url.PathAndQuery; @ (authority 1= null)| true

if (pathAndQuery == "/default.aspx")

[“Tey "33

pathandQuery = "/";

FIGURE 7-13 The url pinned DataTip with the two evaluated expressions

6.

Chapter 7 From 2005 to 2010: Debugging an Application 203

Although it is nice to be able to have a mini-watch window where it matters—right
there where the code is executing—you can also see that it is superimposed on the
source code being debugged. Keep in mind that you can move the DataTip win-
dow anywhere you want in the code editor by simply dragging it, as illustrated in
Figure 7-14:

¥
[} @ url {http://localhost:48580/ Default.asps
e protected void Application BeginRequest(object sender, Eventargs €) g o i R ——
y st

@ (authority I= null) true

var url = HttpContext.Current.Request.Url;
ar authority = HttpContext.Current.Request.ServerVariables["HTTP_HOST" ;]

ol e

var expectedAuthority = url.Port == 48588 ? “www.planmynight.net:48588" : "planmynight.net";

ar pathAndQuery = url.PathAndQuerys]

if (pathandQuery == "/default.aspx")

pathandQuery = "/"3
FIGURE 7-14 Move the pinned DataTip away from the source code

Because it is pinned, the DataTip window stays where you pinned it, so it will not be in
view if you trace into another file. But in some cases, you need the DataTip window to
be visible at all times. For instance, keeping it visible is interesting for global variables
that are always in context or for multimonitor scenarios. To move a DataTip, you have
to first unpin it by clicking the pushpin in the DataTip management bar. You'll see that
it turns yellow. That indicates you can now move it wherever you want—for instance,
over Solution Explorer, to a second monitor, over your desktop, or to any other window.
Take a look at Figure 7-15 for an example:

4 (F PlanMyNight.Data
b [l Properties
wvar url = HttpContext.Current. Request.Url; b [l References
ar_authority = HttpContext.Current.Request.ServerVariables["HTTP_HOST"]; @ ul {http://localhost:48580/Defautt aspx}
var_expectedAuthority = url.Port == 48580 2 "www.planmynight.net:48580" : "plani

protected void Application_BeginRequest(object sender, Eventargs e)

@ authority Q -"localhost48580"

ar_pathAndQuery = url.PathandQuery; @ (authority 1= nui)| true
if (pathandQuery == "/default.aspx”) Ty PEAMNGRE Corta |
: 3 3

G PlanhyNight.edmx

2] ReferenceRepository.cs
4 (F PlanMyNightInfrastructure
if (lauthority.Equals(expectedauthority, StringComparison.OrdinallgnoreCase)) b [E Properties

pathandouery = /"3

b [References
var redirectTo = string.Concat(url.Scheme, "://", expectedAuthority, pathan b OF Mve
Response.RedirectPernanent (redirectTo); &) ExtensionLink.cs

1t [N SN PR

FIGURE 7-15 Unpinned DataTip over Solution Explorer and the Windows desktop

Note If the DataTip is not pinned, the debugger stops in another file and method, and
the DataTip contains items that are out of context, the DataTip windows will look like
Figure 7-16. You can retry to have the debugger evaluate the value of an element by click-

ing on this button: 1/ . However, if that element has no meaning in this context, it's pos-
sible that nothing happens.

public partial class Default : Page @ url {http://localhostA8580/Defaultaspx}
@ auths " pls ynight.net:48580"
public veoid Page_Load(object sender, System.EventArgs e) 2 oty Gl srad
1 \# (authority != null) |true
(@ url.LocalPath "/Default.aspx”

string originalPath = Request.Path;
Httplontext.Current.RewritePath(Request.ApplicationPath, false);
IHttpHandler httpHandler = new MvcHttpHandler();
httpHandler.ProcessRequest(Httplontext.Current);
HttpContext.Current.RewritePath(originalPath, false);

}

1

FIGURE 7-16 DataTip window with out-of-context items

204 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Note You'll get an error message if you try to pin outside the editor, as seen in

Figure 7-17:

[|=d| Mroperties (] N

@ url {http://localhost:48580/Default.aspx} || X |
@ authority Q -"localhost:48580" I

] {authority != null) true

= ingloordinate.cs I |
ET - .

FIGURE 7-17 Error message that appears when trying to pin a DataTip outside the code editor

:I Cannot pin. Not over a source file |

Note Your port number might be different than in the screen shots just shown. This is
normal—it is a random port used by the personal Web server included with Visual Studio.

Note You can also pin any child of a pinned item. For instance, if you look at url and
expand its content by pressing the plus sign (+), you'll see that you can also pin a child
element, as seen in Figure 7-18:

Bl @ url {http://localhost:48580/Default.aspx} |
ry

5 AbsolutePath | Q - "/Default.aspx”

5 AbsoluteUri | @, ~ "http://localhost:48580/Default.aspx”
5 Authority | % ~ "localhost:48580"

5 DnsSafeHost |3, = "localhost"

% Fragment |-

5 Host | A + "localhost"

¢ HostNameType| Dns

5 IsAbsolutelri | true

5 lsDefaultPort false

5 IsFile | false

5 IsLoopback | true

5 Islnc , false

¢ LocalPath 4 = "/Default.aspx” 1]

=5 OriginalString | & + "http://localhost48580/ Default.aspx”
5 PathAndQuery | @ ~ "/Default.aspx”
-

FIGURE 7-18 Pinned child element within the url DataTip

8. Before stopping the debugger, go back to the Global.ascx.cs if you are not already
there and re-pin the DataTip window. Then stop the debugging session by clicking the

Stop Debugging button in the debug toolbar (-) or by pressing Shift+F5. Now if
you hover your mouse over the blue pushpin in the breakpoint gutter, you'll see the
values from the last debug session, which is a nice enhancement to the watch window.
Take a look at Figure 7-19 for what you should see:

1
r Value from last debug session
w B protected void Application BeginReguest{object sender, Ei {http://lecalhost48580/ Default aspx]

authority "localhost48580"
var url = HttpContext.Current.Request.Url; (authority = null) true
. = ¢ y =
@ ar authority = Http(oﬂtext.(urrent.Request.bervera url.LocalPath “/Defaultaspx”
. e e p

var expectedAuthority = url.Port == 48588 ? “www.plaf. S

FIGURE 7-19 Values from the last debug session for a pinned DataTip

Chapter 7 From 2005 to 2010: Debugging an Application 205

Note As with the breakpoints, you can export or import the DataTips by going to the Debug
menu and selecting Export DataTips or Import DataTips, respectively.

Using the Minidump Debugger

Many times in real-world situations, you'll have access to a minidump from your product sup-
port team. Apart from their bug descriptions and repro steps, it might be the only thing you
have to help debug a customer application. Visual Studio 2010 adds a few enhancements to
the minidump debugging experience.

Visual Studio 2005 In Visual Studio 2005, you could debug managed application or minidump
files, but you had to use an extension if your code was written in managed code. You had to use
a tool called SOS and load it in the debugger using the Immediate window. You had to attach the
debugger both in native and managed mode, and you couldn’t expect to have information in the
call stack or Locals window. You had to use commands for SOS in the Immediate window to help
you go through minidump files. With application written in native code, you used normal debug-
ging windows and tools. To read more about this or just to refresh your knowledge of the topic,
you can read the Bug Slayer column in MSDN magazine here: http://msdn.microsoft.com/en-us/
magazine/cc164138.aspx.

Let's see the new enhancements to the minidump debugger. First you need to create a crash
from which you'll be able to generate a minidump file:

1. In Solution Explorer in the PlanMyNight.Web project, rename the file Default.aspx to
DefaultA.aspx. Note the A appended to the word “Default.”

2. Make sure you have no breakpoints left in your project. To do that, look in the
Breakpoints window and delete any breakpoints left there using any of the ways you
learned earlier in the chapter.

3. Press F5 to start debugging the application. Depending on your machine speed, soon
after the build process is complete you should see an unhandled exception of type
HttpException. Although the bug is simple in this case, let's go through the steps of
creating the minidump file and debugging it. Figure 7-20 shows what you should see at
this point:

requestContext.HttpContext. [tems[ControllerExportentrylame] = controllerExport;
return controllerexport.value; ‘\

Lic override void ReleaseController(IController controller)

var export = HttpContext.Current.Items[ControllerExportEntryName] as Lazy<IContrs Troubleshooting tips:
if (export 1= null)
1

Get general help for this exception.

this.container.ReleaseExport(export) ; B
¥ -

base.ReleaseController(controller); Search o

Acti

sate static IEnumerable<strings GetNamespaceFromRoute(RequestContext requestContey i
E

g
object routeNamespacesoby; Copy exception detail to the clipboard

FIGURE 7-20 The unhandled exception you should expect

206 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

4. ltis time to create the minidump file for this exception. Go to the Debug menu, and
select Save Dump As, as seen in Figure 7-21. You should see the name of the process
from which the exception was thrown. In this case, the process from which the excep-
tion was thrown was Cassini or the Personal Web Server in Visual Studio. Keep the file
name proposed (WebDev.WebServer40.dmp), and save the file on your desktop. Note
that it might take some time to create the file because the minidump file size will be
close to 300 MB.

Debug | Team Data Tools Test Window He
Windows »
P Continue F5
@ Stop Debugging Shift+F5
Terminate All
& Restart Ctrl+Shift+F5
E; Attach to Process...
Exceptions... Ctrl+Alt+E
%= Steplnto F11
[;E Step Over F10
== Step Out Shift+F11
Toggle Breakpoint Fa
MNew Breakpoint 3
40 Delete All Breakpoints Ctrl+Shift+F9
O Disable All Breakpoints
Clear All DataTips
Export DataTips ...
Import DataTips ...
Save Dump As...
Options and Settings...

FIGURE 7-21 Saving the minidump file

5. Stop Debugging by pressing Shift+F5 or the Stop Debugging button.
6. Next, go to the File menu and close your solution.

7. In the File menu, click Open and point to the desktop to load your minidump file
named WebDev.WebServer40.dmp. Doing so opens the Minidump File Summary
page, which gives you some summary information about the bug you are trying to fix.
(Figure 7-22 shows what you should see.) Before you start to debug, you'll get basic
information from that page such as the following: process name, process architecture,
operating system version, CLR version, modules loaded, as well as some actions you
can take from that point. From this place, you can set the paths to the symbol files.
Conveniently, the Modules list contains the version and path on disk of your module, so
finding the symbols and source code is easy. The CLR version is 4.0; therefore, you can
debug here in Visual Studio 2010.

10.

Chapter 7 From 2005 to 2010: Debugging an Application 207

WebDevWebServerd.dmp X

ump File Summary

~ Dump Summary Notifications
Dump File dmp: C: D dmp 1L Interpreter is Enabled
Last Wite Time 2/22/2010 1:58:45 AM L
Process Name WebDevWebSenverd0.exe : C:\Program Files\Cormmon Files\Microsoft Shared\DevServer10.0\WebDev \WebServerd!
Process Architecture
Exception Code 0:E0434F4D Actions
Exception Information An exception came from the CLR
Heap Information Present P Debug with Mixed
el m 2 P Debug with Native Only.
N [Set symbol paths
* System Information 133 Copy all to clipboard
05 Version 6.1.7600
CLR Version(s) 40301281
~ Modules
Search
Module Name Module Version Module Path
WebDev.WebServerd0.exe 100301281 C:\Pragram Files\Common Files\Mi
ntdil.dlil 6.1.7600.16385 C\Windows\System32\ntdIl.dll
mscoree.dil 40311060 C:\Windows\System32\mscoree.dll
kernel32.dll 6.1.7600.16481 C:\Windows\System32\kernel32.dll
KERNELBASE.dil 61760016385 C:A\Windows\System32\KERNELBAS
advapi32.dil 6.1.7600.16385 C:\Windows\System32\advapi32.dil
msvertdl 70760016385 C:\Windows\System32\msvert.dil
sechost.dll 6.1.7600.16385 C:\Windows\System32\sechost.dll
rpertd dil 61760016385 C:\Windows\System32\pcrtd.dil
mscoreei.dll 40301281 C:\Windows\Microsoft. NET\Framey
shiwapi.dl 61760016385 C:\Windows\System32\shiwapi.dil
gd2.dil 61760016385 CAWindows\System32\gi32.dll
userd2.dll 61760016385 C:\Windows\System32\user32 dil
Tpk.di 61760016385 C:AWindows\System32\Ipk.dil
uspl0.dil 1626.7600.16385 C:\Windows\System32\uspl0.dil
imm32.di 61760016385 C:AWindows\System32\imm32.dil

FIGURE 7-22 Minidump summary page

To start debugging, locate the Actions list on the right side of the Minidump File
Summary page and click Debug With Mixed.

You should see almost immediately a first-chance exception like the one shown in
Figure 7-23. In this case, it tells you what the bug is; however, this won't always be the
case. Continue by clicking the Break button.

Microsoft Visual Studio
o Afirst chance exception of type 'System.Web.HttpException' occurred in -
U\ planMyNightWeb.DLL

Additional information: The controller for path '/Default.aspx’ was not found or
does not implement IController.

FIGURE 7-23 First-chance exception

You should see a green line indicating which instruction caused the exception If you
look at the source code, you'll see in your Autos window that the controllerExport
variable is null, and that just before that we specified that if the variable was null

we wanted to have an HttpException thrown if the file to load was not found. In this
case, the file to look for is Default.aspx, as you can see in the Locals window in the
controllerName variable. You can glance at many other variables, objects, and so forth
in the Locals and Autos windows containing the current context. Here, you have only

208 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

one call that belongs to your code, so the call stack indicates that the code before and
after is external to your process. If you had a deeper chain of calls in your code, you
could step back and forth in the code and look at the variables. Figure 7-24 shows a
summary view of all that:

MefControllerFactary.cs % [0y b 0.dmp

4 Microsoft Sampl e ke =

Name

| [KERNELBASE.dil 753196170
KERIELEASE.dIll7532617 0

External Code]

requestContext, string controllerName) E
=

DLLIMicrosoft. lanMyNight. Web.Infrastructure.MefControllerFactor G

Extemnal Code]
ernel32.d1756a1194() |=

ntdil dil771363150 |
ntdildilT713b3 ¢80 -
var controllerexport = this.container.Getexports<IControllers(controllerliame) .FirstOrDefault();

if (controllerExport == null)

{

throw new HttpException(
204,
string.Format(CultureInfo. InvariantCulture, "The <ontroller for path "{8}" was not found or does not implement ICont

¥

L] requestContext . HetpContext. [tems[ControllerExpor yName] = control. port;
return controllerExport.Value;

100% <]]

v ax
|| Name Value Type ~ || Name Value Type -
controllerExport null @ system.l
requestContextHttpCont {System.Web Http ContextWrapper ® System)\ this {Microsoft.Samples, I cti(®)| Microsol
requestContext HitpCont Count = 2 © System.(requestContext | {System Web Routing RequestContext} © Systeml\
requestContext HttpCont null [object_|_ controllerName | “Default.aspx” Q +|string
requestContext HttpCont {System.Web. @) System.\| controllerType null)| System.1
requestContext HitpCont */Default.aspx’ Q | string null ® System.(
this M iyNight Web Infra () Microsol null @ Systeml

[P B Watch 1 R Breakpoints B Command... & Immediate.. B Output

FIGURE 7-24 Autos, Locals, and Call Stack windows, and the next instruction to execute

11. OK, you found the bug, so stop the debugging by pressing Shift+F5 or clicking the
Stop Debugging button. Then fix the bug by reloading the PlanMyNight solution and
renaming the file back to default.aspx. Then rebuild the solution by going to the Build
menu and selecting Rebuild Solution. Then press F5, and the application should be
working again.

Web.Config Transformations

This next new feature, while small, is one that will delight many developers because it saves
them time while debugging. The feature is the Web.Config transformations that allow you to
have transform files that show the differences between the debug and release environments.
As an example, connection strings are often different from one environment to the other;
therefore, by creating transform files with the different connection strings—because ASP.NET
provides tools to change (transform) web.config files—you'll always end up with the right
connection strings for the right environment. To learn more about how to do this, take a look
at the following article on MSDN: http.//go.microsoft.com/fwlink/?Linkld=125889.

Creating Unit Tests

Most of the unit test framework and tools are unchanged in Visual Studio 2010 Professional.
It is in other versions of Visual Studio 2010 that the change in test management and test
tools is really apparent. Features such as Ul Unit Tests, IntelliTrace, and Microsoft Test
Manager 2010 are available in other product versions, like Visual Studio 2010 Premium and

Chapter 7 From 2005 to 2010: Debugging an Application 209

Visual Studio 2010 Ultimate. To see which features are covered in the Application Lifecycle
Management and for more specifics, refer to the following article on MSDN: http://msdn.
microsoft.com/en-us/library/ee789810(VS.100).aspx.

Visual Studio 2005 With Visual Studio 2005, you had to own either Visual Studio 2005 Team
System or Visual Studio 2005 Team Test to have the ability to create and execute tests out of the
box within Visual Studio 2005. Another option back then was to go with a third-party option like
Nunit.

In this part of the chapter, we'll show you how to add a unit test for a class you'll find in the
Plan My Night application. We won't spend time defining what a unit test is or what it should
contain; rather, we'll show you within Visual Studio 2010 how to add tests and execute them.

You'll add unit tests to the Plan My Night application for the Print Itinerary Add-in. To create
unit tests, open the solution from the companion content folder. If you do not remember
how to do this, you can look at the first page of this chapter for instructions. After you have
the solution open, just follow these steps:

1. In Solution Explorer, expand the project PlanMyNight.Web and then expand the
Helpers folder. Then double-click on the file ViewHelper.cs to open it in the code editor.
Take a look at Figure 7-25 to make sure you are at the right place:

4 8 PlanMyNight.Web
> [=d Properties

5] References

g App_Browsers

3 App_Data

[Areas

[Content

[Controllers

[Helpers

3 Liveld
] JsonCacheAttribute.cs
#] MembershipWrappers.cs
] RoutingManager.cs
#] ServiceFactory.cs
#] SessionltineraryContainer.cs
|7] ViewHelpers.cs|
#] ViewModelExtensions.cs

m

[

FIGURE 7-25 The PlanMyNight.Web project and ViewHelper.cs file in Solution Explorer

2. In the code editor, you can add unit tests in two different ways. You can right-click on
a class name or on a method name and select Create Unit Tests. You can also go to the
Test menu and select New Test. We'll explore the first way of creating unit tests. This
way Visual Studio automatically generates some source code for you. Right-click on the
GetfriendlyTime method, and select Create Unit Tests. Figure 7-26 shows what it looks
like:

210

Part 1l

Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

public static string GetFriendlyTime(int totalMinutes

{

if (totalMinutes » @)

{
int hours = totalMinutes / &8@;
int minutes = totalMinutes ¥ 6@;
string time = string.Empty;
if (hours > @)
i

}

if (minutes > @)

{
}

time += string.Format(CultureInfo.Invarial

time += string.Format(CultureInfo.Invarial

return time.Trim();

}

return "-";

G i %<

Refactor

Organize Usings
Create Unit Tests...
Create Private Accessor
Insert Snippet...
Surround With...

Go To Definition

Find All References

y View Call Hierarchy

Breakpoint
Run To Cursor
Cut

Copy
Paste

Qutlining

Ctrl+K, Ctrl+X
Ctrl+K, Ctrl+S
F12

Shift+F12
Ctrl+E, Ctrl+T

Ctrl+F10
Ctrl+X
Ctrl+C
Ctrl+V

FIGURE 7-26 Contextual menu to create unit tests from by right-clicking on a class name

3. After selecting Create Unit Tests, you'll be presented with a dialog that, by default,
shows the method you selected from that class. To select where you want to create the
unit tests, click on the drop-down combo box at the bottom of this dialog and select
PlanMyNight.Web.Tests. If you didn't have an existing location, you would have simply
selected Create A New Visual C# Test Project from the list. Figure 7-27 shows what you

should be seeing:

Create Unit Tests

Current selection:

2 s

Filter -

Types
4 @ PlanMyNightWeb

4 [@{) Microsoft Samples.PlanMyNight Web
&]9 Microsoft.Samples. lyNight.Web.Accounth i ice
v [C] %2 Microsoft.Samples.PlanMyNight. Web ActivityHelper
& [[]4¢ Microsoft.Samples.PlanhMyNight.Web FormsAuthenticationService
& [[]=% Microsoft.Samples.PlanMyNight.Web IFormsAuthentication
5 [[]=° Microsoft.Sampl lyNight Web IMen
& [[]4 Microsoft.Samples.PlanhMyNight Web ltineraryHelper
» [C] %2 Microsoft.Samples PlanMyNight.Web JsonCacheAttribute
& [[]4¢ Microsoft.Samples.PlanhMyNight Web.MvcApplication
» [[]4¢ Microsoft.Samples.PlanMyNight Web RoutingManager
& [C] % Microsoft.Samples PlanMyNight.Web ServiceFactory
> [[]4 Microsoft.Samples.PlanMyNight.Web Sessionltinerary Container
4[] “¢ Microsoft.Samples.PlanMyNight Web. TimeHelper

“% GetFriendlyTime(System.Int32)

& [£]4¢ Microsoft.Samples. Web.U
& [C] % Microsoft.Sampl lyNight Web ViewModelEs
& [[]4¢ Microsoft.Samples PlanMyNight.Web. Default

- [1{} Microsoft.Samples.PlanMyNight Web.Controllers

> 14} Microsoft.Samples.PlanMyNight Web Infrastructure

 [[1{} Microsoft.Samples.PlanMyNight Web.Properties

b [E{} Microsoft.Samples.PlaniMyNight Web.Ux
b 14y M., i AA.

bership "

b\

Output project:

[setings. J [AdsAssembly.. |

FIGURE 7-27 Selecting the method you want to create a unit test against

4. After you click OK, the dialog switches to a test-case generation mode and displays a

progress bar. After this is complete, a new file is created named TimeHelperTest.cs that
has autogenerated code stubs for you to modify.

Chapter 7 From 2005 to 2010: Debugging an Application 211

5. Remove the method and its attributes because you'll create three new test cases for
that method. Remove the following code:

/// <summary>

///A test for GetFriendlyTime

///</summary>

// TODO: Ensure that the UrlToTest attribute specifies a URL to an ASP.NET page (for
// example, http://.../Default.aspx). This is necessary for the unit test to be
// executed on the web server,

// whether you are testing a page, web service, or a WCF service.
[TestMethod()]

[HostType("ASP.NET")]
[AspNetDevelopmentServerHost("C:\\Users\\Patrice\\Documents\\Chapter 7\\code\\
PlanMyNight.Web", "/")]

[Ur1ToTest("http://Tocalhost:48580/™")]

public void GetFriendlyTimeTest()

{
int totalMinutes = 0; // TODO: Initialize to an appropriate value
string expected = string.Empty; // TODO: Initialize to an appropriate value
string actual;
actual = TimeHelper.GetFriendlyTime(totalMinutes);
Assert.AreEqual(expected, actual);
Assert.Inconclusive("Verify the correctness of this test method.");

}

6. Add the three simple test cases validating three key scenarios used by Plan My Night.
To do that, insert the following source code right below the method attributes that
were left behind when you deleted the block of code in step 5:

[TestMethod]
public void ZeroReturnsSlash()
{
Assert.AreEqual("-", TimeHelper.GetFriendlyTime(0));
}
[TestMethod]
public void LessThan60MinutesReturnsValueInMinutes()
{
Assert.AreEqual("10m", TimeHelper.GetFriendlyTime(10));
}
[TestMethod()]
public void MoreThan60MinutesReturnsValueInHoursAndMinutes()
{

Assert.AreEqual("2h 3m", TimeHelper.GetFriendlyTime(123));

212 Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

7. In the PlanMyNight.Web.Tests project, create a solution folder called Helpers. Then
move your TimeHelperTests.cs file to that folder so that your project looks like
Figure 7-28 when you are done:

4 [F PlanMyNight.Web. Tests
> [=d Properties
> [x3] References
4 [Controllers
#] AccountControllerFixture.cs
#] HinerariesControllerFixture.cs
#] SearchControllerFixture.cs
& SiteMasterControllerFixture.cs
a4 [Helpers
&) TimeHelperTest.cs
i App.config
& DummyCachingProvider.cs
& HineraryExtensionFixture.cs
#] MembershipWrappersFixture.cs
#] RoutingManagerFixture.cs
] SessionltineraryContainerFixture.cs |
#] UserProfileExtensionsFixture.cs
] ViewModelExtensionsFixture.cs

FIGURE 7-28 TimeHelperTest.cs in its Helpers folder

8. Itis time to execute your newly created tests. To execute only your newly created
tests, go into the code editor and place your cursor on the class named public class
TimeHelperTest. Then you can either go to the Test menu, select Run, and finally select
Test In Current Context or accomplish the same thing using the keyboard shortcut
CTRL+R, T. Look at Figure 7-29 for a reference:

|| Test | Window Help

E_] MNew Test...

I %3 Load Metadata File...
= w3 Create New Test List...

[| = hnreThanEnMR,
1 Run * || b Testsin Current Context Ctrl+R, T
it Debug » | %, All Tests in Solution Ctrl+R, A
4 Select Active Test Settings 3
Edit Test Settings 3
b Windows 4

FIGURE 7-29 Test execution menu

9. Performing this action executes only your three tests. You should see the Test Results
window (shown in Figure 7-30) appear at the bottom of your editor with the test
results.

sults.

= | @ | # Run~ b2 Debug = 1l 4 | i~ &g | Group By [[None] -1 | 181 Columr +| [<Type kepword> =] L]

@ Testrun waming Results: 3/3 passed; Item(s) checked: 0

Result Test Name = Project Error Message
143D Passed LessThanG0MinutesReturnsValuelnMinutes PlanMyNight Web. Tests
[1¢@ Passed MoreThan50MinutesReturnsValuelnHoursAndMinutes PlanMyNight Web. Tests
143 Passed ZeroReturnsSlash PlanMyNight.Web Tests

FIGURE 7-30 Test Results window for your newly created tests

Chapter 7 From 2005 to 2010: Debugging an Application

More Info Depending on what you select, you might have a different behavior when you
choose the Tests In Current Context option. For instance, if you select a test method like
ZeroReturnsSlash, you'll execute only this test case. However, if you click outside the test class,
you could end up executing every test case, which is the equivalent of choosing All Tests In
Solution.

New Threads Window

The emergence of computers with multiple cores and the fact that language features give
developers many tools to take advantage of those cores creates a new problem: the diffi-

213

culty of debugging concurrency in applications. The new Threads window enables you, the
developer, to pause threads and search the calling stack to see artifacts similar to those you
see when using the famous SysInternals Process Monitor (http://technet.microsoft.com/en-us/

sysinternals/bb896645.aspx). You can display the Threads window by going to Debug and

selecting Windows And Threads while debugging an application. Take a look at Figure 7-31

to see the Threads window as it appears while debugging Plan My Night.

e public Tuple<PagingResult<Activityy, ActivityAddress> SearchActivities(NaturalSearchQuery query, string token)
/7 request
S 9 quest = q 4 query.PageSize, query.Page)i]
/7 category filter - trick bing maps to use the same category twice
var filter = new Filterexpressionclause();
Threads > ax
search o) X search Calstack | ¥ - [Group b [process Nome [Columns= | 81385 1 D[]
D ManagedlD Category Name Location
~ iesplore.exe (id = 2512): C\Pragram Files\Internet Exploren\iexplore.exe
¥| |26 o | O Worker Thread| Thread BS0 | v JScript anonymous function
~ WebDevWebServerd0.EXE (id = 3460) : C:\Program Files\Common EXE
w| [s00 [1 [Main Thread | Main Thread ed to Native
SECIE || Worker Thread| <No Name> | <not
SECEE || Warker Thread| Worker Thread | v [Managed to Native Transition]
¢ Jaoss o (] Worker Thread| <No Name> | <not available>
7 Jez o] Worker Thread| <No Name> v
V[|ano || Worker Thread <No Name> 4
| [si76 711
v mn
100% |¥[< (4016 |70
lan
Dat PlanM
Data.Caching.C: a
lesPld
—jg V| |22 e 1] Worker Thread| <No Name>
e}
3
— n D
BT i Call Stack W Breakpoints B Comm

FIGURE 7-31 Displaying the Threads window while debugging Plan My Night

The Threads window allows you to freeze threads and then thaw them whenever you are
ready to let them continue. It can be really useful when you are trying to isolate particular

effects. You can debug both managed code and unmanaged code. If your application uses

threads, you'll definitely love this new feature of the debugger in Visual Studio 2010.

Visual Studio 2005 In Visual Studio 2005, you had to uses many tools not integrated into
Visual Studio or third-party tools. And in most cases, you still had to rely on your instinct and
experience to find concurrency bugs.

214

Part Il Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Summary

In this chapter, you learned how to manage your debugging sessions by using new break-
point enhancements and employing new data-inspection and data-visualization techniques.
You also learned how to use the new minidump debugger and tools to help you solve real
customer problems from the field. The chapter also showed you how to raise the quality of
your code by writing unit tests and how Visual Studio 2010 Professional can help you do this.
Multicore machines are now the norm, and so are multithreaded applications. Therefore,

the fact that Visual Studio 2010 Professional has specific debugger tools for finding issues in
multithreaded applications is great news.

Finally, throughout this chapter you also saw how Visual Studio 2010 Professional has raised
the bar in terms of debugging applications and has given professional developers the tools
to debug today'’s feature-rich experiences. You saw that it is a clear improvement over what
was available in Visual Studio 2005. The exercises in the chapter scratched the surface of how
you'll save time and money by moving to this new debugging environment and showed that
Visual Studio 2010 is more than a small iteration in the evolution of Visual Studio. It repre-
sents a huge leap in productivity for developers.

The various versions of Visual Studio 2010 give you a great list of improvements related to
the debugger and testing. My personal favorites are IntelliTrace—http.//msdn.microsoft.com/
en-us/library/dd264915(VS.100).aspx—which is available only in Visual Studio 2010 Ultimate
and Microsoft Test Manager. IntelliTrace enables test teams to have much better experiences
using Visual Studio 2010 and Visual Studio 2010 Team Foundation Server—http://msdn.
microsoft.com/en-us/library/bb385901(VS.100).aspx.

Part Il
Moving from Microsoft

Visual Studio 2008 to
Visual Studio 2010

Authors Patrice Pelland, Ken Haines, and Pascal Pare

From 2008 to 2010: Business Logic and Data (Pascal) 217
From 2008 to 2010: Designing the Look and Feel (Ken) 251
293

From 2008 to 2010: Debugging an Application (Patrice)

215

Chapter 8

From 2008 to 2010: Business
Logic and Data

After reading this chapter, you will be able to

B Use the Entity Framework (EF) to build a data access layer using an existing database or
with the Model First approach

B Generate entity types from the Entity Data Model (EDM) Designer using the ADO.NET
Entity Framework POCO templates

B Learn about data caching using the Microsoft Windows Server AppFabric (formerly
known by the codename “Velocity")

Application Architecture

The Plan My Night (PMN) application allows the user to manage his itinerary activities and
share them with others. The data is stored in a Microsoft SQL Server database. Activities are
gathered from searches to the Bing Maps Web services.

Let's have a look at the high-level block model of the data model for the application, which is
shown in Figure 8-1.

217

218 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Bing Maps services

FIGURE 8-1 Plan My Night application architecture diagram

Defining contracts and entity classes that are cleared of any persistence-related code con-
straints allows us to put them in an assembly that has no persistence-aware code. This
approach ensures a clean separation between the Presentation and Data layers.

Let's identify the contract interfaces for the major components of the PMN application:

B //tinerariesRepository is the interface to our data store (a Microsoft SQL Server
database).

B /ActivitiesRepository allows us to search for activities (using Bing Maps Web services).

B /CachingProvider provides us with our data-caching interface (ASP.NET caching or
Windows Server AppFabric caching).

= Note This is not an exhaustive list of the contracts implemented in the PMN application.

PMN stores the user's itineraries into an SQL database. Other users will be able to comment
and rate each other’s itineraries. Figure 8-2 shows the tables used by the PMN application.

Chapter 8 From 2008 to 2010: Business Logic and Data 219

ltinerary ltineraryRating
Id: bigint IDENTITY Id: bigint IDENTITY
Userld: uniqueidentifier NOT NULL Userld: uniqueidentifier NOT NULL
Name: nvarchar(100) NOT NULL ltineraryld: bigint NOT NULL (FK)
Created: smalldatetime NOTNULL | | Rating: tinyint NOT NULL
Description: nvarchar{1000) NULL Timestamp: datetime NOT NULL
IsPublic: bit NOT NULL
RatingSum: int NOT NULL
Rating: money NULL ltineraryComment

Id: bigint IDENTITY
ltineraryld: bigint NOT NULL (FK)

RatingCount int NOT NULL B
|
|
|
|

It Activit _
nerayAcivies Userld: uniqueidentiier NOT NULL
ltineraryld: bigint NOT NULL (FK) Body: nvarchar(4000) NOT NULL
Activityld: varchar(250) NOT NULL Timestamp: date NOT NULL

IpAddress: varchar(16) NOT NULL

Order intNOT NULL
EstimatedMinutes: smallint NOT NULL
Typeld: int NOT NULL

State: char(2) NOT NULL ZipCode

City: varchar(150) NOT NULL - -

Zip: varchar(50) NOT NULL ZipCode: varchar(5) NOT NULL
Latitude: float(53) NOT NULL City: varchar(150) NOT NULL
Longitude: float{53) NOT NULL St t. . har(150) NOT NULL
Location: varchar(20) MULL ate: varchar(150)

FIGURE 8-2 PlanMyNight database schema

W Important The Plan My Night application uses the ASP.NET Membership feature to provide
secure credential storage for the users. The user store tables are not shown in Figure 8-2. You can
learn more about this feature on MSDN: ASP.NET 4 - Introduction to Membership (http://msdn.
microsoft.com/en-us/library/yh26yfzy(VS.100).aspx).

Note The ZipCode table is used as a reference repository to provide a list of available Zip Codes
and cities so that you can provide autocomplete functionality when the user is entering a search
query in the application.

Plan My Night Data in Microsoft Visual Studio 2008

It would be straightforward to create the Plan My Night application in Visual Studio 2008
because it offers all the required tools to help you to code the application. However, some of
the technologies used back then required you to write a lot more code to achieve the same
goals.

Let's take a look at how you could create the required data layer in Visual Studio 2008. One
approach would have been to write the data layer using ADO.NET DataSet or DataReader

220 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

directly. (See Figure 8-3.) This solution offers you great flexibility because you have complete
control over access to the database. On the other hand, it also has some drawbacks:

B You need to know the SQL syntax.

B All queries are specialized. A change in requirement or in the tables will force you to
update the queries affected by these changes.

B You need to map the properties of your entity classes using the column name, which is
a tedious and error-prone process.

B You have to manage the relations between tables yourself.

PlanMyNightDatabase.cs - x

| G micrasafe.samples Planityhicht Data,DAL PlanMyhichtDataser | [-@ mmsertrinerary (itinerary nerary) v

public void Rateltinerary(long itineraryld, Guid userld, byte rating, DateTime timestamp) =
¢
const string cwdInsertRating = "INSERT Into ItineraryRating (Userld, Itineraryld, Rating, Timestawp) "
"VALUES (BUserId, BItimersryld, BRating, BTimestemp)";

try
1
uging (SglConnection sglConnection = new SglComnection(global::Microsoft.Samples.PlanlyNight.Daca.P
<
using {SqlComuand cmdInsert = sglConnection.CreateConmand ())
1
cmdInsert.ComandType = CommandType, Text:
crdInsert.CommandText = crdInsertRating;

emdTnsert, Paraneters, hdd ("0UserTd", SulDbhType.Unigueldentifier) Value = userTd:
cndInsert. Parameters. Add ("GItinerarylar, SulDbType.Biglat).Value = ltineraryId;
cmdnsert.Parameters. Add("0Rsting”, SqlDbType.TinyInt).Value = rating;
cmdTnsert. Paraneters. hdd ("BTimestanp”, SqlDhType.DateTime) .Value = timestamp:

sglConnection. Open() ;
cmdInsert. ExecutelonQuery () ; b |

sglConnection,Close (] ;
H
3
3
cateh (SglException)
<
throw;

3 v
< >

FIGURE 8-3 ADO.NET Insert query

Another approach would be to use the DataSet designer available in Visual Studio 2008.
Starting from a database with the PMN tables, you could use the TableAdapter Configuration
Wizard to import the database tables as shown in Figure 8-4. The generated code offers you
a typed DataSet. One of the benefits is type checking at design time, which gives you the
advantage of statement completion. There are still some pain points with this approach:

B You still need to know the SQL syntax although you have access to the query builder
directly from the DataSet designer.

B You still need to write specialized SQL queries to match each of the requirements of
your data contracts.

B You have no control of the generated classes. For example, changing the DataSet to
add or remove a query for a table will rebuild the generated TableAdapter classes and
might change the index used for a query. This makes it difficult to write predictable
code using these generated items.

Chapter 8 From 2008 to 2010: Business Logic and Data 221

B The generated classes associated with the tables are persistence aware, so you will have
to create another set of simple entities and copy the data from one to the other. This
means more processing and memory usage.

28 PlankiyNight 2008 - Microsoft ¥isual Studio

Ele Edt Vew Project Buld Team Dsbug Dats Tooks Test Analyze Window Help

[RRERA =R " B 1N RN N R W= PN] - any CPU ~ | (@ OBltinerary ToEnkityItinerary S SEBERE L
TR =N s
'SE|_~ PlanMyNightDatabase.sisd* | Start Page | Source Control Explorer | =22 &
ERIN v inerary & T ItineraryComment @ 3
ﬁ‘ ® 1 9 1 L
e Userld Tneraryd Planyhight Bing
E Hame Usertd FlanMyhight. Contracts
i Created | [N PlanMyhight.Data
g Description i ...
E IsPublic Ipiddress
RatingCount ‘& ItineraryCommentTableAdapter &
Ratingsum =

3 app.config

4] BingActivitiesRepositary. s
8] Ttinerarieshepostory.cs.
4] ReferenceRepository.cs

[E-IPlanMyNight. web

Fil GetData ()
FilByItneraryld GetDatagyltneraryld (@tinerary. .

Rating

2

8 ItineraryTableAdapter
Fill, GetData ()

2l DeleteById (@Original_Td)

2l FilByActivty (@Activity_Idy fraryhctivities 1
2l FilByCity (@Type_Id, @3tate, @City)

el

I ItineraryActivities

Itineraryld

. Filbyld (@1d) U SEEV“Y”
e
EstimatedMinutes
FK_ltineraryRating_tinerary Typeld

State

T., itineraryRating aty
z‘p
‘B Latitude
= Longitude
TtineraryId
Rating
Timeskamp

'8 ItineraryRatingTableAdapter

2l Fil, GetDats ()
2] FilByUserandtinerary (@ussr_Id, @itinerary..

<l I | 3| [Gream Explorer |50lution Explorer
(& Pending Changes| () Error List| & utput| B Find Resuls 1| g2 Find Symbol Results| E] Test Resukts] | €3 History|

Ttem(s) Saved

FIGURE 8-4 DataSet designer in Visual Studio 2008

Another technology available in Visual Studio 2008 was LINQ to SQL (L2S). With the Object
Relational Designer for L2S, it was easy to add the required database tables. This approach
gives you access to strongly typed objects and to LINQ to create the queries required to
access your data, so you do not have to explicitly know the SQL syntax. This approach also
has its limits:

B LINQ to SQL works only with SQL Server databases.

B You have limited control over the created entities, and you cannot easily update them if
your database schema changes.

B The generated entities are persistence aware.

Note As of .NET 4.0, Microsoft recommends the Entity Framework as the data access solution
for LINQ to relational scenarios.

In the next sections of this chapter, you'll explore some of the new features of Visual Studio
2010 that will help you create the PMN data layer with less code, give you more control of
the generated code, and allow you to easily maintain and expand it.

222 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Data with the Entity Framework in Visual Studio 2010

The ADO.NET Entity Framework (EF) allows you to easily create the data access layer for an
application by abstracting the data from the database and exposing a model closer to the
business requirements of the application. The EF has been considerably enhanced in the .NET
Framework 4 release.

You'll use the PlanMyNight project as an example of how to build an application using some
of the features of the EF. The next two sections demonstrate two different approaches to
generating the data model of PMN. In the first one, you let the EF generate the Entity Data
Model (EDM) from an existing database. In the second part, you use a Model First approach,
where you first create the entities from the EF designer and generate the Data Definition
Language (DDL) scripts to create a database that can store your EDM.

Visual Studio 2008 The first version of the Entity Framework was released with Visual Studio
2008 Service Pack 1. The second version of the EF included in the .NET Framework 4.0 offers
many new features to help you build your data applications. Some of these new enhancements
include the following:

B T4 code-generation templates that you can customize to your needs

B The possibility to define your own POCOs (Plain Old CLR Objects) to ensure that your
entities are decoupled from the persistence technology

B Model-First development, where you create a model for your entities and let Visual Studio
2010 create your database

B Code-only support so that you can use the Entity Framework using POCO entities and
without an EDMX file

B |azy loading for related entities so that they are loaded only from the database when
required

B Self-tracking entities that have the ability to record their own changes on the client and
send these changes so that they can be applied to the database store

In the next sections, you'll explore some of these new features.

See Also The MSDN Data Developer Center also offers a lot of resources about the ADO.NET
Entity Framework (http://msdn.microsoft.com/en-us/data/aa937723.aspx) in .NET 4.
EF: Importing an Existing Database

You'll start with an existing solution that already defines the main projects of the PMN
application. If you installed the companion content at the default location, you'll find the

Chapter 8 From 2008 to 2010: Business Logic and Data 223

solution at this location: %userprofile%\Documents\Microsoft Press\Moving to Visual Studio
2010\Chapter 8\Code\ExistingDatabase. Double-click the PlanMyNight.sin file.

This solution includes all the projects in the following list, as shown in Figure 8-5:

B PlanMyNight.Data: Application data layer

B PlanMyNight.Contracts: Entities and contracts

B PlanMyNight.Bing: Bing Maps services

B PlanMyNight.Web: Presentation layer

B PlanMyNight.AppFabricCaching: AppFabric caching

Solution Explarer > 1x
_.l
||__Zﬁlution 'PlantdyMight' (5 prajects) |
4 [PlanhtyMight.&ppFabricCaching
[[=d Properties
> [x3] References
4 [F PlanhtyMight.Bing
[[=d Properties
> [x3 References
4 [F PlanhyMight.Contracts
[[=d Properties
> [x3] References
4 [5] PlanMyNight.Data
[[=d Properties
> [x3] References
4 2B PlanhMyNight.Web
[[=d Properties
> [z3] References
5 App_Data
[Contrallers
3 Models
3 Scripts
3 Wiews
ﬁ] Global.asax
5 Web.config

v v v v

FIGURE 8-5 PlanMyNight solution

The EF allows you to easily import an existing database. Let's walk through this process.

The first step is to add an EDM to the PlanMyNight.Data project. Right-click the
PlanMyNight.Data project, select Add, and then choose New Item. Select the ADO.NET Entity
Data Model item, and change its name to PlanMyNight.edmx, as shown in Figure 8-6.

224

Part 111

Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

£dd New Ttem - PlanhyNight Dats
Installed Templates

4 Visual C#Items
Code
Data
General
Web
Windows Forms
WPF
Reporting

%
@1
L
1

Silverlight
Waorkflow

Search Installed Ternplates 2|

Type: Visual C#Items

ADO.MET Entity Dt Model Visual C# Items
& project item for creating an ADO.MET
Entity Data Model.

DataSet Wisual C# Ikems

LING to QL Classes Visual Cit Teems
Local Database Visual C# Ttems
Local Database Cache Visual C# Ttems

Service-hased Database Wisual C#Items

XML File Wisual C#Irems
HML Schema Wisual C#Items
MSLTFile Wisual C#Items

Mame: PlanhiyMight.edrx

o

FIGURE 8-6 Add New Item dialog with ADO.NET Entity Data Model selected

The first dialog of the Entity Data Model Wizard allows you to choose the model content.
You'll generate the model from an existing database. Select Generate From Database and

then click Next.

You need to connect to an existing database file. Click New Connection. Select Microsoft
SQL Server Database File from the Choose Data Source dialog, and click Continue. Select
the %userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 8\
ExistingDatabase\PlanMyNight.Web\App_Data\PlanMyNight.mdf file. (See Figure 8-7.)

Entity Data Model Wizard

=]

|_‘4; Cannection Properties

Whic
Data source:

SENTT Database file name (new or existing):

Enter information to cannect to the selected data source or click
"Change" to choose a different data source and/for provider.

ol Microsoft SQL Server Database File (SalClient)

toin
SlanhtyNight WebSpp_Data\PlanktyNight.mdf
Log an to the server
ity (@) Use Windows Authentication
©) Use SOL Server Authentication
User name:
Password:
Save my password
Sa

a?

MNewr Cannection...

) that s required to
security risk, Do you want

prlication code,

s |

QK] [Cancel]

< Previous Mext » inish

Cancel

FIGURE 8-7 EDM Wizard database connection

Chapter 8 From 2008 to 2010: Business Logic and Data 225

Leave the other fields in the form as is for now and click Next.

Note You'll get a warning stating that the local data file is not in the current project. Click No to
close the dialog because you do not want to copy the database file to the current project.

From the Choose Your Database Objects dialog, select the Itinerary, ItineraryActivities,
ItineraryComment, ItineraryRating, and ZipCode tables and the UserProfile view. Select the
RetrieveltinerariesWithinArea stored procedure. Change the Model Namespace value to
Entities as shown in Figure 8-8.

Entity Data Model Wizard -7l

! b Choose Your Database Objects

Which database objects do you want to include in your model?

4 [Z]75 Tables|
[CIET aspnet Applications (dbo)
[CIE aspret_Membership (dba)
[CIE aspnet_Profile (dbo)
[CIE3 aspnet_Schemaversions (dbo)
[CIET aspret_Users (dbo)
[ZIE Hinerary (dbo)
[V Hineraryhctivities (dbo)
[Z]E HineraryComment (dbo)
[Z]E3 HineraryRating (dbo)
[CIE sysdiagrams (dbo)
[Z]E3 ZipCode (dbo)
P iews
UserProfile (dbo)
[C1E vwv_aspret_Applications (dbo)
[CHS vwv_aspret_MembershipUsers (dba)
[CHS vw_aspret_Profiles (dbo)
[CIS vw_aspret_Users (dbo)
4[] Stored Procedures
[T asnnet SnuDatalnTahles fdhnt 52
Pluralize o singularize generated object names

>

I

Include fareign key columns in the model
Madel Mamespace:

Entities

FIGURE 8-8 EDM Wizard: Choose Your Database Objects page

Click Finish to generate your EDM.

Visual Studio 2008 In the first version of the EF, the names associated with EntityType,
EntitySet, and NavigationProperty were often wrong when you created a model from the
database because it was using the database table name to generate them. You probably do not
want to create an instance of the ItineraryActivities entity. Instead, you probably want the name
to be singularized to ItineraryActivity. The Pluralize Or Singularize Generated Object Names
check box shown in Figure 8-8 allows you to control whether pluralization or singularization
should be attempted.

226

Part 111

Fixing the Generated Data Model

You now have a model representing a set of entities matching your database. The wizard has
generated all the navigation properties associated with the foreign keys from the database.

The PMN application requires only the navigation property /tineraryActivities from the
Itinerary table, so you can go ahead and delete all the other navigation properties. You'll also
need to rename the ltineraryActivities navigation property to Activities. Refer to Figure 8-9

for the updated model.

¢ N e J
“¢ Rinerary

= Properties
I
ﬁUserId
ﬁl\lame
ﬁCreated
5 Description ¢
B IsPublic
2 RatingCount
2 RatingSum
5 Rating

= Mavigation Properties
Avctivities

“¢ MineraryRating

=l Properties
I
ﬁUserId
5 Itineranyd
5 Rating
= Timestamp
= Mavigation Properties
R

Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

“¢ Minerary Activity

E] Properties
4 Itinerand
B Activityld
ﬁOrder
ﬁEstimatedMinutes
5 Typeld
ﬁState
5 City
B Zip
ﬁLatitude
5 Longitude

= Mavigation Properties

ag RineraryCom...

= Properties
I
F Itineranyd
ﬁUserId
2 Body
= Timestamp
5 [pAddress
= Mavigation Properties

k.

s ZipCode

= Properties
ZipCodel
57 City
ﬁState

= Mavigation Properties
g

FIGURE 8-9 Model imported from the PlanMyNight database

Notice that one of the properties of the ZipCode entity has been generated with the name
ZipCodel because the table itself is already named ZipCode and the name has to be unique.
Let's fix the property name by double-clicking it. Change the name to Code, as shown in

Figure 8-10.

¢ ZipCode

= Praperties

wsfcesd
E5F City
ﬁState
= Mavigation Properties
\.

FIGURE 8-10 ZipCode entity

Chapter 8 From 2008 to 2010: Business Logic and Data 227

Build the solution by pressing Ctrl+Shift+B. When looking at the output window, you'll notice
two messages from the generated EDM. You can discard the first one because the Location
column is not required in PMN. The second message reads as follows:

The table/view ‘dbo.UserProfile’ does not have a primary key defined and no valid
primary key could be inferred. This table/view has been excluded. To use the entity,
you will need to review your schema, add the correct keys, and uncomment it.

When looking at the UserProfile view, you'll notice it does not explicitly define a primary key
even though the UserName column is unique.

You need to modify the EDM manually to fix the UserProfile view mapping so that you can
access the UserProfile data from the application.

From the project explorer, right-click the PlanMyNight.edmx file and then select Open With
Choose XML (Text) Editor from the Open With dialog as shown in Figure 8-11. Click OK to
open the XML file associated with your model.

Open With - PlanMyNight edmsx [l

Choose the program you want to use to open this file:

ADOMET Entity Data Model Designer (Default) Add...
Automatic Editor Selector (XhL)
HML (Text) Editor

XML (Text) Editar with Encading Remove
Source Code (Text) Editor
Source Code (Text) Editar With Encoding
HTrL Editar

HTrAL Editor with Encoding
Binary Editar

Resource Editar

Ok l ’ Cancel

FIGURE 8-11 Open PlanMyNight.edmx in the XML Editor

Note You'll get a warning stating that the PlanMyNight.edmx file is already open. Click Yes to
close it.

The generated code was commented out by the code-generation tool because there was no
primary key defined. To be able to use the UserProfile view from the designer, you need to
uncomment the UserProfile entity type and add the Key tag to it. Search for UserProfile in
the file. Uncomment the entity type, add a Key tag and set its name to UserName and make
the UserName property not nullable. Refer to Listing 8-1 to see the updated entity type.

228 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

LISTING 8-1 UserProfile Entity Type XML Definition

<EntityType Name="UserProfile">
<Key>
<PropertyRef Name="UserName"/>
</Key>
<Property Name="UserName" Type="uniqueidentifier" Nullable="false" />
<Property Name="FullName" Type="varchar" MaxLength="500" />
<Property Name="City" Type="varchar" MaxLength="500" />
<Property Name="State" Type="varchar" MaxLength="500" />
<Property Name="PreferredActivityTypeId" Type="int" />
</EntityType>

If you close the XML file and try to open the EDM Designer, you'll get the following error
message in the designer: “The Entity Data Model Designer is unable to display the file you
requested. You can edit the model using the XML Editor.”

There is a warning in the Error List pane that can give you a little more insight into what this
error is all about:

Error 11002: Entity type ‘UserProfile” has no entity set.

You need to define an entity set for the UserProfile type so that it can map the entity type to
the store schema. Open the PlanMyNight.edmx file in the XML editor so that you can define

an entity set for UserProfile. At the top of the file, just above the Itinerary entity set, add the

XML code shown in Listing 8-2.

LISTING 8-2 UserProfile EntitySet XML Definition

<EntitySet Name="UserProfile" EntityType="Entities.Store.UserProfile"
store:Type="Views" store:Schema="dbo" store:Name="UserProfile">
<DefiningQuery>
SELECT
[UserProfile].[UserName] AS [UserName],
[UserProfile].[FullName] AS [FullName],
[UserProfile].[City] AS [City],
[UserProfile].[State] AS [State],
[UserProfile].[PreferredActivityTypeId] as [PreferredActivityTypeld]
FROM [dbo].[UserProfile] AS [UserProfile]
</DefiningQuery>
</EntitySet>

Save the EDM XML file, and reopen the EDM Designer. Figure 8-12 shows the UserProfile
view in the Entities.Store section of the Model Browser.

Tip You can open the Model Browser from the View menu by clicking Other Windows and
selecting the Entity Data Model Browser item.

Model Br

Type here to search b

4 |4 PlanMyNightedmx
Ll Entities
4 [Entity Types
&2 Ttinerary
&2 Tinerarylctivity
%2 TineraryComment
&2 TineraryRating
%2 ZipCode
3 Complex Types
3 Associations
L [a] EntityCentainer: PlanMyNightEntitic
4 |] Entities.Store
4 [0 Tables / Views
[Itinerary
[KineraryActivities
[KineraryComment
[KineraryRating
4 [UserProfile
{E UserMName
[city
FullName
(=] PreferredActivityTypeld
[E] state
[ZipCode
[Stored Procedures
3 Constraints

FIGURE 8-12 Model Browser with the UserProfile view

Chapter 8 From 2008 to 2010: Business Logic and Data

229

Now that the view is available in the store metadata, you add the UserProfile entity and map
it to the UserProfile view. Right-click in the background of the EDM Designer, select Add, and

then choose Entity. You'll see the dialog shown in Figure 8-13.

Add Entity

Properties

Entity narne:

B

UserProfile

Base type:

(Mone)

Entity Set:

UserProfiles

Key Property
Create key property

Property narne:

UserMarme

Property type:

Guid

[o

|| conce

)

FIGURE 8-13 Add Entity dialog

230 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Complete the dialog as shown in Figure 8-13, and click OK to generate the entity.
You need to add the remaining properties: City, State, and PreferredActivityTypeld. To do
so, right-click the UserProfile entity, select Add, and then select Scalar Property. After the

property is added, set the Type, Max Length, and Unicode field values. Table 8-1 shows the
expected values for each of the fields.

TABLE 8-1 UserProfile Entity Properties

Name Type Max Length Unicode
FullName String 500 False
City String 500 False
State String 500 False
PreferredActivityTypeld Int32 NA NA

Now that you have created the UserProfile entity, you need to map it to the UserProfile view.
Right-click the UserProfile entity, and select Table Mapping as shown in Figure 8-14.

Add 3
Renarme

Cut Chrl +3
Copy Ctrl+C
Paste Crl +4f
Delete Del

i %<

X {

Collapse

Table Mapping
Stored Procedure hMapping

=

Show in Model Browser

Update kodel frorm Database..,

Generate Database from hModel..
Add Code Generation ern..,
Walidate
Properties Alt+Enter

FIGURE 8-14 Table Mapping menu item
Then select the UserProfile view from the drop-down box as shown in Figure 8-15. Ensure

that all the columns are correctly mapped to the entity properties. The UserProfile view of
our store is now accessible from the code through the UserProfile entity.

Mapping Details - UserPrafile - B X

]

Column Operator Value / Property
E |4 Tables

+ (2 [Miaps o Userprofe B 1 A G D M|
B

5 State : String
[Preferreddctivi Typeld : Int32

38232

3 i
B <Add a Table or Viewrs

FIGURE 8-15 UserProfile mapping details

Chapter 8 From 2008 to 2010: Business Logic and Data 231

Stored Procedure and Function Imports

The Entity Data Model Wizard has created an entry in the storage model for the
RetrieveltinerariesWithinArea stored procedure you selected in the last step of the wizard.
You need to create a corresponding entry to the conceptual model by adding a Function
Import entry.

From the Model Browser, open the Stored Procedures folder in the Entities.Store section.
Right-click RetrieveltineraryWithinArea, and then select Add Function Import. The Add
Function Import dialog appears as shown in Figure 8-16. Specify the return type by selecting
Entities and then select the Itinerary item from the drop-down box. Click OK.

Add Function Import @

Function Import MName:

RetrieveltinerariesWithinArea

Stored Procedure Mame:

Retripwal PR Y

Returns a Collection Of
©) Mone
@) Scalars:

©) Complex: Update

@ Entities: ’hinelary =

Stored Procedure Column Information
Get Column Information

Click on "Get Column Information” above to retrieve the stored
procedure’s schema. Once the schema is available, click on "Create Mew
Complex Type" below to create a compatible complextype. You can
also always update an existing complex type to match the returned
schema. The changes will be applied to the model once you click on
0K,

Create Mew Complex Type

OK] ’ Cancel

FIGURE 8-16 Add Function Import dialog

232

Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

The RetrieveltinerariesWithinArea function import was added to the Model Browser as shown
in Figure 8-17.

Model Browser > i1x
Type here to search

4 |4 PlanMyNightedmx
Ll Entities
(3 Entity Types
3 Complex Types
b B3 Associations
4 (&) EntityCentainer: PlanMyNightEntities
(3 Entity Sets
3 Association Sets
4 [Function Impaorts
Rl RetrieveltinerariesWithinArea
@ 1at
'@ lon
page
i@l pageSize
'@ radius
total
_ @ typeld
4 |] Entities.Store
b B3 Tables / Views
4 [Stored Procedures
4 D RetrieveltinerariesWithinfrea
lat
'@ lon
@ page
pageSize
radius

'@ total

@ typetd
E3 Constraints

FIGURE 8-17 Function Imports in the Model Browser

You can now validate the EDM by right-clicking on the design surface and selecting Validate.
There should be no error or warning.

EF: Model First

In the prior section, you saw how to use the EF designer to generate the model by importing
an existing database. The EF designer in Visual Studio 2010 also supports the ability to
generate the Data Definition Language (DDL) file that will allow you to create a data-

base based on your entity model. In this section, you'll use a new solution to learn how to
generate a database script from a model.

Chapter 8 From 2008 to 2010: Business Logic and Data 233

You can start from an empty model by selecting the Empty model option from the Entity
Data Model Wizard. (See Figure 8-18.)

Note To get the wizard, right-click the PlanMyNight.Data project, select Add, and then choose
New Item. Select the ADO.NET Entity Data Model item.

Entity Data Model Wizard -7l

| ﬁ Choose Model Contents

What should the model contain?

u

Generate [
from d..

Creates an empty madel as 3 starting point for visually designing a conceptual madel fram the toalbox,
Classes are generated from the madel when the project is compiled. You can specify a database connection
Ister to map the conceptual madel to the storage model.

FIGURE 8-18 EDM Wizard: Empty model

Open the PMN solution at %userprofile%\Documents\Microsoft Press\Moving to Visual
Studio 2010\Chapter 8\Code\ModelFirst by double-clicking the PlanMyNight.sIn file.

The PlanMyNight.Data project from this solution already contains an EDM file named
PlanMyNight.edmx with some entities already created. These entities match the data schema
you saw in Figure 8-2.

The Entity Model designer lets you easily add an entity to your data model. Let's add the
missing ZipCode entity to the model. From the toolbox, drag an Entity item into the designer,
as shown in Figure 8-19. Rename the entity as ZipCode. Rename the /d property as Code,
and change its type to String.

234 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

o0 Plankyhight - Microsoft Visual Studio o |-
Fle Edit View Project Bulld Debuy Team Data Test Tools Window Help
(G- @4 GaB|9 - e |bowe FFGREBO-L Ak eR =T E
a3l Plantiybightedmy 3
F k r o S - N p-
‘Vp“m“w“’ 37 Zpcode Criepe gy T = e
3 Gefiicy 23 Solution ‘PlanhyNight' 5 projects)
L Association & Properties B Properties "l 4 & PlantyNight. AppFabricCaching
P p
& Entity S 1 b [Properties
> [Ref
Lo Inheritonce B City B Usertd 2 Tinerandd e
a4 General 4 (G Pranhyiight Bing
57 State 5 Name 5 Userld » Ba Properties
= Navigation Properties S Crested & Body: I b B3 References
jeEreinolusable L 5 Description 5 Timestarmp
controls in this group. T e 4 (3 PlanMyNight Cantracts
Drag an itern onto this raelic pAddress b [l Properties
text to add it to the 57 RatingCount. = Havigation Praperties b B References
toolbox, % RatingSum L . @ fight.Data
' Rating P b Properties
= Navigation Properties @ RineraryRating b [l References
4 & PlantyNight.edrmx
= Properties %] PlanMyNightDesigner.cs
P ()] b (R Planhytight Web
e car Actity 8 Userld = solution.. IR
5 Hineraryld
= properties 2 Rating —
W Tineranld B Timestamp PlanMyNight ZipCode.Code Property
Bactivinld = Navigation Froperties 2z BUE
2 Order s
A Unicode False -
5 Estimatedinutes .
B State
Sy Concurrency Modh None
i
. DefaultValue (Nong) M
2 Latitude & Documentation =
Flongitude Entity Keye True
A Typeld o e Code i
= Navigation Properies | Name
—— % The name of the property,

FIGURE 8-19 Entity Model designer

You need to add the City and State properties to the entity. Right-click the ZipCode entity,
select Add, and then choose Scalar Property. Ensure that each property has the values shown
in Table 8-2.

TABLE 8-2 ZipCode Entity Properties

Name Type Fixed Length Max Length Unicode
Code String False 5 False
City String False 150 False
State String False 150 False

Add the relations between the ItineraryComment and Itinerary entities. Right-click the
designer background, select Add, and then choose Association. (See Figure 8-20.)

Chapter 8 From 2008 to 2010: Business Logic and Data 235

Add Association

Association Mame:

Fi_itineraryCommentltinerary

End End

Entity: Entity:

’ItineraryComment v] ’Itinerary v]
Multiplicity: Multiplicity:

[Many) | [1ione -]
[[] Mavigation Property: [[] Mavigation Property:

Ttinerary ItineraryCornments

[T] &dd fareign key properties to the ‘TineraryCormrment’ Entity

ItineraryComment can have 1 (One) instance of Itinerary, -

Itinerary can have * (Many) instances of ItineranyComrment,

Ok l ’ Cancel

FIGURE 8-20 Add Association dialog for FK_/tineraryCommentltinerary

Visual Studio 2008 Foreign key associations are now included in the .NET 4.0 version of

the Entity Framework. This allows you to have Foreign properties on your entities. Foreign Key
Associations is now the default type of association, but the Independent Associations supported
in .NET 3.5 are still available.

Set the association name to FK_ItineraryCommentltinerary, and then select the entity
and the multiplicity for each end, as shown in Figure 8-20. After the association is created,
double-click the association line to set the Referential Constraint as shown in Figure 8-21.

Referential Canstraint ,-')a
Principal:
Ttinerany - oK
Cependent:

Delete

Cancel

ItineraryComment

Principal Key Dependent Property
Id Itineraryld

FIGURE 8-21 Association Referential Constraint dialog

236

Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Add the association between the ItineraryRating and Itinerary entities. Right-click the designer
background, select Add, and then choose Association. Set the association name to FK_
ItineraryltineraryRating and then select the entity and the multiplicity for each end as in the
previous step, except set the first end to ItineraryRating. Double-click on the association line,

and set the Referential Constraint as shown in Figure 8-21. Note that the Dependent field will read
[tineraryRating instead of ItineraryComment. Create a new association between the ItineraryActivity
and ltinerary entities. For the FK_ltineraryltineraryActivity association, you want to also create a
navigation property and name it Activities, as shown in Figure 8-22. After the association is created,
set the Referential Constraint for this association by double-clicking on the association line.

Add Association

Association Mame:

FE_Ttinerargfctivityltinerary

End End

Entity: Entity:

’ItineraryActivity v] ’Itinerary v]
Multiplicity: Multiplicity:

[thany | [1ione -
[[] Mavigation Property: MNavigation Property:

Ttinerary Avctivities

[] &dd fareign key properties to the ‘Tinerangsictivity' Entity

Itinerarydctivity can have 1 (One) instance of Itinerany, -

Itinerary can have * (Many) instances of Itinerangfctivity, Use
Ttinerary.Activities to access the Itineraryfctivity instances|

FIGURE 8-22 Add Association dialog for FK_lItineraryActivityltinerary

Generating the Database Script from the Model

Your data model is now completed but there is no mapping or store associated with it. The
EF designer offers the possibility of generating a database script from our model.

Chapter 8 From 2008 to 2010: Business Logic and Data 237

Right-click on the designer surface, and choose Generate Database From Model as shown in
Figure 8-23.

—_ N . —
B State ﬁ Created ﬁ Body

e Mavigation Properties ﬁDescription ﬁTimestan

- 5 sPublic 5 [paddres:

' RatingCount = Mavigation P
Add 3
Diagram 3 —
a .
T [< “¢ Tinerary/
Grid v ’
= Properties
Scalar Property Format 4 =
inerar
Select &l B Activity
& Mapping Details 57 Qrder
Iodel Browser B Estimat
ﬁState
Update kodel frorm Database.., 2 City
Generate Database from Model... ﬁZip
Add Code Generation Itemn... 57 Latitud
Longit:
Walidate = s LGN
4 5 Typeld
Properties Alt+Enter = Navigatior
\————

FIGURE 8-23 Generate Database From Model menu item

The Generate Database Wizard requires a data connection. The wizard uses the connection
information to translate the model types to the database type and to generate a DDL script
targeting this database.

Select New Connection, select Microsoft SQL Server Database File from the Choose Data
Source dialog, and click Continue. Select the database file located at %userprofile%\
Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 8\Code\ModelFirst\Data\
PlanMyNight.mdf. (See Figure 8-24.)

238 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Connection Properties

Enter information to connect to the selected data source or click
"Change" to choose a different data source andfor provider,

Data source:

Micrasoft SQL Server Database File (SqiClient)

Database file name (hew or existing):

=nts\SourcelDataiModelFirstyPlanhyMight.mdf Browyse..,

Log on to the server

@ Use Windows Authentication

() Use SOL Server Authentication

User name;
Password:
Save my password
Test Connection] [QK H Cancel]

FIGURE 8-24 Generate a script database connection

After your connection is configured, click Next to get to the final page of the wizard, as
shown in Figure 8-25. When you click Finish, the generated T-SQL PlanMyNight.edmx.sql file

is added to your project. The DDL script will generate the primary and foreign key constraints
for your model.

Generate Database Wizard

L s Summary and Settings

Save DDL &g PlanbyMight.edrcsql

ool

-- Entity Designer DDL Script for SQL Server 2005, 2008, and Azure

o] »

-- Date Created: 02/03/2010 22:55:40

-- Generated from EDMX file: CAUsers\ Docurments\Wisual Studio 2010\Projects
“\Chapterf\PlanhyNight Data\PlanhdyNight edm:

SET QUOTED_IDEMTIFIER OFF;
GO

USE [PlanhyMight];

GO

IF SCHEMA_ID(N'dho’) IS MULL EXECUTE(M'CREATE SCHEMA [dbo]');
GO

-- Drapping existing FOREIGN KEY canstraints

FIGURE 8-25 Generated T-SQL file

WV

Chapter 8 From 2008 to 2010: Business Logic and Data 239

The EDM is also updated to ensure your newly created store is mapped to the entities. You
can now use the generated DDL script to add the tables to the database. Also, you now have
a data layer that exposes strongly typed entities that you can use in your application.

Important Generating the complete PMN database would require adding the remaining
tables, stored procedures, and triggers used by the application. Instead of performing all these
operations, we will go back to the solution we had at the end of the “EF: Importing an Existing
Database” section.

POCO Templates

The EDM Designer uses T4 templates to generate the code for the entities. So far, we have let
the designer create the entities using the default templates. You can take a look at the code
generated by opening the PlanMyNight.Designer.cs file associated with PlanMyNight.edmx.
The generated entities are based on the EntityObject type and decorated with attributes to
allow the EF to manage them at run time.

Note T4 stands for Text Template Transformation Toolkit. T4 support in Visual Studio 2010 allows
you to easily create your own templates and generate any type of text file (Web, resource, or
source). To learn more about the code generation in Visual Studio 2010, visit Code Generation
and Text Templates (http://msdn.microsoft.com/en-us/library/bb126445(VS.100).aspx).

The EF also supports POCO entity types. POCO classes are simple objects with no attributes
or base class related to the framework. (Listing 8-3, in the next section, shows the POCO
class for the ZipCode entity.) The EF uses the names of the types and the properties of these
objects to map them to the model at run time.

Note POCO stands for Plain-Old CLR Objects.

ADO.NET POCO Entity Generator

Let's re-open the %userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\
Chapter 8\Code\ExistingDatabase\PlanMyNight.sIn file.

Open the PlanMyNight.edmx file, right-click on the design surface, and choose Add Code
Generation Item. This opens a dialog like the one shown in Figure 8-26, where you can select
the template you want to use. Select the ADO.NET POCO Entity Generator template, and
name it PlanMyNight.tt. Then click the Add button.

240 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Note You might get a security warning about running this text template. Click OK to close the
dialog because the source for this template is trusted.

Add New ltem - PlanMyNightData & = 19 [
Installed Templates Sort by: | Highest Ranked BE Search Online Templates 2|

Online Templates

ADO.NET C# POCO Entity Generator Type: Visual G2
4 Templates A Microsoft Entity Framework project item ta generate a strongly-typed Created By: Microsoft
ASP.NET ObjectContext class and entity classes with persistence ignorance in C... Version: 1.1
Database Downloads: 12031
Other Silverlight Client Access Policy File Rating: (5 Votes)
Silverlight W& Adds item template for clientaccesspolicyxml file format for cross- More Information
Windows Forms domain services. Report Extension to Microsoft
Workflow
WoE *‘ WPF About Box (CS)
Every application has an AboutBox, but there isn't a common one for

WPF Applications... until now, Create an AboutBox for a WPF Applicat...

85 WCF Flowchart Service Template
£ Iter template for creating a Flowchart Workflow Service sonbyomn 7]

&, 40088t oo Gt

AT rr—

&, 400NET sl Tty e

- |
Name: PlanlMyNight.tt

FIGURE 8-26 Add New Item dialog

Two files, PlanMyNight.tt and PlanMyNight.Context.tt, have been added to your project, as
shown in Figure 8-27. These files replace the default code-generation template, and the code
is no longer generated in the PlanMyNight.Designer.cs file.

|.; Solution 'PlanhdyMight' (3 projects)
(5 PlanhyMight.AppFabricCaching
b [Z PlanhdyMight.Bing
b [E PlanhyMight.Contracts
(= PlanMyNight.Data
[[=d Properties
> [z3 References
|5 2pp.Config
4 |3] PlanhyMight.Context.tt
%) PlantyMight.Context.cs
& PlanMyMight.edmsx
4 |3] PlankyMight.tt
% Itinerary.cs
) Hinerarlctivity.cs
%) HineraryComment.cs
) HineraryRating.cs
%) PlanhyMight.cs
%) UserProfile.cs
2 ZipCasec

b [PlanhyNight ieb

FIGURE 8-27 Added templates

Chapter 8 From 2008 to 2010: Business Logic and Data 241

The PlanMyNight.tt template produces a class file for each entity in the model. Listing 8-3
shows the POCO version of the ZipCode class.

LISTING 8-3 POCO Version of the ZipCode Class

namespace Microsoft.Samples.PlanMyNight.Data
{
public partial class ZipCode
{
#region Primitive Properties
public virtual string Code
{
get;
set;
}
pubTlic virtual string City

{
get;
set;
}

public virtual string State
{

get;

set;

}

#endregion

The other file, PlanMyNight.Context.cs, generates the ObjectContext object for the
PlanMyNight.edmx model. This is the object you'll use to interact with the database.

Tip The POCO templates will automatically update the generated classes to reflect the changes
to your model when you save the .edmx file.

Moving the Entity Classes to the Contracts Project

We have designed the PMN application architecture to ensure that the presentation layer
was persistence ignorant by moving the contracts and entity classes to an assembly that has
no reference to the storage.

Visual Studio 2008 Even though it was possible to extend the XSD processing with code-
generator tools, it was not easy and you had to maintain these tools. The EF uses T4 templates to
generate both the database schema and the code. These templates can easily be customized to
your needs.

242

Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

The ADO.NET POCO templates split the generation of the entity classes into a separate tem-
plate, allowing you to easily move these entities to a different project.

You are going to move the PlanMyNight.tt file to the PlanMyNight.Contracts project. Right-
click the PlanMyNight.tt file, and select Cut. Right-click the Entities folder in the PlanMyNight.
Contracts project, and select Paste. The result is shown in Figure 8-28.

Solution Explorer
| &2 8a
b [PlanMyNight.AppFabricCaching
[PlanMyNight.Bing
4 [PlanMyNight.Cantracts
[[=d Properties
> [x3] References
[Data
4 [Entities
4 |3] PlankyMight.tt
% Itinerary.cs
) Hinerarplctivity.cs
%) HineraryComment.cs
) HineraryRating.cs
%) PlanhyMight.cs
%) UserProfile.cs
%) FipCode.cs
4 [PlanMyNight.Data
[[=d Properties
> [z3] References
[d Caching
|5 App.Config
4 |3] PlanhyMight.Context.tt
%) PlantyMight.Context.cs
i |.d PlanhyMight.edrx |
b SR PlanMyMight. Web

0 x

m

FIGURE 8-28 POCO template moved to the Contracts project

The PlanMyNight.tt template relies on the metadata from the EDM model to generate the
entity type’s code. You need to fix the relative path used by the template to access the

EDMX file.

Open the PlanMyNight.tt template and locate the following line:

string inputFile = @"PlanMyNight.edmx";

Fix the file location so that it points to the PlanMyNight.edmx file in the PlanMyNight.Data

project:

string inputFile = @"..\..\PlanMyNight.Data\PlanMyNight.edmx";

The entity classes are regenerated when you save the template.

Chapter 8 From 2008 to 2010: Business Logic and Data 243

You also need to update the PlanMyNight.Context.tt template in the PlanMyNight.Contracts
project because the entity classes are now in the Microsoft.Samples.PlanMyNight.Entities
namespace instead of the Microsoft.Samples.PlanMyNight.Data namespace. Open the
PlanMyNight.Context.tt file, and update the using section to include the new namespace:

using System;

using System.Data.Objects;

using System.Data.EntityClient;

using Microsoft.Samples.PlanMyNight.Entities;

Build the solution by pressing Ctrl+Shift+B. The project should now compile successfully.

Putting It All Together

Now that you have created the generic code layer to interact with your SQL database, you
are ready to start implementing the functionalities specific to the PMN application. In the
upcoming sections, you'll walk through this process, briefly look at getting the data from the
Bing Maps services, and get a quick introduction to the Microsoft Windows Server AppFabric
Caching feature used in PMN.

There is a lot of plumbing pieces of code required to get this all together. To simplify the
process, you'll use an updated solution where the contracts, entities, and most of the con-
necting pieces to the Bing Maps services have been coded. The solution will also include the
PlanMyNight.Data.Test project to help you validate the code from the PlanMyNight.Data
project.

Note Testing in Visual Studio 2010 will be covered in Chapter 10.

Getting Data from the Database

At the beginning of this chapter, we decided to group the operations on the Itinerary entity
in the IltinerariesRepository repository interface. Some of these operations are

B Searching for Itinerary by Activity
B Searching for Itinerary by ZipCode
B Searching for Itinerary by Radius

B Adding a new ltinerary

244 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Let's take a look at the corresponding methods in the IltinerariesRepository interface:

B SearchByActivity allows searching for itineraries by activity and returning a page of
data.

B SearchByZipCode allows searching for itineraries by Zip Code and returning a page of
data.

B SearchByRadius allows searching for itineraries from a specific location and returning a
page of data.

B Add allows you to add an itinerary to the database.

Open the PMN solution at %userprofile%\Documents\Microsoft Press\Moving to Visual
Studio 2010\Chapter 8\Code\Final by double-clicking the PlanMyNight.sIn file.

Select the PlanMyNight.Data project, and open the ItinerariesRepository.cs file. This is the
IltinerariesRepository interface implementation. Using the PlanMyNightEntities Object
Context you generated earlier, you can write LINQ queries against your model, and the EF
will translate these queries to native T-SQL that will be executed against the database.

Navigate to the SearchByActivity function definition. This method must return a set of itin-
eraries where the IsPublic flag is set to true and where one of their activities has the same
activityld that was passed in the argument to the function. You also need to order the result
itinerary list by the rating field.

Using standard LINQ operators, you can implement SearchByActivity as shown in Listing 8-4.
Add the highlighted code to the SearchByActivity method body.

LISTING 8-4 SearchByActivity Implementation

public PagingResult<Itinerary> SearchByActivity(string activityId, int pageSize, int
pageNumber)
{

using (var ctx = new PlanMyNightEntities())

{

ctx.ContextOptions.ProxyCreationEnabled = false;

var query = from itinerary in ctx.Itineraries.Include("Activities")
where itinerary.Activities.Any(t => t.Activityld == activityId)
&& dtinerary.IsPublic
orderby itinerary.Rating
select itinerary;

return PageResults(query, pageNumber, pageSize);
}
}

Chapter 8 From 2008 to 2010: Business Logic and Data 245

Note The resulting paging is implemented in the PageResults method:

private static PagingResult<Itinerary> PageResults(IQueryable<Itinerary> query, int
page, int pageSize)
{

int rowCount = rowCount = query.Count();

if (pageSize > 0)

{
query = query.Skip((page - 1) * pageSize)
.Take(pageSize);
}
var result = new PagingResult<Itinerary>(query.ToArray())
{

PageSize = pageSize,
CurrentPage = page,
TotalItems = rowCount
b
return result;

}

IQueryable<Itinerary> is passed to this function so that it can add the paging to the base query
composition. Passing /Queryable instead of IEnumerable ensures that the T-SQL created for the
query against the repository will be generated only when query.ToArray is called.

The SearchByZipCode function method is similar to the SearchByActivity method, but it
also adds a filter on the Zip Code of the activity. Here again, LINQ support makes it easy
to implement, as shown in Listing 8-5. Add the highlighted code to the SearchByZipCode
method body.

LISTING 8-5 SearchByZipCode Implementation

pubTlic PagingResult<Itinerary> SearchByZipCode(int activityTypeld, string zip, int
pageSize, int pageNumber)
{

using (var ctx = new PlanMyNightEntities())

{

ctx.ContextOptions.ProxyCreationEnabled = false;

var query = from itinerary in ctx.Itineraries.Include("Activities'")
where itinerary.Activities.Any(t => t.Typeld == activityTypeld &&
t.Zip == zip)
&& dtinerary.IsPublic
orderby itinerary.Rating
select itinerary;

return PageResults(query, pageNumber, pageSize);

246 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

The SearchByRadius function calls the RetrieveltinerariesWithinArea import function that
was mapped to a stored procedure. It then loads the activities for each itinerary found. You
can copy the highlighted code in Listing 8-6 to the SearchByRadius method body in the
ItinerariesRepository.cs file.

LISTING 8-6 SearchByRadius Implementation

public PagingResult<Itinerary> SearchByRadius(int activityTypeld,
double longitude, double Tatitude, double radius,
int pageSize, int pageNumber)
{
using (var ctx = new PlanMyNightEntities())
{

ctx.ContextOptions.ProxyCreationEnabled = false;

// Stored Procedure with output parameter

var totalOutput = new ObjectParameter(''total", typeof(int));

var items = ctx.RetrieveltinerariesWithinArea(activityTypeId, latitude, longitude,
radius, pageSize, pageNumber, totalOutput).ToArray(Q);

foreach (var item 1in 1items)

{
item.Activities.ToList() .AddRange(this.Retrieve(item.Id).Activities);

}
int total = totalOutput.Value == DBNull.Value ? 0 : (int)totalOutput.Value;

return new PagingResult<Itinerary>(items)

{
TotalItems = total,
PageSize = pageSize,
CurrentPage = pageNumber
18

The Add method allows you to add Itinerary to the data store. Implementing this function-
ality becomes trivial because your contract and context object use the same entity object.
Copy and paste the highlighted code in Listing 8-7 to the Add method body.

LISTING 8-7 Add Implementation

public void Add(Itinerary itinerary)
{
using (var ctx = new PlanMyNightEntities())
{
ctx.Itineraries.AddObject(itinerary);
ctx.SaveChanges(Q);
}
}

Chapter 8 From 2008 to 2010: Business Logic and Data 247

There you have it! You have completed the ItinerariesRepository implementation using the
context object generated using the EF designer. Run all the tests in the solution by pressing
Ctrl+R, A. The tests related to the /tinerariesRepository implementation should all succeed.

Parallel Programming

With the advances in multicore computing, it is becoming more and more important

for developers to be able to write parallel applications. Visual Studio 2010 and the .NET
Framework 4.0 provide new ways to express concurrency in applications. The Task Parallel
Library (TPL) is now part of the Base Class Library (BCL) for the .NET Framework. This means
that every .NET application can now access the TPL without adding any assembly reference.

PMN stores only the Bing Activity ID for each ItineraryActivity to the database. When it's
time to retrieve the entire Bing Activity object, a function that iterates through each of the
ItineraryActivity instances for the current Itinerary is used to populate the Bing Activity entity
from the Bing Maps Web services.

One way of performing this operation is to sequentially call the service for each activity in the
Itinerary as shown in Listing 8-8. This function waits for each call to RetrieveActivity to com-
plete before making another call, which has the effect of making its execution time linear.

LISTING 8-8 Activity Sequential Retrieval

public void PopulateltineraryActivities(Itinerary itinerary)

{
foreach (var item in itinerary.Activities.Where(i => i.Activity == null))
{
item.Activity = this.RetrieveActivity(item.ActivityId);
}
}

In the past, if you wanted to parallelize this task, you had to use threads and then hand off
work to them. With the TPL, all you have to do now is use a Parallel.ForEach that will take
care of the threading for you as seen in Listing 8-9.

LISTING 8-9 Activity Parallel Retrieval

pubTlic void PopulateltineraryActivities(Itinerary itinerary)

{
Parallel.ForEach(itinerary.Activities.Where(i => i.Activity == null),
item =>
{
jtem.Activity = this.RetrieveActivity(item.ActivityId);
1)3

248

Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

See Also The .NET Framework 4.0 now includes the Parallel LINQ libraries (in System.Core.
dll). PLINQ introduces the .AsParallel extension to perform parallel operations in LINQ queries.
You can also easily enforce the treatment of a data source as if it was ordered by using the
.AsOrdered extensions. Some new thread-safe collections have also been added in the System.
Collections.Concurrent namespace. You can learn more about these new features from Parallel
Computing on MSDN (http://msdn.microsoft.com/en-us/concurrency/default.aspx).

AppFabric Caching

PMN is a data-driven application that gets its data from the application database and the
Bing Maps Web services. One of the challenges you might face when building a Web applica-
tion is managing the needs of a large number of users, including performance and response
time. The operations that use the data store and the services used to search for activities can
increase the usage of server resources dramatically for items that are shared across many
users. For example, many users have access to the public itineraries, so displaying these will
generate numerous calls to the database for the same items. Implementing caching at the
Web tier will help reduce usage of the resources at the data store and help mitigate latency
for recurring searches to the Bing Maps Web services. Figure 8-29 shows the architecture for
an application implementing a caching solution at the front-end server.

Application /
Web Tier

{ Bing Maps services Data Tier

FIGURE 8-29 Typical Web application architecture

Using this approach reduces the pressure on the data layer, but the caching is still coupled
to a specific server serving the request. Each Web tier server will have its own cache, but you
can still end up with an uneven distribution of the processing to these servers.

Windows Server AppFabric caching offers a distributed, in-memory cache platform. The
AppFabric client library allows the application to access the cache as a unified view event if

Chapter 8 From 2008 to 2010: Business Logic and Data 249

the cache is distributed across multiple computers, as shown in Figure 8-30. The API provides
simple get and set methods to retrieve and store any serializable common language runtime
(CLR) objects easily. The AppFabric cache allows you to add a cache computer on demand,
thus making it possible to scale in a manner that is transparent to the client. Another benefit
is that the cache can also share copies of the data across the cluster, thereby protecting data
against failure.

Application /
Web Tier

AppFabric
Cache Tier

Data Tier

FIGURE 8-30 Web application using Windows Server AppFabric caching

See Also Windows Server AppFabric caching is available as a set of extensions to the .NET
Framework 4.0. For more information about how to get, install, and configure Windows
Server AppFabric, please visit Windows Server AppFabric (http://msdn.microsoft.com/en-us/
windowsserver/ee695849.aspx).

See Also PMN can be configured to use either ASP.NET caching or Windows Server
AppFabric caching. A complete walkthrough describing how to add Windows Server
AppFabric caching to PMN is available here: PMIN: Adding Caching using Velocity (http://
channel9.msdn.com/learn/courses/VS2010/ASPNET/EnhancingAspNetMvcPlanMyNight/
Exercise-1-Adding-Caching-using-Velocity/).

250 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Summary

In this chapter, you used a few of the new Visual Studio 2010 features to structure the data
layer of the Plan My Night application using the Entity Framework version 4.0 to access a
database. You also were introduced to automated entity generation using the ADO.NET
Entity Framework POCO templates and to the Windows Server AppFabric caching extensions.

In the next chapter, you will explore how the ASP.NET MVC framework and the Managed
Extensibility Framework can help you build great Web applications.

Chapter 9

From 2008 to 2010: Designing
the Look and Feel

After reading this chapter, you will be able to
® Create an ASP.NET MVC controller that interacts with the data model

B Create an ASP.NET MVC view that displays data from the controller and validates user
input

B Extend the application with an external plug-in using the Managed Extensibility
Framework

Web application development in Microsoft Visual Studio has certainly made significant
improvements over the years since ASP.NET 1.0 was released. Visual Studio 2008 introduced
official support for AJAX-enabled Web pages, Language Integrated Query (LINQ), plus
many other improvements to help developers create efficient applications that were easy to
manage.

The spirit of improvement to assist developers in creating world-class applications is very
much alive in Visual Studio 2010. In this chapter, we'll explore some of the new features as we
add functionality to the Plan My Night companion application.

Note The companion application is an ASP.NET MVC 2 project, but a Web developer has a
choice in Visual Studio 2010 to use this new form of ASP.NET application or the more traditional
ASP.NET (referred to in the community as Web Forms for distinction). ASP.NET 4.0 has many
improvements to help developers and is still a very viable approach to creating Web applications.

We'll be using a modified version of the companion application’s solution to work our way
through this chapter. If you installed the companion content in the default location, the
correct solution can be found at Documents\Microsoft Press\Moving to Visual Studio 2010\
Chapter 9\ in a folder called UserInterface-Start.

Introducing the PlanMyNight.Web Project

Note ASP.NET MVC 1.0 Framework is available as an extension to Visual Studio 2008; however,
this chapter was written in the context of the user having a default installation of Visual Studio
2008, which only had support for ASP.NET Web Forms 3.5 projects.

251

252 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

The user interface portion of Plan My Night in Visual Studio 2010 was developed as an
ASP.NET MVC application, the layout of which differs from what a developer might be
accustomed to when developing an ASP.NET Web Forms application in Visual Studio 2008.
Some items in the project (as seen in Figure 9-1) will look familiar (such as Global.asax),
but others are completely new, and some of the structure is required by the ASP.NET MVC
framework.

File Edit View Project Build Debug Team Data Tools Test Window Help

ket 1" - I - R “ 53| P [pebug | [any P - |8 [ty agoin IS EFEER R
REE L = == = 2 [[xtmL10 Transition -] | @ <[; NewWorkitem~ 3 = gy <[Publish: [Creste publish Settings | 4 =
RIDETRNE Source Control Explorer Rl Solution Explorer v 1 x I":
Server Objects & Events | Motvents) J = ol %
<IDOCTYPE html PUBLIC "~-//W3C//DTD XHTHL 1.6 Strict//EN’ "http rg/TRAxhtml1/DTD/ xeml1-str =] [Selution ‘PlanMyNightPro’ (15 proje|
<% Master Language="C#" Inherits="System.Web.Mvc.ViewtasterPage” %> o1 2 e addins
El<html xmlns="http: //www.w3.0rg/1999/xhtnl" xnl:lang="en” lang="en"> b % Solution lkems
El<head> b o Tests
<title><asp:ContentPlaceHolder ID="TitleContent” runat="server” /></title> @ PlanMyNight.Bi
<meta http-equiv="content-type" content="text/html; charset=UTF-8" /> oG Menivyhight Bing
<meta http-equiv="content-language” content="en-US" /> o+ 3 PlanMyNight Contracts
meta http-cquiv-"X-UA-Compatible” content-"IE-8" /> » Z PlnMyNight.Data
<meta name="description” content="Plan My Night: Select an activity type and enter a location to b (3 PlanMyNight Infrastructure
<link href="<%=Url. Content (*~/Content/Styles/Site.css")%" rel="stylesheet” type="text/css* medi{ N » (& PlanMyNight Velocity
<% Ajax.RegisterClientScriptInclude(Url.Content("~/Content/Scripts/jquery-1.3.2.min.js"), "http: 4 (@ PlanMyNight Web
<asp:ContentPlaceHolder ID="HtmlHeadContent” runat="server” /> >l Properties
</head> b 3l References
Ei<body>
B <div id="container"> > L App Browsers
E <div id="header™> b 23 App_Data
= <div id="logo"> b [Areas
<h1><a href="<¥= Url.Comtent("~/")%>">Plan My Nightc/a></h1> » [Content
</div> & [Controllers
<hr /> » [Helpers
E <div id="navigation"> b 3 Infrastructure
& 5 £ ViewModels
<lir<a href="<%=Url.Content("~/")%>"Search¢/a></1i> » a2 Views
<% if(Request.IsAuthenticated) { %> —
<1i>c¥=Html . ActionLink<AccountControllers(c => c.Index(null), "My Profile™)¥ > [E] Defauitaspx
<1i id="liMyTtineraries"><¥=Html.ActionLinkcItinerariesController>(c => c.Ini 8] Error.ntm
<%} %) favicon.ico
<lixAbout</1li> 13 3] Global.asax
<ful> 5] NotFound.htm
</div> S
£ <div id="toolbar"s . b [Web.confi
o pml totactorrnnteallorsfe = ¢ | noinStatis(1): %
100% < o] n O - .
3 Design | o1 Split [@ Source | & Solution Explorer [[FIET Y

Clean succeeded

FIGURE 9-1 PlanMyNight.Web project view
Here are the items required by ASP.NET MVC:

B Areas This folderis used by the ASP.NET MVC framework to organize large Web
applications into smaller components, without using separate solutions or projects. This
feature is not used in the Plan My Night application but is called out because this folder
is created by the MVC project template.

B Controllers During request processing, the ASP.NET MVC framework looks for
controllers in this folder to handle the request.

B Views The Views folder is actually a structure of folders. The layer immediately inside
the Views folder is named for each of the classes found in the Controllers folder, plus a
Shared folder. The Shared subfolder is for common views, partial views, master pages,
and anything else that will be available to all controllers.

See Also More information about ASP.NET MVC components, as well as how its request
processing differs from ASP.NET Web Forms, can be found at http://asp.net/mvd

http://asp.net/mvc

Chapter 9 From 2008 to 2010: Designing the Look and Feel

253

In most cases, the web.config file is the last file in a project’s root folder. However, it has
received a much-needed update in Visual Studio 2010: Web.config Transformation. This
feature allows for a base web.config file to be created but then to have build-specific web.
config files override the settings of the base at build, deployment, and run times. These files
appear under the base web.config file, as seen in Figure 9-2.

File Edit View Project Build Debug Team XML Data Tools Test Window Help

-
</system.ueb>
</configurations

00% - 4] W

Item(s) Saved

iG-S e $ B9 - -85 b [pebug ~}{any cPU -} [try again - || ol 5 G 8 36 B -
(020 A e PABI3DE T
~ Solution Explorer ~1x By
<hxml version="1.6"?> =N el 3
<
=l Solution ‘PlanMyNight' (13 project: [
<!~ For more information on using web.config transformation visit m‘.\‘f‘;‘l’:" onMyhight (13 projects) i
[ttp://go.microsoft. com/fulink/2 L ink1d=1 b i Addins
b i Solution ltems.
[El<configuration xmlns:xdt="http://schemas.microsoft. com/XML-Document-Transform"> bk Tests
Go<l- b (5 PlanMyNight.Bing
In the example below, the “"SetAttributes” transform will change the value of b (5 PlanMyNight Contracts
“connectionstring” to use "ReleasesqLserver” only when the "Match” locator » (7 PlanMyNight.Data
finds an atrribute "name” that has a value of “MyDB". N s @ PlanMyNightInfrastructure
"l & PlanMyNightVelocity
<connectionstrings> - y
<add name="1y0B" 4 [PlanMyNight Web
connectionString="Data Source-Release5QLServer;Initial Catalog=MyReleaseDB;Integrated >[5 Properties
xdt:Transform="SetAttributes” xdt:Locator="Match(name)"/> b [References
</connectionstrings> » [App_Browsers
--> [App_Data
B <system.web> » O3 Areas
<eongilation ki Transforn-"RenoveAttrisutes(debug)” /> L 3 content
E <l
Controll
In the example below, the "Replace” transform will replace the entire r g H""‘ rollers
<customErrors> section of your web.config file. " elpers
Note that because there is only one customErrors section under the > [Infrastructure
<system.web> node, there is no need to use the "xdt:Locator” attribute » [ViewModels
» O3 Views
<custonErrors defaultRedirect="GenericErrar.htn" b [Z] Default.aspx
mode="RemoteOnly” xdt:Transform="Replace"> [s] Errorhtm
<error statusCode="58@" redirect="InternalError.htm"/> m favicon.ico
</customErrors> +] Globslasa

9] NotFound.htm
4 [Web.config
%) Web.Debug.config
%) Web.Release.config

&3 Solution Explorer [NN =T sy

Cal 50 Ch50

FIGURE 9-2 A web.config file with build-specific files expanded

Visual Studio 2008 When working on a project in Visual Studio 2008, do you recall needing to
remember not to overwrite the web.config file with your debug settings? Or needing to remem-
ber to update web.config when it was published for a retail build with the correct settings? This

is no longer an issue in Visual Studio 2010. The settings in the web.Release.config.retail file will

be used during release builds to override the values in web.config, and the same goes for

web.Debug.config. in debug builds.

Other sections of the project include the following:

B Content A collection of folders containing images, scripts, and style files

B Helpers

Includes miscellaneous classes, containing a number of extension methods,

that add functionality to types used in the project

B Infrastructure Contains items related to dealing with the lower level infrastructure of
ASP.NET MVC (for example, caching and controller factories)

B ViewModels
to display data

Contains data entities filled out by controller classes and used by views

254 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Running the Project

If you compile and run the project, you should see a screen similar to Figure 9-3.

PlRn seanch | amout @semn)
18
Search
I \i I\Advan(ed Search
e.g.: Bars in Manhattan, NY'
Actuties Hineranes Your current itinerary Torststmtasme.-
Please provide a search criteria..
Your itinerary is currently empty.
Perform 2 search and then select activties o build an iinerary...
Al ights reservt 00
© 200 Microson
developer & platform evangelism

FIGURE 9-3 Default page of the Plan My Night application

The searching functionality and the ability to organize an initial list of itinerary items all work,
but if you attempt to save the itinerary you are working on, or if you log in with Windows
Live ID, the application will return a 404 Not Found error screen (as shown in Figure 9-4).

Server Error in '/' Application.

The resource cannot be found.

Description: HTTP 404. The resouree you are looking for (or one of fts dependencies) could have been removed, had its name changed, or is temporarily unavaiable. Please review the folowing URL
and make sure that it is spelled correctly.

Requested URL: /AccountiLiveld

Version Information: Wicrosoft.NET Framework Version:s.0.30128; ASP.NET Version 4.0.30128.1

FIGURE 9-4 Error screen returned when logging into the Plan My Night application

You get this error message because currently the project does not include an account
controller to handle these requests.

Chapter 9 From 2008 to 2010: Designing the Look and Feel 255
Creating the Account Controller

The AccountController class provides some critical functionality to the companion Plan My
Night application:

B [t handles signing users in and out of the application (via Windows Live ID).

B |t provides actions for displaying and updating user profile information.

To create a new ASP.NET MVC controller:

1. Use Solution Explorer to navigate to the Controllers folder in the PlanMyNight.Web
project, and click the right mouse button.

2. Open the Add submenu and select the Controller item.

,E] Controller... [} Ctrl+M, Ctrl+C |
| i Newkem.. Ctrl+ Shift+ A
[5 Bdsting em... Shift+Alt+A
Iif_‘ Mew Folder

Add ASP.NET Folder v
| 2 Class.. Shift+Alt+C

3. Fill in the name of the controller as AccountController.

["Add Controller x

Controller Name:

AccountlController

[Add action methods for Create, Update, and Details scenarios

Note Leave the Add Action Methods For Create, Update And Details Scenarios check box blank.
Selecting the box inserts some "starter" action methods, but because you will not be using the
default methods, there is no reason to create them.

After you click the Add button in the Add Controller dialog box, you should have a basic
AccountController class open, with a single Index method in its body:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

256

Part 111

using

Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

System.Web.Mvc;

namespace Microsoft.Samples.PlanMyNight.Web.Controllers

{

pubTlic class AccountController : Controller

{

//
// GET: /Account/

public ActionResult Index()
{

return View();

3

Visual Studio 2008 A difference to be noted from developing ASP.NET Web Forms applica-
tions in Visual Studio 2008 is that ASP.NET MVC applications do not have a companion code-
behind file for each of their .aspx files. Controllers like the one you are currently creating perform
the logic required to process input and prepare output. This approach allows for a clear separa-
tion of display and business logic, and it's a key aspect of ASP.NET MVC.

Implementing the Functionality

To communicate with any of the data layers and services (the Model), you'll need to add
some instance fields and initialize them. Before that, you need to add some namespaces to
your using block:

using
using
using
using
using
using
using
using

System.IO0;

Microsoft.Samples.PlanMyNight.Data;
Microsoft.Samples.PlanMyNight.Entities;
Microsoft.Samples.PlanMyNight.Infrastructure;
Microsoft.Samples.PlanMyNight.Infrastructure.Mvc;
Microsoft.Samples.PTanMyNight.Web.ViewModels;
System.Collections.Specialized;

WindowsLiveld;

Now, let's add the instance fields. These fields are interfaces to the various sections of your
Model:

public class AccountController : Controller

{

private readonly IWindowsLivelLogin windowsLogin;

private readonly IMembershipService membershipService;
private readonly IFormsAuthentication formsAuthentication;
private readonly IReferenceRepository referenceRepository;
private readonly IActivitiesRepository activitiesRepository;

Chapter 9 From 2008 to 2010: Designing the Look and Feel 257

Note Using interfaces to interact with all external dependencies allows for better portability of
the code to various platforms. Also, during testing, dependencies can be mimicked much easier
when using interfaces, making for more efficient isolation of a specific component.

As mentioned, these fields represent parts of the model this controller will interact with to
meet its functional needs. Here are the general descriptions for each of the interfaces:

B |WindowsLiveLogin Defines a functionality contract for interacting with the Windows
Live ID service.

B IMembershipService Defines user profile information and authorization methods. In
your companion application, it is an abstraction of the ASP.NET Membership Service.

B |FormsAuthentication Defines functionality for interacting with ASP.NET Forms
Authentication abstraction.

B |ReferenceRespository Defines reference resources, such as lists of states and other
model-specific information.

B |ActivitiesRespository An interface for retrieving and updating activity information.

You'll add two constructors to this class: one for general run-time use, which uses the
ServiceFactory class to get references to the needed interfaces, and one to enable tests to
inject specific instances of the interfaces to use.

pubTlic AccountController()
this(
new ServiceFactory().GetMembershipService(),
new WindowsLivelLogin(true),
new FormsAuthenticationService(),
new ServiceFactory().GetReferenceRepositoryInstance(),
new ServiceFactory().GetActivitiesRepositoryInstance())
{
}
pubTlic AccountController(
IMembershipService membershipService,
IWindowsLiveLogin windowsLogin,
IFormsAuthentication formsAuthentication,
IReferenceRepository referenceRepository,
IActivitiesRepository activitiesRepository)

this.membershipService = membershipService;
this.windowsLogin = windowslLogin;
this.formsAuthentication = formsAuthentication;
this.referenceRepository = referenceRepository;
this.activitiesRepository = activitiesRepository;

258

Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Authenticating the User

The first real functionality you'll implement in this controller is that of signing in and out of
the application. Most of the methods you'll implement later require authentication, so this is
a good place to start.

The companion application uses a few technologies together at the same time to give the
user a smooth authentication experience: Windows Live ID, ASP.NET Forms Authentication,
and ASP.NET Membership Services. These three technologies are used in the LivelD action
you'll implement next.

Start by creating the following method, in the AccountController class:

public ActionResult LiveId()
{

return Redirect(" ~/");

3

This method will be the primary action invoked when interacting with the Windows Live ID
services. Right now, if it is invoked, it will just redirect the user to the root of the application.

Note The call to Redirect returns RedirectResult, and although this example uses a string to
define the target of the redirection, various overloads can be used for different situations.

A few different types of actions can be taken when Windows Live ID returns a user to your
application. The user can be signing into Windows Live ID, signing out, or clearing the
Windows Live ID cookies. Windows Live ID uses a query string parameter called action on the
URL when it returns a user, so you'll use a switch to branch the logic depending on the value
of the parameter.

Add the following to the Liveld method above the return statement:

string action = Request.QueryString["action"];
switch (action)

{
case "logout":
this.formsAuthentication.SignOut(Q);
return Redirect("~/");
case "clearcookie":
this.formsAuthentication.SignOut(Q);
string type;
byte[] content;
this.windowsLogin.GetClearCookieResponse(out type, out content);
return new FileStreamResult(new MemoryStream(content), type);
}

See Also Full documentation of the Windows Live ID system can be found on the
http://dev.live.com/ Web site.

http://dev.live.com/

Chapter 9 From 2008 to 2010: Designing the Look and Feel 259

The code you just added handles the two sign-out actions for Windows Live ID. In both cases,
you use the IFormsAuthentication interface to remove the ASP.NET Forms Authentication
cookie so that any future http requests (until the user signs in again) will not be considered
authenticated. In the second case, you went one step further to clear the Windows Live ID
cookies (the ones that remember your login name but not your password).

Handling the sign-in scenario requires a bit more code because you have to check whether
the authenticating user is in your Membership Database and, if not, create a profile for

the user. However, before that, you must pass the data that Windows Live ID sent you

to your Windows Live ID interface so that it can validate the information and give you a
WindowsLiveLogin.User object:

default:
// Tlogin
NameValueCollection tokenContext;
if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
{
tokenContext = Request.Form;
}
else
{
tokenContext = new NameValueCollection(Request.QueryString);
tokenContext["stoken"] =
System.Web.HttpUtility.Ur1Encode(tokenContext["stoken"]);
}

var TiveldUser = this.windowsLogin.ProcessLogin(tokenContext);

At this point in the case for logging in, either liveldUser will be a reference to an
authenticated WindowsLiveLogin.User object or it will be null. With this in mind, you can add
your next section of the code, which takes action when the liveldUser value is not null:

if (liveIldUser != null)
{
var returnUrl = TivelIdUser.Context;
var userId = new Guid(liveIdUser.Id).ToString(Q;
if (!this.membershipService.ValidateUser(userId, userId))
{
this.formsAuthentication.SignIn(userId, false);
this.membershipService.CreateUser(userId, userId, string.Empty);
var profile = this.membershipService.CreateProfile(userId);
profile.FullName = "New User";
profile.State = string.Empty;
profile.City = string.Empty;
profile.PreferredActivityTypeld = 0;
this.membershipService.UpdateProfile(profile);

if (string.IsNullOrEmpty(returnUrl1)) returnUrl = null;

return RedirectToAction("Index", new { returnUrl = returnUrl });
}
else

{

260 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

this.formsAuthentication.SignIn(userId, false);
if (string.IsNul10rEmpty(returnUrl1)) returnUrl = "~/";
return Redirect(returnUrl);

}

break;

The call to the ValidateUser method on the IMembershipService reference allows the
application to check whether the user has been to this site before and whether there will be
a profile for the user. Because the user is authenticated with Windows Live ID, you are using
the user’s ID value (which is a GUID) as both the user name and password to the ASP.NET
Membership Service.

If the user does not have a user record with the application, you create one by calling the
CreateUser method and then also create a user settings profile via CreateProfile. The profile is
filled with some defaults and saved back to its store, and the user is redirected to the primary
input page so that he can update the information.

Note Controller.RedirectToAction determines which URL to create based on the combination of
input parameters. In this case, you want to redirect the user to the Index action of this controller,
as well as pass the current return URL value.

The other action that takes place in this code is that the user is signed into ASP.NET Forms
authentication so that a cookie will be created, providing identity information on future
requests that require authentication.

The settings profile is managed by ASP.NET Membership Services as well and is declared in
the web.config file of the application:

<system.web>

<profile enabled="true">

<properties>

<add name="Ful1Name" type="string" />

<add name="State" type="string" />

<add name="City" type="string" />

<add name="PreferredActivityTypelId" type="int" />
</properties>

<providers>

<clear />

<add name="AspNetSqlProfileProvider"
type="System.Web.Profile.SqlProfileProvider,

System.Web, Version=4.0.0.0, Culture=neutral,
Pub1icKeyToken=b03f5f7f11d50a3a"
connectionStringName="ApplicationServices"

applicationName="/" />
</providers>
</profile>

</system.web>

Chapter 9 From 2008 to 2010: Designing the Look and Feel 261

At this point, the LivelD method is complete and should look like the following code. The
application can now take authentication information from Windows Live ID, prepare an
ASP.NET MembershipService profile, and create an ASP.NET Forms Authentication ticket.

public ActionResult LiveId()
{
string action = Request.QueryString["action"];
switch (action)
{
case "logout":
this.formsAuthentication.SignOut(Q);
return Redirect("~/");

case "clearcookie":
this.formsAuthentication.SignOut(Q);
string type;
byte[] content;
this.windowsLogin.GetClearCookieResponse(out type, out content);
return new FileStreamResult(new MemoryStream(content), type);

default:
// Tlogin
NameValueCollection tokenContext;
if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
{
tokenContext = Request.Form;
}
else
{
tokenContext = new NameValueCollection(Request.QueryString);
tokenContext["stoken"] =
System.Web.HttpUtility.Ur1Encode(tokenContext["stoken"]);

var TiveldUser = this.windowsLogin.ProcessLogin(tokenContext);

if (liveIdUser != null)
{
var returnUrl = TiveIdUser.Context;
var userId = new Guid(1iveIdUser.Id).ToString(Q);
if (!this.membershipService.ValidateUser(userId, userId))
{
this.formsAuthentication.SignIn(userId, false);
this.membershipService.CreateUser(userId, userId, string.Empty);
var profile = this.membershipService.CreateProfile(userId);
profile.FullName = "New User";
profile.State = string.Empty;
profile.City = string.Empty;
profile.PreferredActivityTypeld = 0;
this.membershipService.UpdateProfile(profile);

if (string.IsNullOrEmpty(returnUr1)) returnUrl = null;
return RedirectToAction("Index", new { returnUrl = returnUrl });

262 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

else

{
this.formsAuthentication.SignIn(userId, false);
if (string.IsNullOrEmpty(returnUr1)) returnUrl = "~/";
return Redirect(returnUrl);

}
}
break;
}
return Redirect("~/");
}

Of course, the user has to be able to get to the Windows Live ID login page in the first
place before logging in. Currently in the Plan My Night application, there is a Windows
Live ID login button. However, there are cases where the application will want the user to
be redirected to the login page from code. To cover this scenario, you need to add a small
method called Login to your controller:

public ActionResult Login(string returnUrl)

{
var redirect = HttpContext.Request.Browser.IsMobileDevice ?
this.windowsLogin.GetMobileLoginUrl(returnUrl) :
this.windowsLogin.GetLoginUr1(returnUrl);
return Redirect(redirect);
}

This method simply retrieves the login URL for Windows Live and redirects the user to that
location. This also satisfies a configuration value in your web.config file for ASP.NET Forms
Authentication in that any request requiring authentication will be redirected to this method:

<authentication mode="Forms">
<forms loginUrl="~/Account/Login" name="XAUTH" timeout="2880" path="~/" />
</authentication>

Retrieving the Profile for the Current User

Now with the authentication methods defined, which satisfies your first goal for this
controller—signing users in and out in the application—you can move on to retrieving
data for the current user.

The Index method, which is the default method for the controller based on the URL
mapping configuration in Global.asax, will be where you retrieve the current user's data and

Chapter 9 From 2008 to 2010: Designing the Look and Feel 263

return a view displaying that data. The /Index method that was initially created when the
AccoutController class was created should be replaced with the following:

[Authorize()]
[AcceptVerbs(HttpVerbs.Get)]
public ActionResult Index(string returnUrl)
{
var profile = this.membershipService.GetCurrentProfile();
var model = new ProfileViewModel
{
Profile = profile,
ReturnUrl = returnUrl ?? this.GetReturnUr1()
1

this.InjectStatesAndActivityTypes(model);

return View("Index", model);

Visual Studio 2008 Attributes, such as [Authorize()], might not have been in common use
in Visual Studio 2008; however, ASP.NET MVC makes use of them often. Attributes allow for
metadata to be defined about the target they decorate. This allows for the information to be
examined at run time (via reflection) and for action to be taken if deemed necessary.

The Authorize attribute is very handy because it declares that this method can be invoked
only for http requests that are already authenticated. If a request is not authenticated, it will
be redirected to the ASP.NET Forms Authentication configured login target, which you just
finished setting up. The AcceptVerbs attribute also restricts how this method can be invoked,
by specifying which http verbs can be used. In this case, you are restricting this method to
HTTP GET verb requests. You've added a string parameter, returnUrl, to the method signature
so that when the user is finished viewing or updating her information, she can be returned to
what she was looking at previously.

Note This highlights a part of the ASP.NET MVC framework called Model Binding, details of
which are beyond the scope of this book. However, you should know that it attempts to find a
source for returnUrl (a form field, routing table data, or query string parameter with the same
name) and binds it to this value when invoking the method. If the Model Binder cannot find

a suitable source, the value will be null. This behavior can cause problems for value types that
cannot be null, because it will throw an InvalidOperationException.

The main portion of this method is straightforward: it takes the return of the
GetCurrentProfile method on the ASP.NET Membership Service interface and sets up a view
model object for the view to use. The call to GetReturnUrl is an example of an extension
method defined in the PlanMyNight.Infrastructure project. It's not a member of the

264

Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Controller class, but in the development environment it makes for much more readable code.
(See Figure 9-5.)

File Edit View Refactor Project Build Debug Team Data Tools Test Window Help

P Sl d | & B9 & - L5 b [pebug =|[Any cPU || [| GetReturnU Bl et 2
{0 e Z2 0P esas Q0% % 8|5 0 ES [newwokem- 3 = 5 i 2
MucEstensions.cs® 8 % EIEVEEEga] Source Control Explorer iy
4 Microsoft.Samples.Planhyt % Extensions ~ | %; GetabsoluteUrl(ControllerBase controller, string path) 3
return LinkBuilder.BuildUrlFromExpression<Ts(|3
controller.ControllerContext.RequestContext, G
controller.Url.RouteCollection, *"
action); ¢
} =
s
E public static string GetAbsoluteUrl(this ControllerBase controller, string path) o
)
return String.Concat(controller.ControllerContext. HetpContext.Request.Url. Scheme, H
[":74", controller.ControllerContext. HttpContext.Request.Servervariables["HTTP_HOST"], path); 7
' 7
[= public static bool IsAjaxCall(this Controller controller) é‘
s
return !string.IshullOrEmpty(controller.Request.ContentType) 8& L
controller.Request.ContentType. Contains ("application/jsen"); L
¥
- E public static string GetReturnUrl(this Controller controller)
if (controller.Request.ServerVariables != null &2
IString.IsNullorEmpty(controller.Request. ServerVariables["HTTP_REFERER"]))
return controller.Request.ServerVariables["HTTP_REFERER"];
return /"5
¥
¥
¥
100% ~ 4 1, »
Ready Ln2A Col17 Chi7

FIGURE 9-5 Example of extension methods in MvcExtensions.cs

InjectStatesAndActivityTypes is a method you need to implement in the AccountController
class. It gathers data from the reference repository for names of states and the activity
repository. It makes two collections of SelectListitem (an HTML class for MVC): one for the list
of states, and the other for the list of different activity types available in the application. It
also sets the respective value.

private void InjectStatesAndActivityTypes(ProfileViewModel model)
{
var profile = model.Profile;
var types = this.activitiesRepository.RetrieveActivityTypes().Select(
0 => new SelectListItem {
Text = o.Name,
Value = 0.Id.ToStringQ),
Selected = (profile != null && o0.Id ==
profile.PreferredActivityTypeld)
}).ToList(Q);
types.Insert(0, new SelectListItem { Text = "Select...", Value = "0" });
var states = this.referenceRepository.RetrieveStates().Select(
0 => new SelectListItem {
Text = o.Name,
Value = o.Abbreviation,
Selected = (profile != null && o.Abbreviation ==
profile.State)
}).ToList(Q);

states.Insert(0, new SelectListItem {

Chapter 9 From 2008 to 2010: Designing the Look and Feel 265

Text = "Any state",
Value = string.Empty
b

model.PreferredActivityTypes = types;
model.States = states;

Updating the Profile Data

Having completed the infrastructure needed to retrieve data for the current profile, you can
move on to updating the data in the model from a form submission by the user. After this,
you can create your view pages and see how all this ties together. The Update method is
simple; however, it does introduce some new features not seen yet:

[Authorize()]

[AcceptVerbs(HttpVerbs.Post)]
[ValidateAntiForgeryToken()]

public ActionResult Update(UserProfile profile)

{
var returnUrl = Request.Form["returnUrl1"];
if (!ModelState.IsValid)
{
// validation error
return this.IsAjaxCall() ? new JsonResult { JsonRequestBehavior =
JsonRequestBehavior.AllowGet, Data = ModelState }
: this.Index(returnurl);
}
this.membershipService.UpdateProfile(profile);
if (this.IsAjaxCal1(Q))
{
return new JsonResult { JsonRequestBehavior = JsonRequestBehavior.AllowGet,
Data = new { Update = true, Profile = profile, ReturnUrl = returnUrl } };
}
else
{
return RedirectToAction("UpdateSuccess", "Account", new { returnUrl =
returnUrl });
}
}

The ValidateAntiForgeryToken attribute ensures that the form has not been tampered with.
To use this feature, you need to add an AntiForgeryToken to your view's input form. The
check on the ModelState to see whether it is valid is your first look at input validation. This is
a look at the server-side validation, and ASP.NET MVC offers an easy-to-use feature to make
sure that incoming data meets some rules. The UserProfile object that is created for input to
this method, via MVC Model Binding, has had one of its properties decorated with a

266

Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

System.ComponentModel.DataAnnotations.Required attribute. During Model Binding, the
MVC framework evaluates DataAnnotation attributes and marks the ModelState as valid only
when all of the rules pass.

In the case where the ModelState is not valid, the user is redirected to the Index method
where the ModelState will be used in the display of the input form. Or, if the request was an
AJAX call, a JsonResult is returned with the ModelState data attached to it.

Visual Studio 2008 Because in ASP.NET MVC requests are routed through controllers rather
than pages, the same URL can handle a number of requests and respond with the appropri-
ate view. In Visual Studio 2008, a developer would have to create two different URLs and call a
method in a third class to perform the functionality.

When the ModelState is valid, the profile is updated in the membership service and a

JSON result is returned for AJAX requests with the success data, or in the case of "normal"
requests, the user is redirected to the UpdateSuccess action on the Account controller. The
UpdateSuccess method is the final method you need to implement to finish off this controller:

public ActionResult UpdateSuccess(string returnUrl)

{
var model = new ProfileViewModel
{
Profile = this.membershipService.GetCurrentProfile(),
ReturnUrl = returnUr]
};
return View(model);
}

The method is used to return a success view to the browser, display some of the updated
data, and provide a link to return the user to where she was when she started the profile
update process.

Now that you've reached the end of the Account controller implementation, you should have
a class that resembles the following listing:

using System;

using System.Collections.Specialized;

using System.IO;

using System.Ling;

using System.Web;

using System.Web.Mvc;

using Microsoft.Samples.PlanMyNight.Data;

using Microsoft.Samples.PlanMyNight.Entities;

using Microsoft.Samples.PlanMyNight.Infrastructure;
using Microsoft.Samples.PlanMyNight.Infrastructure.Mvc;

Chapter 9 From 2008 to 2010: Designing the Look and Feel 267

using Microsoft.Samples.PlanMyNight.Web.ViewModels;
using WindowsLiveId;

namespace Microsoft.Samples.PlanMyNight.Web.Controllers

{

[HandleErrorWithContentType()]
[OutputCache(NoStore = true, Duration = 0, VaryByParam = "*")]
pubTlic class AccountController : Controller

{
private
private
private
private
private

readonly IWindowsLivelogin windowsLogin;

readonly IMembershipService membershipService;
readonly IFormsAuthentication formsAuthentication;
readonly IReferenceRepository referenceRepository;
readonly IActivitiesRepository activitiesRepository;

pubTlic AccountController()
this(

new ServiceFactory().GetMembershipService(),

new WindowsLivelogin(true),

new FormsAuthenticationService(),

new ServiceFactory().GetReferenceRepositoryInstance(),
new ServiceFactory().GetActivitiesRepositoryInstance())

public AccountController(IMembershipService membershipService,

IWindowsLivelLogin windowsLogin,
IFormsAuthentication formsAuthentication,
IReferenceRepository referenceRepository,
TActivitiesRepository activitiesRepository)

this.membershipService = membershipService;
this.windowsLogin = windowsLogin;
this.formsAuthentication = formsAuthentication;
this.referenceRepository = referenceRepository;
this.activitiesRepository = activitiesRepository;

pubTlic ActionResult LiveId()

{

string action = Request.QueryString["action"];
switch (action)

{

case "logout":
this.formsAuthentication.SignOut();
return Redirect("~/");
case "clearcookie":
this.formsAuthentication.SignOut();
string type;
byte[] content;
this.windowsLogin.GetClearCookieResponse(out type, out content);

268 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

return new FileStreamResult(new MemoryStream(content), type);

default:

// login

NameValueCollection tokenContext;

if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")

{
tokenContext = Request.Form;

}

else

{
tokenContext = new NameValueCollection(Request.QueryString);
tokenContext["stoken"] =
System.Web.HttpUtility.Ur1Encode(tokenContext["stoken"]);

}

var liveIdUser = this.windowsLogin.ProcessLogin(tokenContext);
if (liveIdUser != null)

{
var returnUrl = TliveIdUser.Context;
var userId = new Guid(TliveIdUser.Id).ToStringQ);
if (!'this.membershipService.ValidateUser(userId, userId))
{
this.formsAuthentication.SignIn(userId, false);
this.membershipService.CreateUser(
userId, userId, string.Empty);
var profile =
this.membershipService.CreateProfile(userld);
profile.FulIName = "New User";
profile.State = string.Empty;
profile.City = string.Empty;
profile.PreferredActivityTypeld = 0;
this.membershipService.UpdateProfile(profile);
if (string.IsNul1OrEmpty(returnUr1)) returnUrl = null;
return RedirectToAction("Index", new { returnUrl =
returnUrl });
3
else
{
this.formsAuthentication.SignIn(userId, false);
if (string.IsNullOrEmpty(returnUr1)) returnUrl = "~/";
return Redirect(returnUrl);
}
b
break;

}
return Redirect("~/");

pubTlic ActionResult Login(string returnUrl)
{
var redirect = HttpContext.Request.Browser.IsMobileDevice ?
this.windowsLogin.GetMobileLoginUrl(returnUrl)
this.windowsLogin.GetLoginUr1(returnUrl);

Chapter 9 From 2008 to 2010: Designing the Look and Feel

return Redirect(redirect);

[Authorize()]
[AcceptVerbs (HttpVerbs.Get)]
pubTlic ActionResult Index(string returnUrl)

{
var profile = this.membershipService.GetCurrentProfile();
var model = new ProfileViewModel
{
Profile = profile,
ReturnUr1l = returnUrl ?? this.GetReturnUr1()
IiE
this.InjectStatesAndActivityTypes(model);
return View("Index", model);
}
[Authorize()]

[AcceptVerbs (HttpVerbs.Post)]
[ValidateAntiForgeryToken()]
public ActionResult Update(UserProfile profile)

{
var returnUrl = Request.Form["returnUr1"];
if (!ModelState.IsValid)
{
// validation error
return this.IsAjaxCall() 7?
new JsonResult { JsonRequestBehavior =
JsonRequestBehavior.AlTowGet, Data = ModelState }
: this.Index(returnUrl);
}
this.membershipService.UpdateProfile(profile);
if (this.IsAjaxCall(Q))
{
return new JsonResult {
JsonRequestBehavior = JsonRequestBehavior.AllowGet,
Data = new {
Update = true,
Profile = profile,
ReturnUrl = returnUrl } };
}
else
{
return RedirectToAction("UpdateSuccess",
"Account", new { returnUrl = returnUrl });
}
}
pubTic ActionResult UpdateSuccess(string returnUrl)
{

var model = new ProfileViewModel

{

Profile = this.membershipService.GetCurrentProfile(),

270 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

ReturnUrl = returnUrl

55
return View(model);
}
private void InjectStatesAndActivityTypes(ProfileViewModel model)
{
var profile = model.Profile;
var types = this.activitiesRepository.RetrieveActivityTypes()
.Select(o => new SelectListItem { Text = o.Name,
Value = 0.Id.ToString(Q),
Selected = (profile != null &&
0.Id == profile.PreferredActivityTypeId) })
.ToList(Q);
types.Insert(0, new SelectListItem { Text = "Select...", Value = "0" });
var states = this.referenceRepository.RetrieveStates().Select(
o => new SelectListItem {
Text = o.Name,
Value = o.Abbreviation,
Selected = (profile != null &&
o.Abbreviation == profile.State) })
.ToList(Q);
states.Insert(0,
new SelectListItem { Text = "Any state",
Value = string.Empty });
model.PreferredActivityTypes = types;
model.States = states;
}

Creating the Account View

In the previous section, you created a controller with functionality that allows a user to
update her information and view it. In this section you're going to walk through the Visual
Studio 2010 features that enable you to create the views that display this functionality to
the user.

To create the Index view for the Account controller:

1. Navigate to the Views folder in the PlanMyNight.Web project.

2. Click the right mouse button on the Views folder, expand the Add submenu, and select
New Folder.

3. Name the new folder Account.

Chapter 9 From 2008 to 2010: Designing the Look and Feel

Click the right mouse button on the new Account folder, expand the Add submenu,

and select View.

Fill out the Add View dialog box as shown here:

-
Add View

S

View name:

Index

[Createa partial view (.ascx)

Create a strongly-typed view

View data class:
ProfileViewModel -

View content:

[Empty]

Select master page

~{Views/Shared/Site.Master D

ContentPlaceHolder ID:

MainContent

[Add l l Cancel]

=)

Click Add. You should see an HTML page with some <asp:Content> controls in the

markup:

bo PlanMyNight - Microsoft Visual Studio . i TR . T || (- e

File Edit View Project Debug Team Data Tools Test Window Help

103 el A % 9 - G [B [oebug [y cPu

|| # |ty again

%% k62| B BES

P g AccountController.cs

= 2 | [xHTML10 Transition -|| @ o} Publish: [Create Publish Settings ~| & =

Bl solution Explorer

</asp:Content>

n

<aspiContent ID="Content3" ContentPlaceHolderID="HtmlHeadContent” runat="server”>
</aspiContent>

00% «] i

Server Objects & Events <] tNo Events) J=2la=0e
<@ Page Title="" Language="CH#" MasterPagerile="~/Views/Shared/Site.Master” =J 53 Solution ‘PlanMyNight' (13 projects)
Inherits="System.Web.Hve.ViewPagesProfileVientodel>" %> 1 o 2 addins
b i Solution ltems
[i<asp:Content ID="Contentl® ContentPlaceHolderID="TitleContent” runat="server”> R —
Index 4
</asp:Content> » (Z PlanMyNight Bing
b (3 PlanMyNight Contracts
[El<asp:Content ID="Content2” ContentPlaceHolderID="MainContent” runat="server”> b (& PlanMyNightData
v (& PlanMyNight Infrastructure
<h2>Index</h2> b (& PlanMyNight.Velocity
4 (@ PlanMyNight Web

[l Properties
53 References
(3 App_Browsers
(3 App_Data

[Areas

[Content

3 Centrollers
[Helpers

3 Infrastructure
3 ViewModels

Avvvvvvveew

b [Mineraries
» [Search
b [Shared
[E Web.config
» [Defaultiaspx
(] Error.htm
T80 £ani

Q Design | @ Split @ Source | [4]|<%@ Page %~ M

&3] Solution Explorer [IR s

ssgadoig B

271

272

Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

You might notice that it doesn't look much different from what you are used to seeing

in Visual Studio 2008. By default, ASP.NET MVC 2 uses the ASP.NET Web Forms view
engine, so there will be some commonality between MVC and Web Forms pages. The
primary differences at this point are that the page class derives from System.Web.Mvc.
ViewPage<ProfileViewModel> and there is no code-behind file. MVC does not use code-
behind files, like ASP.NET Web Forms does, to enforce a strict separation of concerns. MVC
pages are generally edited in markup view; the designer view is primarily for ASP.NET Web
Forms applications.

For this page skeleton to become the main view for the Account controller, you should
change the title content to be more in line with the other views:

<asp:Content ID="Contentl" ContentPlaceHolderID="TitleContent" runat="server">
Plan My Night - Profile
</asp:Content>

Next you need to add the client scripts you are going to use in the content placeholder for
the HtmlHeadContent:

<asp:Content ID="Content3" ContentPlaceHolderID="HtmlHeadContent" runat="server">
<% Ajax.RegisterClientScriptInclude(
Url.Content("~/Content/Scripts/jquery-1.3.2.min.js"),
"http://ajax.Microsoft.com/ajax/jQuery/jquery-1.3.2.min.js"); %>
<% Ajax.RegisterClientScriptInclude(
Url.Content("~/Content/Scripts/jquery.validate.js"),
"http://ajax.microsoft.com/ajax/jquery.validate/1.5.5/jquery.validate.min.js"); %>
<% Ajax.RegisterCombinedScriptInclude(
Url.Content("~/Content/Scripts/MicrosoftMvclQueryValidation.js"), "pmn"); %>
<% Ajax.RegisterCombinedScriptInclude(
Url.Content("~/Content/Scripts/ajax.common.js"), "pmn"); %>
<% Ajax.RegisterCombinedScriptInclude(
Url.Content("~/Content/Scripts/ajax.profile.js"), "pmn"); %>
<%= Ajax.RenderClientScripts() %>
</asp:Content>

This script makes use of extension methods for the System.Web.Mvc.AjaxHelper, which are
found in the PlanMyNight.Infrastructure project, under the MVC folder.

With the head content set up, you can look at the main content of the view:

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
<div class="panel" id="profileForm">
<div class="innerPanel">

<h2>My Profile</h2>

<% Html.EnableClientValidation(); %>

<% using (Html.BeginForm("Update", "Account™)) %>

<% { %>

<%=Htm1.AntiForgeryToken()%>

<div class="items">

Chapter 9 From 2008 to 2010: Designing the Look and Feel 273

<fieldset>
<p>
<Tlabel for="FullName'">Name:</label>
<%=Htm1.EditorFor(m => m.Profile.FullName)%>
<%=Htm1.ValidationMessage("Profile.FulIName",
new { @class = "field-validation-error-wrapper" 3})%>
</p>
<p>
<Tlabel for="State">State:</label>
<%=Htm1.DropDownListFor(m => m.Profile.State, Model.States)%>
</p>
<p>
<label for="City">City:</label>
<%=Htm1.EditorFor(m => m.Profile.City, Model.Profile.City)%>
</p>
<p>
<label for="PreferredActivityTypeld">Preferred activity:</label>
<%=Htm1.DropDownListFor(m =>
m.Profile.PreferredActivityTypeld,
Model.PreferredActivityTypes)%>
</p>
</fieldset>
<div class="submit">
<%=Htm1.Hidden("returnUr1", Model.ReturnUrl)%>
<%=Htm1.SubmitButton("submit", "Update")%>
</div>
</div>
<div class="toolbox"></div>
<% } %>
</div>
</div>
</asp:Content>

Aside from some inline code, this looks to be fairly normal HTML markup. We're going to

focus our attention on the inline code pieces to demonstrate the power they bring (as well as
the simplicity).

Visual Studio 2008 In Visual Studio 2008, it was more commonplace to use server-side
controls to display data, and other display-time logic. However, because ASP.NET MVC view
pages do not have a code-behind file, server-side logic executed in the view at render time must
be done in the same file with the markup. ASP.NET Web Forms controls can still be used. Our
example makes use of the <asp:Content> control. However, the functionality of ASP.NET Web
Forms controls is generally limited because there is no code-behind file.

MVC makes a lot of use of what is known as HTML helpers. The methods contained under
System.Web.Mvc.HtmlIHelper emit small, standards-compliant HTML tags for various uses.
This requires the MVC developer to type more markup than a Web Forms developer in some
cases, but the developer has more direct control over the output. The strongly typed version

274 Part llI

Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

of this extension class (Htm/Helper<TModel>) can be referenced in the view markup via the
ViewPage<TModel>.Html property.

These are the HTML methods used in this form, which are only a fraction of what is available
by default:

Html.EnableClientValidation enables data validation to be performed on the client side
based on the strongly typed ModelState dictionary.

Html.BeginForm places a <form> tag in the markup and closes the form at the end
of the using section. It takes various parameters for options, but the most common
parameter is the name of the action and the controller to invoke that action on. This
allows the MVC framework to generate the specific URL to target the form to at run
time, rather than having to input a string URL into the markup.

Html.AntiForgeryToken places a hidden field in the form with a check value that is also
stored in a cookie in the visitor's browser and validated when the target of the form has
the ValidateAntiForgeryToken attribute. Remember that you added this attribute to the
Update method in the controller.

Html.EditorFor is an overloaded method that inserts a text box into the markup. This is
the strongly typed version of the Html.Editor method.

Html.DropDownlListFor is an overloaded method that places a drop-down list into the
markup. This is the strongly typed version of the Html.DropDownList method.

Html.ValidationMessage is a helper that will display a validation error message when a
given key is present in the ModelState dictionary.

Html.Hidden places a hidden field in the form, with the name and value that is
passed in.

Html.SubmitButton creates a Submit button for the form.

Note With the Index view markup complete, you only need to add the view for the
UpdateSuccess action before you can see your results.

To create the UpdateSuccess view:

1.

Expand the PlanMyNight.Web project in Solution Explorer, and then expand the Views
folder.

Click the right mouse button on the Account folder.

. Open the Add submenu, and click View.

Chapter 9 From 2008 to 2010: Designing the Look and Feel

4. Fill out the Add View dialog box so that it looks like this:

£ S — ™
Add View e g
-
View name:
UpdateSuccess|

[Createa partial view [.ascx)
Create a strongly-typed view

View data class:
ProfileViewModel -

View content:

Empty

Select master page

~{Views/Shared/Site.Master D

ContentPlaceHolder ID:

MainContent

[Add l l Cancel]

. =/

After the view page is created, fill in the title content so that it looks like this:

<asp:Content ContentPlaceHolderID="TitleContent” runat="server">Plan My Night - Profile
Updated</asp:Content>

And the placeholder for MainContent should look like this:

<asp:Content ContentPlaceHolderID="MainContent" runat="server">
<div class="panel" id="profileForm">
<div class="innerPanel">
<h2>My Profile</h2>
<div class="1items">
<p>Your profile has been successfully updated.</p>
<h3>» <a href="<%=Html.AttributeEncode(Model.ReturnUrl ??
Url.Content("~/"))%>">Continue</h3>
</div>
<div class="toolbox"></div>
</div>
</div>
</asp:Content>

To see the views created, you must perform an edit to the Site.Master file (located in the

275

Views/Shared folder from the Web project'’s root). Line 33 of the file is commented out, and

the comment tags should be removed so that it matches the following example:

<%=Htm1.ActionLink<AccountController>(c => c.Index(null), "My Profile")%>

276 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

With this last view created, you can now compile and launch the application. Click the Sign In
button, as seen in the top right corner of Figure 9-6, and sign in to Windows Live ID.

i

SEARCH | ABOUT

\i I | Advanced Search

Activities Hineraries Your current itinerary Toratestmsteg e -

Please provide a search criteria...
Your itinerary is currently empty.

Perform a search and then select activities to build an itinerary.

Al dghts
o200

00

Goveioper & platiorm evangelism

FIGURE 9-6 Plan My Night default screen

After you've signed in, you should be redirected to the Index view of the Account controller
you created, shown in Figure 9-7.

Plan My —
Night SEARCH | MYPROPLE | MYMNERARIES | ABOUT T

My Profile.

Name: New User

State: ‘Any state =
City:

Preferred activity: [Seled[v]

Update

00 0

Gevwioper & puariorm evangetism

FIGURE 9-7 Profile settings screen returned from the Index method of the Account controller

If instead you are returned to the search page, just click the My Profile link, located in the
links at the center and top of the interface. To see the new data-validation features at work,

Chapter 9 From 2008 to 2010: Designing the Look and Feel 277

try to save the form without filling in the Full Name field. You should get a result that looks
like Figure 9-8.

My Profile

| S i o s i
State: IWashington E’

City: |Redmond |

Preferred activity: IRestaurantB

Update

FIGURE 9-8 Example of failed validation during Model Binding checks

Because you enabled client-side validation, there was no postback. To see the server-

side validation work, you would have to edit the Index.aspx file in the Account folder and
comment out the call to Html.EnableClientValidation. The tight integration and support of
AJAX and other JavaScript in MVC applications allows for server-side operations such as
validation to be moved to the client side much more easily than they were previously.

Visual Studio 2008 In ASP.NET MVC applications, the value of the ID attribute for a particular
HTML element is not transformed, like they are in ASP.NET Web Forms 3.5. In Visual Studio 2008,
a developer would have to make sure to set the UniquelD of a control/element into a JavaScript
variable so that it could be accessed by external JavaScript. This was done to make sure the

ID was unique. However, it was always an extra layer of complexity to the interaction between
ASP.NET 3.5 Web Forms controls and JavaScript. In MVC, this transformation does not hap-

pen, but it is up to the developers to ensure uniqueness of the ID. It should also be noted that
ASP.NET 4.0 Web Forms now supports disabling the ID transformation on a per-control basis, if
the developer so wishes.

With the completed Account controller and related views, you have filled in the missing
"core" functionality of Plan My Night, while taking a brief tour of some new features in Visual
Studio 2010 and MVC 2.0 applications. But MVC is not the only choice for Web developers.

278

Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

ASP.NET Web Forms has been the primary application type for ASP.NET since it was released,
and it continues to be improved upon in Visual Studio 2010. In the next section, we'll explore
creating an ASP.NET Web Form with the Visual Designer to be used in the MVC application.

Using the Designer View to Create a Web Form

Applications will encounter an unexpected condition at some point in their lifetime of use.
The companion application is no different, and when it does encounter an unexpected
condition, it returns an error screen like that shown in Figure 9-9.

PR s | s [rew——

Ooops! An error has occurred while processing your request
! Don't worry, this was our fault, not yours.
£

™ Want to try again?

Error Details

System ArgumenthlEception Vlue cannotibe null Parameter name: vlue ot Syem Web Coching CacheEnty.ctor(Srng s 2.0 Object
walu | . DateTime uicAbsoluicbpraton, Time
sohbdngxplvatlun CacheltemPriority priority, Boolean sPublic) at Syt b.Cachin ((& isPublic, Stvmg key,
Y riority,
Ca(ha!lEmREmuvedCaHhankunREmuve(a\lba(k, eoicsn eplace) st SysiemWeb, Ca(mng Cachelnsert(Siring key, Object aler
h Timespan
NetCaching| 385 contener, Sting key, Objectalue, TimeSpan

t\meuut) in C\mde\PMN(mde End of Chapi iyNight spNetCaching siine 33

LData,Caching, itineraryld) in C: End of

]

i2\Ca y.celine 70 at
Mmasof:sammes’manMyNungebc trollers Controller.Details(ints id) in C:
b\C L atlambds method(Closure, P i Omect[])at
at

‘ At ontroller, Object]] parameter
System Web Mv(REﬂE(tEdA((lDHDEsmptwExe(ute((untvn”evtumm(unthev(untEﬂ, IDmunaryz parameters) at
it Context controllerContext, ActionDescriptor actionDescriptor,
ID\((WHE{)(Earameters] at System.Web.| Mv: Cun(ruHErA((wnInvuker <>< DisplayClassd. <InvokeActionMethodWithFilters> b_a() at
. Co (]A(UDHFI‘[EF?"tEL ActionExecutingContext preContext, Funcl
(Dmmuatmn) at Sys(em Weh Mvn CnnthavA(UDnInvukav <>(7D\sp\ay(\assd <>, D\sp\ay(\assf(IrwnkaA:l\nnMﬁhDdWithF\ltevDh <0

ontext preContext, Funcl
playClassf.<InvokeActionMethodWithFilters> b_c()

Et S «4>c_DisplayClassd. o
t System.Web.Mvc.ControllerAct nnthevCDnlExtmntml\ev(untext]L\s('lﬁ\t
o eseroron koD ot ptor Dictany pesarmeton ot Sysem b tion(ContrdllerContest

controllerContext, String actionName)

Q0

developer & platiorm evangelism =

FIGURE 9-9 Example of an error screen in the Plan My Night application

Currently, a user who sees this screen really has only the option of trying his action again

or using the navigation links along the top area of the application. (Of course, that might
also cause another error.) Adding an option for the user to provide feedback allows the
developers to gain information about the situation that might not be apparent by using

the standard exception message and stack trace. To show a different way to create a user
interface component for Plan My Night, the error feedback page is going to be created as an
ASP.NET Web Form using primarily the Designer view in Visual Studio. Before you can begin
designing the form, you need to create a base form file to work from.

Chapter 9 From 2008 to 2010: Designing the Look and Feel

To create a new Web form:

279

1. Open the context menu on the PlanMyNight.Web project (by clicking the right mouse

button), open the Add submenu, and select New Item.

2. In the Add New Item dialog box, select Web Form Using Master Page and call the item

ErrorFeedback.aspx in the Name field.

. —— w
Add New Item - PlanhyhightWeb [
Installed Templates Sort by: [search Installed Templates 2|
4 Visual C#
Type: Visual C#
Code ch] MVC2 Controller Class Visual C# ypes Tene
. = A form for Web Applications that is built
= = from a Master Page
General 52| wve2view content age Visual C*
4 Web
Mve2 D MVC 2 View Master Page Visual C#
Windows Forms
WPF MVC 2 View Page Visual C#
Reporting
Silverlight MVC 2 View User Control Visual C#
Workflow
Online Templates Web Form Visual C#
S| Web Form using Master Page Visual C#
Web User Control Visual C#
I
el Class Visual C#
E Master Page Visual C#
Nested Master Page Visual C# -
Name: Errorfesdback.aspx
Add Cancel
=)

3. The dialog screen to associate a master page with this Web form will appear. On the
Project Folders side, ensure that the main PlanMyNight.Web folder is selected and then
select the WebForms.Master item on the right.

r
Select a Master Page

g - m— - -

=)

Project folders:

Contents of folder:

4 28 PlanMyNight.Web
&> g App_Browsers
1> [y App_Data
> CH Areas
i CJ Content
> £ Controllers
»» CJ Helpers
[» 3 Infrastructure
i» [= Properties
[» 5 References
» 3 ViewModels
» Ll Views

280

Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

4. The resulting page can be shown in the source mode (or Design view) instead of Split
view. Switch the view to Split (located at the bottom of the window, just like in previous
Visual Studio versions). When you are done, the screen should look similar to this:

File Edit View Project Build Debug Team Data Format Tools Test Window Help

i A-SHd %an9 = &= b [Debug ~|Any cPU || 18 [try again SR G s Bl
AR LE L) XHTML10 Transition =| | & ;[il?ubﬁslk Create Publish Settings =])] -
ErrorFeedback.aspx < [IAVEEDY UpdateSuccess.a: Index.aspx AccountController.cs ~ Solution Explorer ~1x By
Client Objects & Events <[NoEvents Qa2 =] (K JEE 3
%@ Page Title="" Langusge="C#" MasterPageFile="n/WebForms.Master” AutoEventWireup="true” CodeBehind[=fl [-g Solution ‘PlanMyNight (13 proje » S
<asp:Content ID="Contentl" ContentPlaceHolderTD="TitleContent” runat="server"> <o 2 addins a
</asp:Content> b i Solution tems
<asp:Content ID="Content2" ContentPlaceHolderID="HtmlHeadContent” runat="server™> b Tests
</asp:Content> -
<aspiContent TD-"Content3" ContentPlaccHolderTD="HainContent” runat="server”> A & pranbayNight Bing
</aspiContent> b (& PlanMyNight.Contracts
b (& PlanMyNight Data
v (& PlanMyNight Infrastructure
b (& PlanMyNight Velocity
4 (@ PlanMyNight Web
© [l Properties
b [References
et » (g App_Browsers
e - ' » 3 App_Data L
WebForms Master| > [Areas
il Al cacomem
Plan My = o oment
= SEARCH | MY PROFILE | MY ITINERARIES | ABOUT b ontrollers
Night » [Helpers
- & 3 Infrastructure
& [ViewModels
3] =) » 3 Views
» [l Default.aspx
[8] Error.ntm
b [E] ErrorFeedbackaspx
) favicon.ico
All rights reserved. | Terms of Use | Privacy Statement I | b 4l Global.asax
© 2009 Microsoft Corporation. [8] NetFound.htm
- [Web.config
< 0 O
D=y EETle s | 5 Solution Explorer [Ty
Ready Lnl Coll Chil

Note Split view is recommended so that you can see the source the designer is generating and
to add extra markup as needed.

It's a good idea to pin the control toolbox open on the screen because you'll be dragging
controls and elements to the content area during this section. The toolbox, if not present
already, can be found under the View menu.

Start by dragging a div element (under the HTML group) from the toolbox into the
MainContent section of the designer. A div tab will appear, indicating that the new element
you added is the currently selected element. Open the context menu for the div, and choose
Properties (which can also be opened by pressing the F4 key). With the Properties window
open, edit the (Id) property to have a value of profileForm. (Casing is important.) Also, change
the Class property to have a value of panel. After editing the values, the size of your content
area will have changed, because CSS is applied in the Design view.

Drag another div inside the first one, and set its class property to innerPanel. In the markup
panel, add the following markup to the innerPanel.

<h2>Error Feedback</h2>

Chapter 9 From 2008 to 2010: Designing the Look and Feel 281

After the close of the <h2> tag, add a new line and open the context menu. Choose Insert
Snippet, and follow the click path of ASP.NET > form. This will create a server-side form
tag for you to insert Web controls into. Inside the form tag, place a div tag with the class
attribute set to items and then a fieldset tag inside the div tag.

Next drag a TextBox control (found under Standard) from the toolbox and drop it inside the
fieldset tag. Set the ID of the text box to FullName. Add a <label> tag before this control in
the markup view, set its for property to the ID of the text box, and set its value to Full Name:
(making sure to include the colon). To set the value of a <label> tag, place the text between
the <label> and </label> tags. Surround these two elements with a <p>, and you should
have something like Figure 9-10 in the Design view.

a
Pla?hf‘_lyt SEARCH | MY PROFILE | MY ITINERARIES | ABOUT

[MainContent [Custom)]
Error Feedback

fieldset]

Full Name:

FIGURE 9-10 Current state of ErrorFeedback.aspx in the Design view

Add another text box and label it in a similar manner as the first, but set the ID of the text
box to EmailAddress and the label value to Email Address: (making sure to include the
colon). Repeat the process a third time, setting the TextBox ID and label value to Comments.
There should now be three labels and three single-line TextBox controls in the Design view.
The Comments control needs multiline input, so open its property page and set TextMode to
Multiline, Rows to 5, and Columns to 40. This should create a much wider text box in which
the user can enter comments.

Use the Insert Snippet feature again, after the Comments text box, and insert a "div with
class" tag (HTML>divc). Set the class of the div tag to submit, and drag a Button control from
the toolbox into this div. Set the Button's Text property to Send Feedback.

282

Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

The designer should show something similar to what you see in Figure 9-11, and at this point
you have a page that will submit a form.

n
Pla?ﬁf'lyt SEARCH | MY PROFILE | MY ITINERARIES | ABOUT

Error Feedback

Full Name: | ‘

Email Address:

Comments:

Send Feedback

All ights reserved. | Terms of Use | Privacy Statement @ o O

© 2009 Microsoft Corporation.
P developer & platform evang.

FIGURE 9-11 The ErrorFeedback.aspx form with a complete field set

However, it does not perform any validation on the data being submitted. To do this, you'll
take advantage of some of the validation controls present in ASP.NET. You'll make the Full
Name and Comments boxes required fields and perform a regex validation of the e-mail
address to ensure that it matches the right pattern.

Under the Validation group of the toolbox are some premade validation controls you'll use.
Drag a RequiredFieldValidator object from the toolbox, and drop it to the right of the Full
Name text box. Open the properties for the validation control, and set the ControlToValidate
property to FullName. (It's a combo box of controls on the page.) Also, set the CssClass to

Chapter 9 From 2008 to 2010: Designing the Look and Feel 283

field-validation-error. This changes the display of the error to a red triangle used elsewhere
in the application. Finally, change the Error Message property to Name is Required. (See
Figure 9-12.)

File Edit View Project Build Debug Team Data Format Tools Test Window Help
fa-a-ca@dad9-6-8-5] [oby |y 8 [ag0in
[E % % [# 02 | B BB D53 <Jf [(Newinline Siyle) | =2 | [Paregraph | [Segoc UL Al Te | [95% || B 7 U | A A=

% [N ETVRN Site.css UserProfile Extension.cs i UserProfile.cs @i Site.Master Properties
WebForms Master i

1 SystemWeb.ULWebC

g B
(Expressions) E
RequiredFieldValidato

SEARCH | MY PROFILE | MY ITINERARIES | ABC|

a0[d)g UoN|o it

AccessKey
BackColor

BorderColor
Error Feedback BorderStyle NotSet
BorderWidth

ClientlDMode Inherit
ControlToYalidate FullName
Full Name: CssClass errorShort

Display Static

Email Address: | EnableClientseript LIRS

Enabled True

EnableTheming True
Comments: Ensblelienstate True
EmorMessage Nameis Required
Font

ForeColor

Height

IniialValue

- SetFocusOnError False

SkinlD

Tablndex 0

Send Feedback ©

« I
[| Indicates whether to perform validation on the

G Design |3 Split | @ Source | \i‘ <form> || <div.items> || <fieldset> || <p> | <aspRequiredFieldValidat...> client in up-level browsers.

B Call Stack 8l Immediate Window ¥ Find Symbol Results & Locals & Watch 1

EnableClientScript

Drag border or press arrow keys to move. Drag margin handles to resize margins. Press SHIFT or CTRL for more options.

FIGURE 9-12 Validation control example

Repeat these steps for the Comments box, but substitute the ErrorMessage and
ControlToValidate property values as appropriate.

For the Email Address field, you want to make sure the user types in a valid e-mail address,
so for this field drag a RegularExpressionValidator control from the toolbox and drop it next
to the Email Address text box. The property values are similar for this control in that you set
the ControlToValidate property to EmailAddress and the CssClass property to field-validation-
error. However, with this control you define the regular expression to be applied to the input
data. This is done with the ValidationExpression property, and it should be set like this:

[A-Za-z0-9._ %+-1+@[A-Za-z0-9.-1+\.[A-Za-z]{2,4}

The error message for this validator should say something like “Must enter a valid e-mail
address.”

284

Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

The form is complete. To see it in the application, you need to add the option of providing
feedback to a user when the user encounters an error. In Solution Explorer, navigate the
PlanMyNight.Web project tree to the Views folder and then to the Shared subfolder. Open
the Error.aspx file in the markup viewer, and go to line 35. This is the line of the error screen
where you ask the user whether she wants to try her action again and where you'll put the
option for sending the feedback. After the question text in the same paragraph, add the
following markup:

or send feedback?

This will add an option to go to the form you just created whenever there is a general error
in the MVC application. To see your form, you'll have to cause an error in your application.

To cause an error in the Plan My Night application:

1. Start the application.

2. After the default search page is up, type the following into the browser address bar:
http://www.planmynight.net:48580/Itineraries/Details/38923828.

3. Because it is highly unlikely such an itinerary ID exists in the database, an error screen
will be shown. If you are running the application with the debugger attached, the
application will pause on an exception breakpoint. Continue the application (F5 is the
default key) to see the following screen:

N.Ight SEARCH ABOUT

Ooops! An error has occurred while processing your request
Don't worry, this was our fault, not yours.

&\ wantto try again or send feedback?

i

Error Details

System ArgumentNullException: Value cannot be null. Parameter name: value at System.Web.Caching.CacheEntry..ctor(String
key, Object value, CacheDependency de;éendency CacheltemRemovedCallback onRemovedHandler, DateTime
utcAbsoluteExpiration, TimeSpan slidingExpiration, CacheltemPriority priority, Boolean isPublic) at
System.Web.Caching.Cachelnternal.Dolnsert(Boolean isPublic, String key, Object value, CacheDependency dependencies,
DateTime utcAbsoluteExpiration, TimeSpan slidingExpiration, Ca(heltemPnomy priority, CacheltemRemovedCallback
onRemoveCallback, Boolean replace) at System.Web.Caching.Cache.Insert(String key, Object value, CacheDependency
dependencies, DateTime absoluteExpiration, TimeSpan slidingExpiration) at
Microsoft.5samples.PlanMyNight.Web.Infrastructure.AspNetCachingProvider.Add(String container, String key, Object value,
TimeSpan timeout) in C:\code\PMN\code - End of Chapter\PlanMyNight.web\Infrastructure\AspNetCachingProvider.cs:line 33 at
Microsoft.Samples. PIanMB ight.Data.Caching.CachedltinerariesRepository. Retneve([me4 itineraryld) in C:\code\PMN\code - End
of Chapter\PIanMleght ata\Cachlng\CachedItmeranesReposlto .cs:line 7
Microsoft.Samples.PlanMyNight.Web.Controllers.ItinerariesController. Detalls(lnt64 id) in C:\code\PMN\code - End of
Chapter\PIanMleghtWeb\Controllers\ltlneranesControIIer csiline 71 at lambda_method(Closure , ControllerBase , Object[]) at
System.Web.Mvc.ActionMethodDispatcher.Execute(ControllerBase controller, Object[] parameters) at
System.Web.Mvc.ReflectedActionDescriptor.Execute(ControllerContext controllerContext, IDictionary’2 parameters) at
System.Web.Mvc.ControllerActionInvoker InvokeActionMethod(ControllerContext controllerContext, ActionDescriptor
actionDescriptor, IDictionary'2 parameters) at
System.Web.Mvc.ControllerActionInvoker. < >c_ DisplayClassd.<InvokeActionMethodWithFilters>b__a() at
Svstem Web.Mvc.ControllerActionInvoker.InvokeActionMethodFilter(IActionFilter filter, ActionExecutingContext preContext, . -
i v

Chapter 9 From 2008 to 2010: Designing the Look and Feel 285

4. With the error screen visible, click the link to go to the feedback form. Try to submit the
form with invalid data.

Error Feedback

Full Name: | | '8 Name is Required

Email Address: |some0ne@somewhere.c0m|
Comments:
this is some feedback i

Send Feedback

ASP.NET uses client-side script (when the browser supports it) to perform the validation, so
no postbacks occur until the data passes. On the server side, when the server does receive
a postback, a developer can check the validation state with the Page./sValid property in the
code-behind. However, because you used client-side validation (which is on by default), this
will always be true. The only code in the code-behind that needs to be added is to redirect
the user on a postback (and check the Page.lsValid property, in case client validation missed
something):

protected void Page_Load(object sender, EventArgs e)

{
if (this.IsPostBack && this.IsValid)
{
this.Response.Redirect("/", true);
}
}

This really isn't very useful to the user, but our goal in this section was to work with

the designer to create an ASP.NET Web Form. This added a new interface to the
PlanMyNight.Web project, but what if you wanted to add new functionality to the
application in a more modular sense, such as some degree of functionality that can

be added or removed without having to compile the main application project. This is where
an extensibility framework like the Managed Extensibility Framework (MEF) can show the
benefits it brings.

286 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Extending the Application with MEF

A new technology available in Visual Studio 2010 as part of the .NET Framework 4 is

the Managed Extensibility Framework (MEF). The Managed Extensibility Framework
provides developers with a simple (yet powerful) mechanism to allow their applications

to be extended by third parties after the application has been shipped. Even within the
same application, MEF allows developers to create applications that completely isolate
components, allowing them to be managed or changed independently. It uses a resolution
container to map components that provide a particular function (exporters) and components
that require that functionality (importers), without the two concrete components having

to know about each other directly. Resolutions are done on a contract basis only, which
easily allows components to be interchanged or introduced to an application with very little
overhead.

See Also MEF's community Web site, containing in-depth details about the architecture, can
be found at http://mef.codeplex.com

The companion Plan My Night application has been designed with extendibility in mind, and
it has three "add-in" module projects in the solution, under the Addins solution folder. (See
Figure 9-13.)

File Edit View Project Build Debug Team Data Tools Test Window Help

[FE-il- S @] @]9 - - L] P [osbug -] [AnyCPU /(28 [ty again - GhEse:
(DBl @ EZ2(006 @@ Q001 % W23 DO NevWokten- 5 2 i 2

S e L T L AspNetCachingProvider.cs Erroraspe Index.aspx Solution Explorer

i ‘ A==) Bl e |
nanespace Microsoft.sanples.Plantyliight. AddIns.Enailltinerary [4 Solution PlanMyNight' (15 projects)
< 4 i Addins
using System.Componenttiodel.Composition; 4 (@ PlanMyNightAddins Emailitinerary
using System.uieb.Muc;
using System.ueb.Routing;

xogjoa) 3
spadoig B

[Properties

| [References

public class RouteTableConfiguration (55 App_Dats

{ 3 Controllers.

public const string Areallame = “PlantyNight.AddIns. EmailItinerary”s [Netifications

3 Resources

[Export(typeof(RouteCollection))] (3 Views

public RouteCollection RouteCollectionConfiguration) ItineraryContextualActionsExport.cs

{ N |#] RouteTableConfiguration.cs|
?E (£ PlanMyNight. Addins Printltinerary
var routes = new RouteCollection(); = Properties

var areaContext = new AreaRegistrationContext(AreaName, routes); i [References

(3 App_Data

areaContext.MapRoute(3 Controllers
“ItineraryEmail®, > [Views
"Itineraries/enail/{action})", 2) HinerarContertualActionsbrport.cs
new { m{j;”ﬂllf”f: 55“3111‘;;"”}: b deine. ematiit cont <] RouteTableConfiguration.cs
new[] { "Microsoft.Sanples.PlanMyNight.AddIns.Enailltinerary.Contre 2 PlanbyNight Addins Share

return routes; > B Properties

[References

(5 App.Data

(3 Controllers

(3 Models

[Views
RouteTableConfiguration.cs

aringConteduslictionsEportcs

. mec o
3 Solution Explorer [NEETN= o

FIGURE 9-13 The Plan My Night application add-ins

PlanMyNight.Addins.Emailltinerary adds the ability to e-mail itinerary lists to anyone the user
sees fit to receive them. PlanMyNight.Addins.Printltinerary provides a printer-friendly view

http://mef.codeplex.com

Chapter 9 From 2008 to 2010: Designing the Look and Feel 287

of the itinerary. Lastly, PlanMyNight.Addins.Share adds in social-media sharing functions (so
that the user can post a link to an itinerary) as well as URL-shortening operations. None of
these projects reference the main PlanMyNight.Web application or are referenced by it. They
do have references to the PlanMyNight.Contracts and PlanMyNight.Infrastructure projects,
so they can export (and import in some cases) the correct contracts via MEF as well as use
any of the custom extensions in the infrastructure project.

Note Before doing the next step, if the Web application is not already running, launch the
PlanMyNight.Web project so that the Ul is visible to you.

To add the modules to your running application, run the DeployAllAddins.bat file, found

in the same folder as the PlanMyNight.sIn file. This will create new folders under the Areas
section of the PlanMyNight.Web project. These new folders, one for each plug-in, will
contain the files needed to add their functionality to the main Web application. The plug-ins
appear in the application as extra options under the current itinerary section of the search
results page and on the itinerary details page. After the batch file is finished running, go to
the interface for Plan My Night, search for an activity, and add it to the current itinerary. You
should notice some extra options under the itinerary panel other than just New and Save.
(See Figure 9-14.)

Your current itinerary Total estimated time: 30m
Palomino
1420 5th Ave Ste 350 ®6

Seatth_e. WA i_ Phone: (206) 623-1300
Time: | ZOimin Set Time

Il Terrazzo Carmine

411 1st Ave S ®
Seattle, WA | Phone: (206) 467-7797
Time: | 10imin Set Time

New | [Save | @3 Email | ggy Print

FIGURE 9-14 Location of the e-mail add-in in the Ul

288 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

The social sharing options will show in the interface only after the itinerary is saved and
marked public. (See Figure 9-15.)

Itinerary: Seattle Restaurants i | Public

Add activities to my itinera i

Total estimated time: 30m + 6 minutes of travel time.

A. Palomino
1420 5th Ave Ste 350
Seattle, WA | Phone: (206) 623-1300
Estimated time: 20 minutes.

i Travel estimated time: 6 minutes.

B. Il Terrazzo Carmine
411 1stAve S
Seattle, WA | Phone: (206) 467-7797
Estimated time: 10 minutes.

Edit | Make Private | Email | Shorten URL | Share | Rate:

FIGURE 9-15 Location of the social sharing add-in in the Ul

Visual Studio 2008 Visual Studio 2008 does not have anything that compares to MEF. To
support "plug-ins,” a developer would have to either write the plug-in framework from scratch
or purchase a commercial package. Either of the two options led to proprietary solutions an
external developer would have to understand in order to create a component for them. Adding
MEF to the .NET Framework helps to cut down the entry barriers to producing extendable
applications and the plug-in modules for them.

Print Itinerary Add-in Explained

To demonstrate how these plug-ins wire into the application, let's have a look at the
Printltinerary.Addin project. When you expand the project, you should see something like
the structure shown in Figure 9-16.

Chapter 9 From 2008 to 2010: Designing the Look and Feel 289

'3 Solution 'PlanMyNight' (15 projects)
a4 3 Addins
[> |§ PlanMyNight.AddIns.Emailltinerary |
4 M.% PlanMyNight.AddIns.Printltinerary
> [=d Properties
> [x3] References
3 App_Data
4 [Controllers
& PrintltineraryController.cs
4 [Views
4 [Printltinerary
] Print.aspx
i3 Web.config
& HineraryContextualActionsExport.cs
#] RouteTableConfiguration.cs
b 8 PlanMyNight.Addlns.Share
olution Items
i Tests
[PlanMyNight.Bing
[PlanMyNight.Contracts
[PlanMyNight.Data
[PlanMyNight Infrastructure
[PlanMyNight.Velocity
£® PlanMyNight.Web

v v WV W v W v

FIGURE 9-16 Structure of the Printltinerary project

Some of this structure is similar to the PlanMyNight.Web project (Controllers and Views).
That's because this add-in will be placed in an MVC application as an area. If you look more
closely at the PrintltineraryController.cs file in the Controller folder, you can see it is similar

in structure to the controller you created earlier in this chapter (and similar to any of the
other controllers in the Web application). However, some key differences set it apart from the
controllers that are compiled in the primary PlanMyNight.Web application.

Focusing on the class definition, you'll notice some extra attributes:

[Export("PrintItinerary", typeof(IController))]
[PartCreationPolicy(CreationPolicy.NonShared)]

These two attributes describe this type to the MEF resolution container. The first attribute,
Export, marks this class as providing an /Controller under the contract name of Printitinerary.
The second attribute declares that this object supports only nonshared creation and cannot
be created as a shared/singleton object. Defining these two attributes are all you need to
do to have the type used by MEF. In fact, PartCreationPolicy is an optional attribute, but it
should be defined if the type cannot handle all the creation policy types.

290

Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Further into the PrintltineraryController.cs file, the constructor is decorated with an
ImportingConstructor attribute:

[ImportingConstructor]
public PrintItineraryController(IServiceFactory serviceFactory) :
this(
serviceFactory.GetItineraryContainerInstance(),
serviceFactory.GetItinerariesRepositoryInstance(),
serviceFactory.GetActivitiesRepositoryInstance())
{
}

The ImportingConstructor attribute informs MEF to provide the parameters when creating
this object. In this particular case, MEF provides an instance of IServiceFactory for this object
to use. Where the instance comes from is of no concern to the this class and really assists
with creating modular applications. For our purposes, the IServiceFactory contracted is being
exported by the ServiceFactory.cs file in the PlanMyNight.Web project.

The RouteTableConfiguration.cs file registers the URL route information that should be
directed to the PrintltineraryController. This route, and the routes of the other add-ins, are
registered in the application during the Application_Start method in the Global.asax.cs file of
PlanMyNight.Web:

// MEF Controller factory
var controllerFactory = new MefControllerFactory(container);
ControllerBuilder.Current.SetControllerFactory(controllerFactory);

// Register routes from Addins
foreach (RouteCollection routes in container.GetExportedValues<RouteCollection>())

{

foreach (var route in routes)
{
RouteTable.Routes.Add(route);
}
}

The controllerFactory, which was initialized with an MEF container containing path
information to the Areas subfolder (so that it enumerated all the plug-ins), is assigned to be
the controller factory for the lifetime of the application. This allows controllers imported via
MEF to be usable anywhere in the application. The routes these plug-ins respond to are then
retrieved from the MEF container and registered in the MVC routing table.

Chapter 9 From 2008 to 2010: Designing the Look and Feel 291

The ItineraryContextualActionsExport.cs file exports information to create the link

to this plug-in, as well as metadata for displaying it. This information is used in the
ViewModelExtensions.cs file, in the PlanMyNight.Web project, when building a view model
for display to the user:

// get addin 1links and toolboxes
var addinBoxes = new List<RouteValueDictionary>();
var addinLinks = new List<ExtensionLink>(Q);

addinBoxes.AddRange (AddinExtensions.GetActionsFor("ItineraryToolbox", model.Id == 0 ? null :
new { id = model.Id }));

addinLinks.AddRange (AddinExtensions.GetLinksFor("ItineraryLinks", model.Id == 0 ? null : new
{ id = model.Id }));

The call to AddinExtensions.GetLinksFor enumerates over exports in the MEF Export provider
and returns a collection of them to be added to the local addinLinks collection. These are
then used in the view to display more options when they are present.

Summary

In this chapter, we explored a few of the many new features and technologies found in Visual
Studio 2010 that were used to create the companion Plan My Night application. We walked
through creating a controller and its associated view and how the ASP.NET MVC framework
offers Web developers a powerful option for creating Web applications. We also explored
how using the Managed Extensibility Framework in application design can allow plug-in
modules to be developed external to the application and loaded at run time. In the next
chapter, we'll explore how debugging applications has been improved in Visual Studio 2010.

Chapter 10

From 2008 to 2010: Debugging
an Application

After reading this chapter, you will be able to
B Use the new debugger features of Microsoft Visual Studio 2010
B Create unit tests and execute them in Visual Studio 2010

B Compare what was available to you or see what was different for you as a developer in
Visual Studio 2008

As we were writing this book, we realized how much the debugging tools and developer
aids have evolved over the last three versions of Visual Studio. Focusing on debugging an
application and writing unit tests just increases the opportunities we have to work with Visual
Studio 2010.

Visual Studio 2010 Debugging Features

In this chapter, you'll go through the different debugging features using a modified Plan
My Night application. If you installed the companion content at the default location, you'll
find the modified Plan My Night application at the following location: %userprofile%\
Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 10 \Code. Double-click
the PlanMyNight.sin file.

First, before diving into the debugging session itself, you'll need to set up a few things:

1. In Solution Explorer, ensure that PlanMyNight.Web is the startup project. If the project
name is not in bold, right-click on PlanMyNight.Web and select Set As StartUp Project.

2. To get ready for the next steps, in the PlanMyNight.Web solution open the Global.asax.cs
file by clicking the triangle beside the Global.asax folder and then double-clicking the
Global.asax.cs file, as shown in Figure 10-1.

293

294

Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Solution Explorer > o x
@ 2EEa e 2=
(5 PlanMyNight.Data ~

3 @ PlanMyNight.Infrastructure
b [E PlanMyNight.Velocity
4 8 PlanMyNight.Web
[=d| Properties
5] References —
g App_Browsers
3 App_Data
[Areas
[3 Content
[Controllers
[J Helpers
[Infrastructure
3 ViewModels
[Views
|:=—| Default.aspx
%) Default.aspx.cs
|#] Error.htm
|8 favicon.ico
4 ﬁ] Global.asax
|§_ Global.asax.cs |
[#] MotFound.htm
[Web.config L4

m

[

4

@ LRI SIS I Team Explorer BE Server Explorer

FIGURE 10-1 Solution Explorer before opening the file Global.asax.cs

Managing Your Debugging Session

Using the Plan My Night application, you'll examine how a developer can manage and
share breakpoints. And with the use of new breakpoint enhancements, you'll learn how to
inspect the different data elements in the application in a much faster and more efficient
way. You'll also look at new minidumps and the addition of a new intermediate language
(IL) interpreter that allows you to evaluate managed code properties and functions during
minidump debugging.

New Breakpoint Enhancements

At this point, you have the Global.ascx.cs file opened in your editor. The following steps walk
you through some ways to manage and share breakpoints:

1. Navigate to the Application_BeginRequest(object sender, EventArgs e) method, and set a
breakpoint on the line that reads var url = HttpContext.Current.Request.Url; by clicking
in the left margin or pressing F9. Look at Figure 10-2 to see this in action.

El protected void Application_BeginRequest(object sender, Eventirgs e)
1
] ar url = HttpContext.Current.Request.Url;

var authority = HttpContext.Current.Request.ServerVariables["HT

FIGURE 10-2 Creating a breakpoint

Chapter 10 From 2008 to 2010: Debugging an Application 295

2. Press F5 to start the application in debug mode. You should see the developer Web
server starting in the system tray and a new browser window opening. The application
should immediately stop at the breakpoint you just created. The Breakpoints window
might not be visible even after starting the application in debug mode. If that is the
case, you can make it visible by going to the Debug menu and selecting Windows and
then Breakpoints, or you can use the following keyboard shortcut: Ctrl+D+B.

You should now see the Breakpoints window as shown in Figure 10-3.

Breakpoints

New~ | X | S |5 | @ @ | 55 %] | Columns ~ | Search: | ~| In Column: | All visible - X
Name = Labels Condition Hit Count
-[7]Q [Global.asax.cs, line 88 character 13 (no condition) break always

B Breakpoints % Call Hierarchy B Output &3 Find Results1 ¥& Find Symbol Results

FIGURE 10-3 Breakpoints window

3. In the same method, add three more breakpoints so that the editor and the
Breakpoints window look like those shown in Figure 10-4.

El protected void Application_BeginRequest(object sender, EventArgs e)
i
[~] ar url = HttpContext.Current.Request.Url;
wvar authority = Httplontext.Current.Request.ServerVariables["HTTP_HOST"]:
[~] ar expectedAuthority = url.Port == 48588 ? “www.planmynight.net:48588"
wvar pathAndQuery = url.PathAndQuery;
if (pathAndQuery == "/default.aspx")
pathAndQuery = "/";
¥
[~] if (lauthority.Equals(expectedAuthority, StringComparison.OrdinallgnoreC]
{
wvar redirectTe = string.Concat{url.Scheme, "://", expectedAuthority,
[~] .RedirectPermanent(redirectTo);
¥
L
}
i
W0% v ¢ m
New= | X | 90)5 | @& @ | 23 % | Columns~ | Search: | ~| In Column: | Al visib
Mame - Labels Condition Hit Count
o iGlobal.asax.cs, line 100 character 1]’ (no condition) break always
o Global.asax.cs, line 88 character 13 (no condition) break always
o Global.asax.cs, line 90 character 13 (no condition) break always
o Global.asax.cs, line 97 character 13 (no condition) break always

FIGURE 10-4 Code editor and Breakpoints window with three new breakpoints

296 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Visual Studio 2008 As a reader and a professional developer who used Visual Studio
2008 often, you probably noticed a series of new buttons as well as new fields in the
Breakpoints window in this exercise. As a reminder, take a look at Figure 10-5 for a quick
comparison of what it looks like in Visual Studio 2008.

Breakpoints
Mew = X 9 & 53+ | Columns ~
Mame Condition Hit Count Process

0 BingMapsSe {no condition) break always
v 0 BingMapsSe {no condition) break always
0 BingMapsSe {no condition) break always

FIGURE 10-5 Visual Studio 2008 Breakpoints window

4. Notice that the Labels column is now available to help you index and search
breakpoints. It is a really nice and useful feature that Visual Studio 2010 brings to the
table. To use this feature, you simply right-click on a breakpoint in the Breakpoints
window and select Edit Labels or use the keyboard shortcut Alt+F9, L, as shown in

Figure 10-6.
paLnANuUyUEry = !y
! X Delete Ale+F9, D
@ %] Go To Source Code Alt+F9, 5
{ i
var red #i Go To Disassembly Alt+F3, A "/, exp
@ Location...
1 ¥ Condition...
1 Hit Count...
Filter...
100 % - 4
When Hit... Eme—
Eisakpoit Edit labels... Alt+FO, L
New ~ -
| x | P s | Qi 9 | Q Export selected... |
MName Sort by % t Count
0 Global.asax.cs, line 100 chalaerer =7 vocorraroory—oreak always
0 Global.asax.cs, line 88 character 13 (no condition] break always
o Global.asax.cs, line 90 character 13 (no condition] break always
----- o Global.asax.cs, line 97 character 13 (no condition] break always

FIGURE 10-6 Edit Labels option

5. In the Edit Breakpoint Labels window, add labels for the selected breakpoint (which
is the first one in the Breakpoints window). Type ContextRequestUrl in the Type A
New Label text box, and click Add. Repeat this operation on the next breakpoint, and

Chapter 10 From 2008 to 2010: Debugging an Application 297

type a label name of url. When you are done, click OK. You should see a window that
looks like Figure 10-7 while you are entering them, and to the right you should see the
Breakpoints window after you are done with those two operations.

Edit breakpoint labels [l

Type a new label:

| | add |

Or choose among existing labels:

ContextRequestUrl

urd

Breakpoints

New= | % | 59 b5 | @& 9 | 451+ | Columns~ | Search: | ~| In Column: | Al visible

Name M Labels Condition Hit Count
(") Global.asax.cs, line 100 character 17 ContextRequestUr, Url (no condition) break always
@ Global.asax.cs, line 88 character 13 (no condition) break always

{71 Global.asax.cs, line 90 character 13 (no condition) break always

1@ Global.asax.cs, line 97 character 13 (no condition) break always

FIGURE 10-7 Adding labels that show up in the Breakpoints window

Note You can also right-click on the breakpoint in the left margin and select Edit Labels
to accomplish the same tasks just outlined.

Note You'll see that when adding labels to a new breakpoint you can choose any of the
existing labels you have already entered. You'll find these in the Or Choose Among Existing

Labels area, which is shown in the Edit Breakpoint Labels dialog box on the left in the pre-
ceding figure.

6. Using any of the ways you just learned, add labels for each of the breakpoints and
make sure your Breakpoints window looks like Figure 10-8 after you're done.

Breakpoints

New= | X | © 5 | @ @ | 5341 Coumns~ | searchs [
MName = Labels

o Global.asax.cs, line 100 character 17 ContextRequestUrl,url
o Global.asax.cs, line 88 character 13 url

o Global.asax.cs, line 90 character 13 expectedAuth

o Global.asax.cs, line 97 character 13 redirectTo,url

FIGURE 10-8 Breakpoints window with all labels entered

When you have a lot of code and are in the midst of a debugging session, it would be
great to be able to filter the displayed list of breakpoints. That's exactly what the new
Search feature in Visual Studio 2010 allows you to do.

298 Part Il
7.

10.

. In the Breakpoints window, click the Export button

Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

To see the Search feature in action, just type url in the search text box and you'll see
the list of breakpoint is filtered down to breakpoints containing url in one of their
labels.

In a team environment where you have many developers and testers working together,
often two people at some point in time are working on the same bugs. In Visual Studio
2008, the two people needed to sit near each other, send one another screen shots, or
send one another the line numbers of where to put breakpoints to refine where they
should look while debugging a particular bug.

Important One of the great new additions to breakpoint management in Visual Studio
2010 is that you can now export breakpoints to a file and then send them to a colleague,
who can then import them into his own environment. Another scenario that this feature is
useful for is to share breakpoints between machines. We'll see how to do that next.

a to export your breakpoints to a
file, and then save the file on your desktop. Name the file breakexports.xml.

. Delete all the breakpoints either by clicking the Delete All Breakpoints Matching The

Current Search Criteria button ﬁ or by selecting all the breakpoints and clicking the

Delete The Selected Breakpoints button X . The only purpose of deleting them is to
simulate two developers sharing them or one developer sharing breakpoints between

two machines.

You'll now import your breakpoints by clicking the Import button o and loading
them from your desktop. Notice that all your breakpoints with all of their properties are
back and loaded in your environment. For the purposes of this chapter, delete all the
breakpoints.

Visual Studio 2008 Starting in Visual Studio 2008 and continuing in Visual Studio 2010, you
are getting great support for JavaScript as well as for the latest iteration of jQuery. It was already
good in Visual Studio, but the integration in Visual Studio 2010 is faster and you don't have to do
anything to get it.

Inspecting the Data

When you are debugging your applications, you know how much time one can spend
stepping into the code and inspecting the content of variables, arguments, and so forth.
Maybe you can remember when you were learning to write code, a while ago, when
debuggers weren't a reality or when they were really rudimentary. Do you remember (maybe
not—you might not be as old as we are) how many printf or WriteLn statements you had to
write to inspect the content of different data elements.

Chapter 10 From 2008 to 2010: Debugging an Application

Visual Studio 2008 From the days of Visual Studio 2005 and continuing into the Visual Studio

2008 era, there already was a big improvement from the days of writing to the console with all
kinds of statements. The improved conditions occurred because you had a real debugger with
new functionalities. New data visualizers allowed you to see XML as a well-formed XML snip-

pet and not as a long string. Furthermore, with those data visualizers, you could view arrays in a

299

more useful way, with the list of elements and their indices, and you accomplished that by simply

hovering your mouse over the object. Take a look at Figure 10-9 for an example.

IEnumerable

List<ListItem> statel:E ¢ states|{Dimensions:[SO]} era> () ;
= @ [Microsoft, Samples.PlanMyNight. Entities, Stake[1] | {Dimensions: [S0T+
foreach (Ztate state in st

@ [0] |{Microsoft,Samples.PlantyNight Entities, State}
i = # [1] |{Microsoft.Samples.FlantMyMight.Entities, State}
——— - * B3 abbreviation & - "aK" MyMight. Entities, State}

abbrevistion @ - "ak" MyMight. Entities, State}

= Mame 3 - "Alaska" MyMight Entities, State}

o name 3, - "Alaska" MyMight Entities, State}

wo[o] [qFIrosore, sampies, Franiyiight, Entities, State
@ [7] |{Microsoft,Samples.PlaniyMight Entities, State}
W [8] |{Microsoft,Samples.PlaniyMight Entities, State}
@ [9] |{Microsoft,Samples.PlanfyMight Entities, State}
W [10] | {Microsoft, Samples. PlaniyMight Entities, Statet
[11] | {Microsoft, Samples, PlaniyMight Entities, State}
W [12] | {Microsoft, Samples, PlaniyMight Entities, State}
@ [13] | {Microsoft, Samples. PlaniyMight Entities, State}
W [14] | {Microsoft, Samples. PlaniyMight Entities, Statet

I X ca

B B B EE

FIGURE 10-9 Collection view in the debugger in Visual Studio 2008

Visual Studio 2008 In Visual Studio 2008, there were some improvements in visualizing new
types of data elements. The nicer and most noticeable improvement was the ability to view the
results of a LINQ statement by using debugger elements such as DataTips, the Locals window,

and the Watch or QuickWatch window. As you can with any other element—but it is so cool that
you can do it as well for a LINQ query—you can copy a LINQ variable and paste it into a debug-
ger window. Remember that to display the results of a query the debugger must evaluate it.

Pay attention to things like side effects or clear differences in performance as you expand some

subnodes.

Although those DataTip data visualization techniques are still available in Visual Studio 2010,

a few great enhancements have been added that make DataTips even more useful. The

DataTip enhancements have been added in conjunction with another new feature of Visual
Studio 2010, multimonitor support. Floating DataTips can be valuable to you as a developer.

Having the ability to put them on a second monitor can make your life a lot easier while

debugging, because it keeps the data that always needs to be in context right there on the

second monitor. The following steps demonstrate how to use these features:

1. In the Global.ascx.cs file, insert breakpoints on lines 89 and 91, lines starting with the

source code var authority and var pathAndQuery, respectively.

2. You are now going to experiment with the new DataTip features. Start the debugger by
pressing F5. When the debugger hits the first breakpoint, move your mouse over the

word url and click on the pushpin as seen in Figure 10-10.

300 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

|
] protected void Application_BeginRequest(object sender, Eventargs e)

{

var url = HttpContext.Current.Request.Url;

[5] « url| {http://localhost48580/Default.aspx} = |rverVariables["HTTP_HOST"]3]
var expectedAUthority = url.port == 48588 7 “www.planmynight.net:4858@" : “planmynight.net”;
[] ar pathAndQuery = url.PathAndQuery;

if (pathAndQuery == "/default.aspx")

pathandQuery = /"5
1

FIGURE 10-10 The new DataTip pushpin feature

3. To the right of the line of code, you should see the pinned DataTip (as seen in
Figure 10-11 on the left). If you hover your mouse over the DataTip, you'll get the
DataTip management bar (as seen in Figure 10-11 on the right):

Enaer, CVENTArgs g)

@ url {http://localhost:48580/Default.aspx} | ¥

Servervdriduies| niiF_nusi |;

@ url {http://localhost:48580/Default.aspx} "wew. planmynight.net:48588" : "planmyn

SServervariauies| niiE_nusi |

Unpin from source |

FIGURE 10-11 On the left is the pinned DataTip, and on the right is the DataTip management bar

Note You should also see in the breakpoint gutter a blue pushpin indicating that the
DataTip is pinned. The pushpin should look like this: &~ Because you have a break-
point on that line, the pushpin is actually underneath it. To see the pushpin, just toggle
the breakpoint by clicking on it in the gutter. Toggle once to disable the breakpoint and
another time to get it back.

Note If you click the double arrow pointing down in the DataTip management bar, you
can insert a comment for this DataTip, as shown in Figure 10-12. You can also remove the
DataTip altogether by clicking the X button in the DataTip management bar.

@ url {http://localhost:48580/Default.aspx}
! @ authority Q. -"localhost:48580" %
L {authority != null) true i

Type a comment here

FIGURE 10-12 Inserting a comment for a DataTip

4. One nice feature of the new DataTip is that you can insert any expression to be
evaluated right there in your debugging session. For instance, right-click on the
DataTip name, in this case on url, select Add Expression, type authority, and then add
another one like this: (authority = null). You'll see that the expressions are evaluated
immediately and will continue to be evaluated for the rest of the debugging session
every time your debugger stops on those breakpoints. At this point in the debugging
session, the expression should evaluate to null and false, respectively.

5.

Chapter 10 From 2008 to 2010: Debugging an Application 301

Press F10 to execute the line where the debugger stopped, and look at the url DataTip
as well as both expressions. They should contain values based on the current context.
Take a look at Figure 10-13 to see this in action.

|
B protected void Application BeginRequest(object sender, EventArgs e)
{

var url = HttpContext.Current.Request.Url; m g yy {http://localhost48580/ Default.aspx}

ar_authority ~ HttpContext.Current.Request.SEEPRIIR Q- "localhost48580"

var expectedAuthority = url.Port == 48588 ?

NE gl=
o e — e A 9 (authority = null) | true

if (pathAndQuery == "/default.aspx")

Lt

pathandQuery = "/";
¥

FIGURE 10-13 The url pinned DataTip with the two evaluated expressions

Although it is nice to be able to have a mini-watch window where it matters—right
there where the code is executing—you can also see that it is superimposed on

the source code being debugged. Keep in mind that you can move the DataTip
window anywhere you want in the code editor by simply dragging it. Take a look at
Figure 10-14 for an example.

¥
il r @l {http://localhost:48580/ Defaultaspx}
=] protected void Application BeginRequest(object sender, Eventirgs) g oo @~ localhost 48550

@ e
var url - HttpContext.Current.Request.Url; @ (authority l= null) | true

ar authority = HttpContext.Current.Request.Servervariables["HTTP_HOST"];]

var expectedAuthority = url.Port == 48580 ? "www.planmynight.net:43580" : "planmynight.net”;

ar pathAndQuery = url.PathAndQuerys|

if (pathAndQuery == "/default.aspx”)

[2]

pathandquery = "/";
FIGURE 10-14 Moving the pinned DataTip away from the source code

Because it is pinned, the DataTip window stays where you pinned it, so it will not be in
view if you trace into another file. But in some cases, you need the DataTip window to
be visible at all times. For instance, keeping it visible is interesting for global variables
that are always in context or for multimonitor scenarios. To move a DataTip, you have
to first unpin it by clicking the pushpin in the DataTip management bar. You'll see that
it turns yellow. That indicates you can now move it wherever you want—for instance,
over Solution Explorer, to a second monitor, over your desktop, or to any other window.
Take a look at Figure 10-15 for an example.

4 (G PlanMyNight.Data

b [24 Properties
var url = Httplontext.Current.Request.Url; b [References

protected void Application_BeginRequest(object sender, Eventhrgs e)

ar_authority = HttpContext.Current.Request.ServerVariables["HTTP HOST"];| Gul fhttp://localhost-48580/Default aspx)
var expectedAuthority = url.Port == 4358@ ? “www.planmynight.net:48588" : “plani @ authority a ~"localhost48580"
ar pathAndQuery = url.PathAndQuery;| 9 (authority = nul)| true

if (pathandQuery == “/default.aspx”) Pl NiGR CantEE |
& PlanMyNight.edmx
) ReferenceRepository.cs
4 (5 PlanMyNight Infrastructure

pathAndQuery = "/"

if (lauthority.Equals(expectedAuthority, StringComparison.OrdinallgnoreCase)) i [Ed Propetties
b [References
var redirectTo - string.Concat(url.Scheme, "://", expectadAuthority, pathan b B3 Mve
Response.RedirectPermanent (redirectTo)s H @) ExtensionLink.s
+ AN o ewaa o an

FIGURE 10-15 Unpinned DataTip over Solution Explorer and the Windows desktop

302 Part Il

Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Note If the DataTip is not pinned, the debugger stops in another file and method, and
the DataTip contains items that are out of context, the DataTip windows will look like
Figure 10-16. You can retry to have the debugger evaluate the value of an element by

clicking this button: ¥ However, if that element has no meaning in this context, it's
possible that nothing happens.

public partial class Default : Page @ url {http://localhost48580/Default.aspx}

public void Page_Load(object sender, System.Eventirgs e) L:,‘:authcmty S ittt
T @ (authority != null) |true
string originalPath = Request.Path; @ urllocalPath "/Default.aspx”
Httplontext.Current.RewritePath(Request.ApplicationPath, false);
IHttpHandler httpHandler = new MvcHttpHandler();
httpHandler.ProcessRequest (HttpContext.Current);
Httplontext.Current.RewritePath(originalPath, false);
}

1

FIGURE 10-16 Results when the DataTip is not pinned and contains out-of-context items

Note You'll get an error message if you try to pin outside the editor, as seen in
Figure 10-17.

[|=d| Properties (] Nl -
@ url {http://localhost:48580/Default.asps] || X
@ authority Q -"localhost:48580" _

] {authority != null) true

= ingloordinate.cs I |
ET - .

FIGURE 10-17 Error message that appears when trying to pin a DataTip outside the code editor

‘:1 Cannot pin. Not over a source file |

Note Your port number might be different than in the screen shots just shown. This is
normal—it is a random port used by the personal Web server included with Visual Studio.

Note You can also pin any child of a pinned item. For instance, if you look at url and
expand its content by pressing the plus sign (+), you'll see that you can also pin a child
element, as seen in Figure 10-18.

Bl url {http://localhost:48580/Default.aspx} |

ry

5 AbsolutePath | Q, » "/Default.aspx”

5P AbsoluteUri G, - "http://localhost:48580/ Default.aspx”

5 Authority % ~ "localhost:48580"

" DnsSafeHost | 4 - "localhost”

5 Fragment Q-

5 Host 4 - "localhost”

5 HostMameType Dns

5 IsAbsolutelri true

5 lsDefaultPort false

5 IsFile false

5 IsLoopback true

5 IsUnc false

% LocalPath 3+ "/Default.aspx” E

5 OriginalString | & + "http://localhost:48580/ Default.aspx”

5 PathAndQuery | & + "/Default.aspx”
-

FIGURE 10-18 Pinned child element within the url DataTip

Chapter 10 From 2008 to 2010: Debugging an Application 303

8. Before stopping the debugger, go back to the Global.ascx.cs if you are not already
there and re-pin the DataTip window. Then stop the debugging session by clicking

the Stop Debugging button in the debug toolbar (d) or by pressing Shift+F5. Now
if you hover your mouse over the blue pushpin in the breakpoint gutter, you'll see
the values from the last debug session, which is a nice enhancement over the watch
window. Take a look at Figure 10-19 for what you should see.

i
r Value from last debug session

w B protected void Application BeginReguest{object sender, Ei (http:f/localhost48580, Default aspx]

authority "localhost48580"
var url = HttpContext.Current.Request.Url; (authority = null) true
¢ y =

ar authority = Http(ontext.(urrent.Request.Servera ufllocslPath | “/Defaultaspx”
P G o

var expectedAuthority = url.Port == 48588 2 “www.plaf...-s T

[

FIGURE 10-19 Values from the last debug session for a pinned DataTip

Note As with the breakpoints, you can export or import the DataTips by going to the Debug
menu and selecting Export DataTips or Import DataTips, respectively.

Using the Minidump Debugger

Many times in real-world situations, you'll have access to a minidump from your product
support team. Apart from their bug descriptions and repro steps, it might be the only thing
you have to help debug a customer application. Visual Studio 2010 adds a few enhancements
to the minidump debugging experience.

Visual Studio 2008 In Visual Studio 2008, you could debug managed application or minidump
files, but you had to use an extension if your code was written in managed code. You had to use
a tool called SOS and load it in the debugger using the Immediate window. You had to attach the
debugger both in native and managed mode, and you couldn’t expect to have information in the
call stack or Locals window. You had to use commands for SOS in the Immediate window to help
you go through minidump files. With application written in native code, you used normal debug-
ging windows and tools. To read more about this or just to refresh your knowledge on the topic,
you can read the Bug Slayer column in MSDN magazine here: http://msdn.microsoft.com/en-us/
magazine/cc164138.aspx.

Let's see the new enhancements to the minidump debugger. First you need to create a crash
from which you'll be able to generate a minidump file:

1. In Solution Explorer in the PlanMyNight.Web project, rename the file Default.aspx to
DefaultA.aspx. Note the A appended to the word "Default.”

2. Make sure you have no breakpoints left in your project. To do that, look in the
Breakpoints window and delete any breakpoints left there using any of the ways you
learned earlier in the chapter.

304 Part Il

3.

Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Press F5 to start debugging the application. Depending on your machine speed, soon
after the build process is complete you should see an unhandled exception of type
HttpException. Although the bug is simple in this case, let's go through the steps of
creating the minidump file and debugging it. Take a look at Figure 10-20 to see what
you should see at this point.

requestContext HttpContext . Ttems[ControllerExportentryliane] = controllerexport;
return controllerexport.value;

i HittpException was unhandled by user code x
Lic override void ReleaseController(IController controller) The controller for path '/Defout.aspx' was not found or does not implement
IController
var export = HetpContext.Current. Ttems[ControllerExportEntryNane] as Lazy<IContr{ Troubleshooting tips:
if (export I= null) Get general helpfor ths exception. B
this.container.ReleaseExport (export); B
base.ReleaseController(controller); Search
Actions:
/ate static IEnumerable<string> GetNamespaceFromRoute(RequestContext requestContey View Detail..
Enable editing
object routeNlamespacesobj; Copy exception detail to the clipboard

FIGURE 10-20 The unhandled exception you should expect

It is time to create the minidump file for this exception. Go to the Debug menu, and
select Save Dump As, as seen in Figure 10-21. You should see the name of the process
from which the exception was thrown. In this case, the process from which the exception
was thrown was Cassini or the Personal Web Server in Visual Studio. Keep the file name
proposed (WebDev.WebServer40.dmp), and save the file on your desktop. Note that it
might take some time to create the file because the minidump file size will be close to
300 MB.

Debug | Team Data Tools Test Window He

Windows »
b Continue 5
Stop Debugging Shift+F5
Terminate All
& Restart Ctrl+Shift+F5
E‘; Attach to Process...
Exceptions... Ctrl+Alt+E
%= Steplnto F11
[;f Step Over F10
£ Step Out Shift+F11
Toggle Breakpoint Fa
MNew Breakpoint 3
&0 Delete All Breakpoints Ctrl+Shift+F9
O Disable All Breakpoints
Clear All DataTips
Export DataTips ...
Import DataTips ...
Save Dump As...

Options and Settings...

FIGURE 10-21 Saving the minidump file

Chapter 10 From 2008 to 2010: Debugging an Application 305
5. Stop Debugging by pressing Shift+F5 or the Stop Debugging button.
6. Next, go to the File menu and close your solution.

7. In the File menu, click Open and point to the desktop to load your minidump file
named WebDev.WebServer40.dmp. Doing so opens the Minidump File Summary
page, which gives you some summary information about the bug you are trying to fix.
(Figure 10-22 shows what you should see.) Before you start to debug, you'll get basic
information from that page such as the following: process name, process architecture,
operating system version, CLR version, modules loaded, as well as some actions you
can take from that point. From this place, you can set the paths to the symbol files.
Conveniently, the Modules list contains the version and path on disk of your module, so
finding the symbols and source code is easy. The CLR version is 4.0; therefore, you can
debug here in Visual Studio 2010.

WebDev.WebServerd0.dmp X

Minidump File Summary
M

~ Dump Summary Notifications
Dump File WebDev WebServerd0.dmp : C:\Users\Patrice\Desktop\WebDev.WebServerd0.dmp ILInterpreter is Enabled
Last Write Time 2/22/20101:58:45 AM Disable IL Interpreter
Process Name WebDev.WebServerd0.exe : C:\Program Files\Common Files\Microsoft Shared\DevServer\L0.0\WebDev.WebServerd!
Process Architecture 186
Exception Code 0:E0434F4D Actions
Exception Information An exception came from the CLR
Heap Information Present P Debug with Mixed
<1 m » b Debug with Native Only
. [Set symbol paths
* System Information [Copy allto clipboard
05 Version 617600
CLR Version(s) 40301281
~ Meodules
B
Module Name Module Version Module Path
WebDev.WebServerd0.exe 100301281 CAProgram Files\Common Files\Wi
ntdl.dil 61760016385 CA\Windows\System32\ntalldll
mscoree.dl 40311060 CAWindows\System32\mscoree.dll
kernel32 il 61760016481 CAWindows\System32\kemel32.dil
KERNELBASE.dll 61760016385 C:\Windows\System32\KERNELBAS
advapia2.dil 61760016385 C:\Windows\System32\advapi32.dil
msvertdl 70760016385 CAWindows\System32\msvertdl
sechost.dil 61760016385 C\Windows\System32\sechost.dil
rpertddil 61760016385 CAWindows\System32\rpertd il
mscoresi.dil 40301281 C\Windows\Microsoft NET\Frame
shiwapi.dil 61760016385 CAWindows\System32\shiwapi.dil
gdi2di 61760016385 C:\Windows\System3Z\gdi32.dil
user2dl 61760016385 CA\Windows\Systemi2\user32.dil
Ipkdil 61760016385 C\Windows\System32\Ipk.dil
uspl0.dil 1626760016385 CAWindows\System32\uspl0.dll
imm32.dil 61760016385 C\Windows\System32\imm32.dl

FIGURE 10-22 Minidump summary page

8. To start debugging, locate the Actions list on the right side of the Minidump File
Summary page and click Debug With Mixed.

Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

306
9. You should see almost immediately a first-chance exception like the one shown in
Figure 10-23. In this case, it tells you what the bug is; however, this won't always be
the case. Continue by clicking the Break button.

Microsoft Visual Studio

A first chance exception of type 'System.Web.HttpException' occurred in
PlanMyMight.Web.DLL

Additional information: The controller for path '/Default.aspx’ was not found or
does not implement IController.

Continue Ignore

FIGURE 10-23 First-chance exception

10. You should see a green line indicating which instruction caused the exception. If you

look at the source code, you'll see in your Autos window that the controllerExport
variable is null, and just before that we specified that if the variable was null we wanted
to have an HttpException thrown if the file to load was not found. In this case, the file
to look for is Default.aspx, as you can see in the Locals window in the controllerName
variable. You can glance at many other variables, objects, and so forth in the Locals
and Autos windows containing the current context. Here, you have only one call that
belongs to your code, so the call stack indicates that the code before and after is
external to your process. If you had a deeper chain of calls in your code, you could step
back and forth in the code and look at the variables. Figure 10-24 shows a summary

view of all that.

MefControllerFactory.cs 3 [JUSINSANS

requestContext, string controllerName)

4 Microsoft.Sampl fle

»] |

Name Lang +
KERNELBASE.dII'753f9617 ()

KERNELEASE. 5326170
| [(Extemal Code]

DLLMicrosoft iy

[External Code]
kernel32.d111756a1194) | =
ntdll.dIT7136365 0 |

ntdl. 1771363 B0

i

string.Format (CultureInfo. InvariantCulture, "The controller for path "{B}" was not found or does not implement ICont

var controllerExpart = this.container.GetExparts<IControllers (controllerName) . FirstOrDefault();
if (controllerExport == null)

throw new HttpException(
404

¥

requestContext . HttpContext. [tems[ControllerExportEntryliame] = controllerExports

L
return controllerExport.Value;
} -
0o - i] D
v RX
| | Name Value ~ || | Name Value Type -
controllerExport null . g x
requestContext HitpCont {System.Web HitpC ¥ this {Microsoft. Sampl cti®)| Microsol
requestContext HitpCont Count = 2 ® & requestContet | {System Web Routing RequestContext) @ System)\
requestContext HitpCont null L controllerName | "Default.aspx” Q < string
requestContext HttpCont {System.Web HttpRequestWrapper} [A7 contrallerType | null @ System
requestContext HttpCont "/Default.aspx” Q st namespaces null @] System.(
this iyNight Web Infra (3| Microsal null @ Systeml

EPNY 5 Waich1 I, Breakpoints M Command

5§ Immediate.

B Output

FIGURE 10-24 Autos, Locals, and Call Stack windows, and the next instruction to execute

Chapter 10 From 2008 to 2010: Debugging an Application 307

11. OK, you found the bug, so stop the debugging by pressing Shift+F5 or clicking the
Stop Debugging button. Then fix the bug by reloading the PlanMyNight solution and
renaming the file back to default.aspx. Then rebuild the solution by going to the Build
menu and selecting Rebuild Solution. Then press F5, and the application should be
working again.

Web.Config Transformations

This next new feature, while small, is one that will delight many developers because it saves
them time while debugging. The feature is the Web.Config transformations that allow you to
have transform files that show the differences between the debug and release environments.
As an example, connection strings are often different from one environment to the other;
therefore, by creating transform files with the different connection strings—because ASP.NET
provides tools to change (transform) web.config files—you'll always end up with the right
connection strings for the right environment. To learn more about how to do this, take a look
at the following article on MSDN: http.//go.microsoft.com/fwlink/?Linkld=125889.

Creating Unit Tests

Most of the unit test framework and tools are unchanged in Visual Studio 2010 Professional.
It is in other versions of Visual Studio 2010 that the change in test management and test
tools is really apparent. Features such as Ul Unit Tests, IntelliTrace, and Microsoft Test
Manager 2010 are available in other product versions like Visual Studio 2010 Premium and
Visual Studio 2010 Ultimate. To see which features are covered in the Application Lifecycle
Management and for more specifics, refer to the following article on MSDN: http.//msdn.
microsoft.com/en-us/library/ee789810(VS.100).aspx.

Visual Studio 2008 With Visual Studio 2008 you had to own either Visual Studio 2008 Team
System or Visual Studio 2008 Team Test to have the ability to create and execute tests out of the
box within Visual Studio 2008. Another option back then was to go with a third-party option like
Nunit.

In this part of the chapter, we'll simply show you how to add a unit test for a class you'll

find in the Plan My Night application. We won't spend time defining what a unit test is or
what it should contain; rather, we'll show you within Visual Studio 2010 how to add tests and
execute them.

You'll add unit tests to the Plan My Night application for the Print Itinerary Add-in. To create
unit tests, open the solution from the companion content folder. If you do not remember
how to do this, you can look at the first page of this chapter for instructions. After you have
the solution open, just follow these steps:

308

Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

1. In Solution Explorer, expand the project PlanMyNight.Web and then expand the

Helpers folder. Then double-click the file ViewHelper.cs to open it in the code editor.
Take a look at Figure 10-25 to make sure you are at the right place.

4 8 PlanMyNight.Web
> [=d Properties

5] References

g App_Browsers

3 App_Data

[Areas

[Content

[Controllers

[Helpers

i [3 Liveld
] JsonCacheAttribute.cs
#] MembershipWrappers.cs

m

[

] RoutingManager.cs

#] ServiceFactory.cs

#] SessionltineraryContainer.cs
#] ViewHelpers.cs|

] ViewModelExtensions.cs

FIGURE 10-25 The PlanMyNight.Web project and ViewHelper.cs file in Solution Explorer

In the code editor, you can add unit tests in two different ways. You can right-click

on a class name or on a method name and select Create Unit Tests. You can also go
to the Test menu and select New Test. We'll explore the first way of creating unit tests.
This way Visual Studio automatically generates some source code for you. Right-click
the GetFriendlyTime method, and select Create Unit Tests. Figure 10-26 shows what

it looks like.

public static string GetFriendlyTime(int totalMinutes
Refactor 3
if (totalMinutes > @) Organize Usings 3
{ =
int hours = totalMinutes / &8; "—;1 Create Unit Tests..
int minutes = totalMinutes ¥ 6@; Create Private Accessor (3
string time = string.Empty; = =
if (hours > @) l, Insert Snippet... Ctrl+ K, Ctrl+X
{ @J, Surround With... Ctrl+K, Ctrl+S
. _ . - .
; time += string.Format(CultureInfo.Invarial Go To Definition F2
Find All References Shift+F12
?f (minutes > @) [view Call Hierarchy Ctrl+K, Ctrl+T
time += string.Format{CultureInfo.Invaria Breakpoint b
¥ *Z RunTo Cursor Ctrl+F10
return time.Trim(); # Cut Ctrl+X
1 Ba Co CtrieC
BY
return "-"; B Paste Ctrl+V
} Qutlinin 3
g

FIGURE 10-26 Contextual menu to create unit tests from by right-clicking on a class name

After selecting Create Unit Tests, you'll be presented with a dialog that, by default,
shows the method you selected from that class. To select where you want to create the
unit tests, click on the drop-down combo box at the bottom of this dialog and select
PlanMyNight.Web.Tests. If you didn't have an existing location, you would have simply
selected Create A New Visual C# Test Project from the list. Figure 10-27 shows what
you should be seeing.

Chapter 10 From 2008 to 2010: Debugging an Application 309

Create Unit Tests (-5 mEsal]
Current selection: Filter =
Types
4 [H3 PlanMyNight Web -
4 [@ {} Microsoft Samples.PlanMyNight Web

& [F]%¢ Microsoft.Samples. Web.Acc e
» [% Microsoft.Samples.PlanhMyNight Web.ActivityHelper
& [F]4% Microsoft.Samples. lyNight. Web, i e
» [£]=° Microsoft.Sampl lyNight Web IFormsA]

& [[]=¢ Microsoft.Samples.PlanMyNight.Web IMembershipService
» [[]42 Microsoft.Samples.PlanMyNight Web JtineraryHelper
& [% Microsoft.Samples.PlanMyNight.Web.sonCacheAttribute
& [[]4¢ Microsoft.Samples PlanMyNight Web MvcApplication
» [[]% Microsoft.Sampl lyMight Web.R g
& [[14¢ Microsoft.Samples.PlanhMyMight.Web ServiceFactory
» 1% Microsoft.Samples.PlanMyNight Web.SessionltineraryContainer
4 [@] % Microsoft.Samples.PlanhyNight.Web, TimeHelper
-9 GetFriendlyTime(System.Int32)
&[] % Microsoft.Sampl lyNight Web.UserProfileEd
& [[14¢ Microsoft.Samples. lyNight Web ViewModelExtension:
» 1% Microsoft.Samples.PlanMyNight. Web,_Default
> 14} Micrasoft.Samples.PlanMyNight Web.Controllers
& [F14} Microsoft Samples.PlanMyhight Web Infrastructure
b 14} Microsoft.Samples.PlanMyNight Web.Properties k|
- 14} Microsoft.Samples.PlanMyNight Web.Ux
b 1LY Micenentt S Wieh b/

Output project:

| e

FIGURE 10-27 Selecting the method you want to create a unit test against

After you click OK, the dialog switches to a test-case generation mode and displays
a progress bar. After this is complete, a new file is created named TimeHelperTest.cs that
has autogenerated code stubs for you to modify.

Remove the method and its attributes because you'll create three new test cases for
that method. Remove the following code:

/// <summary>
///A test for GetFriendlyTime
///</summary>
// TODO: Ensure that the UrlToTest attribute specifies a URL to an ASP.NET page (for
// example, http://.../Default.aspx). This is necessary for the unit test to be executed
// on the web server, whether you are testing a page, web service, or a WCF service.
[TestMethod()]
[HostType("ASP.NET")]
[AspNetDevelopmentServerHost("C:\\Users\\Patrice\\Documents\\Chapter 10\code\\
PTanMyNight.wWeb™, "/")]
[Ur1ToTest("http://Tocalhost:48580/™")]
public void GetFriendlyTimeTest()
{
int totalMinutes = 0; // TODO: Initialize to an appropriate value
string expected = string.Empty; // TODO: Initialize to an appropriate value
string actual;
actual = TimeHelper.GetFriendlyTime(totalMinutes);
Assert.AreEqual (expected, actual);
Assert.Inconclusive("Verify the correctness of this test method.");

310 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

6.

8.

Add the three simple test cases validating three key scenarios used by Plan My Night.
To do that, insert the following source code right below the method attributes that
were left behind when you deleted the block of code in step 5:

[TestMethod]
public void ZeroReturnsSlash()
{
Assert.AreEqual("-", TimeHelper.GetFriendlyTime(0));
}
[TestMethod]
public void LessThan60MinutesReturnsValueInMinutes()
{
Assert.AreEqual("10m", TimeHelper.GetFriendlyTime(10));
}
[TestMethod ()]
public void MoreThan60MinutesReturnsValueInHoursAndMinutes()
{
Assert.AreEqual("2h 3m", TimeHelper.GetFriendlyTime(123));
}

In the PlanMyNight.Web.Tests project, create a solution folder called Helpers. Then
move your TimeHelperTests.cs file to that folder so that your project looks like
Figure 10-28 when you are done.

4 [F PlanMyNight.Web. Tests
> [=d Properties
> [x3] References
4 [Controllers
& AccountControllerFixture.cs
#] HinerariesControllerFixture.cs
#] SearchControllerFixture.cs
& SiteMasterControllerFixture.cs
a4 [Helpers
&) TimeHelperTest.cs
i App.config
& DummyCachingProvider.cs
& HineraryExtensionFixture.cs
#] MembershipWrappersFixture.cs
#] RoutingManagerFixture.cs
] SessionltineraryContainerFixture.cs |
#] UserProfileExtensionsFixture.cs
] ViewModelExtensionsFixture.cs

FIGURE 10-28 TimeHelperTest.cs in its Helpers folder

It is time to execute your newly created tests. To execute only your newly created
tests, go into the code editor and place your cursor on the class named public class
TimeHelperTest. Then you can either go to the Test menu, select Run, and finally select

Chapter 10 From 2008 to 2010: Debugging an Application 311

Test In Current Context or accomplish the same thing using the keyboard shortcut
CTRL+R, T. Look at Figure 10-29 for a reference.

i Test | Window Help

E_] MNew Test...
I %4 Load Metadata File...
= w3 Create New Test List...

[| = hnreThanEnbLR,

1 Run * || b Testsin Current Context Ctrl+R, T
it Debug » | % All Tests in Solution Ctrl+R, A
4 Select Active Test Settings 3

Edit Test Settings 3
b Windows L4

FIGURE 10-29 Test execution menu

9. Performing this action executes only your three tests. You should see the Test Results
window (shown in Figure 10-30) appear at the bottom of your editor with the test

Test Results
5= %5 | @3 | Patrice@PATRICE-TEST 2010-03- -| | % Run ~ k@ Debug = Il W | - &5 3 | Group By: | [None] || [[an Columr <| | <Type keyword> - L]
&) Testrunwaming Results: 3/3 passed; Item(s) checked: 0

Result Test Name = Project Error Message
143D Passed LessThanG0MinutesReturnsValuelnMinutes PlanMyNight.Web. Tests
1@ Passed MoreThan60MinutesRetursValuelnHoursAndMinutes PlanMyNight Web. Tests
143D Passed ZeroReturnsSlash PlanMyNight Web. Tests

FIGURE 10-30 Test Results window for your newly created tests

More Info Depending on what you select, you might have a different behavior when you
choose the Tests In Current Context option. For instance, if you select a test method like
ZeroReturnsSlash, you'll execute only this test case. However, if you click outside the test class,
you could end up executing every test case, which is the equivalent of choosing All Tests In
Solution.

New Threads Window

The emergence of computers with multiple cores and the fact that language features give
developers many tools to take advantage of those cores creates a new problem: the difficulty
of debugging concurrency in applications. The new Threads window enables you, the
developer, to pause threads and search the calling stack to see artifacts similar to those you
see when using the famous SysInternals Process Monitor (http://technet.microsoft.com/en-us/
sysinternals/bb896645.aspx). You can display the Threads window by going to Debug and

312 Part Il Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

selecting Windows And Threads while debugging an application. Take a look at Figure 10-31
to see the Threads window as it appears while debugging Plan My Night.

E public Tuple<PagingResult<Activity>, ActivityAddress> SearchActivities(NaturalSearchQuery query, string token)
/1 request
53 SearchRequest searchRequest = hRequest (token, query Pagesize, guery Page)3
/1 category Filter - trick bing maps to use the same category twice
var filter = new Filterexpressionclause();
Threads - ax
= K S Co | G oo Gl [5 G
D ManagedD Category Name Location .
A iexplore.exe (id = 2512) : C\Program Files\Internet Exploreriexplore.ece
¥| |26 o |0 Worker Thread| Thread BS0__ | v JScript anonymous function
~ WebDevWebServerdd.EXE (id = 3460) : Ci\Program Fil i EXE
v| |50 [1 (] Main Thread | Main Thresd | v [Managed to Native Transition]
V| [3m0 |2 (] Worker Thread| <No Name> | <not available>
SEELEE [_| Worker Thread| Worker Thread | v [Managed to Native Transition]
SN || Worker Thread| <No Name> | < lable>
¢ [e112 o (] Worker Thread| <No Name> | <not available>
¢l |42 o (] Worker Thread| <No Name> | <not availsble> 4
| [s176 [71 || Worker Thread <No Name>
V[|32 |12] Worker Thread| <No Name> | <not available>
100% J¥ | [4016 |70 1] Worker Thread| Worker Thread | &
h lan
Dat PlanM
DataCach
les Pl
TV (39 |6] Worker Thread| <No Name>
JERLINT % Call Stack W Breal

FIGURE 10-31 Displaying the Threads window while debugging Plan My Night

The Threads window allows you to freeze threads and then thaw them whenever you are
ready to let them continue. It can be really useful when you are trying to isolate particular
effects. You can debug both managed code and unmanaged code. If your application uses
threads, you'll definitely love this new feature of the debugger in Visual Studio 2010.

Visual Studio 2008 In Visual Studio 2008, you finally had a thread debugger window worthy
of this name. There was no filtering, call-stack searching and expansion, and grouping. The col-
umns were in a fixed order, and you couldn't easily get affinity masks, process names as well as
managed IDs without using a separate tool.

Summary

In this chapter, you learned how to manage your debugging sessions by using new
breakpoint enhancements and employing new data-inspection and data-visualization
techniques. You also learned how to use the new minidump debugger and tools to help you
solve real customer problems from the field. The chapter also showed you how to raise the
quality of your code by writing unit tests and how Visual Studio 2010 Professional can help
you do this. Multicore machines are now the norm, and so are multithreaded applications.
Therefore, the fact that Visual Studio 2010 Professional has specific debugger tools for
finding issues in multithreaded applications is great news.

Chapter 10 From 2008 to 2010: Debugging an Application 313

Finally, throughout this chapter you also saw how Visual Studio 2010 Professional has raised
the bar in terms of debugging applications and has given professional developers the tools
to debug today’s feature-rich experiences. You saw that it is a clear improvement over what
was available in Visual Studio 2008. The exercises in the chapter scratched the surface of how
you'll save time and money by moving to this new debugging environment and showed

that Visual Studio 2010 is more than a small iteration in the evolution of Visual Studio. It
represents a huge leap in productivity for developers. The gap between Visual Studio 2008
and Visual Studio 2010 in terms of debugging is less severe than in earlier versions.

The various versions of Visual Studio 2010 give you a great list of improvements related to
the debugger and testing. My personal favorites are IntelliTrace—http.//msdn.microsoft.com/
en-us/library/dd264915(VS.100).aspx—which is available only in Visual Studio 2010 Ultimate
and Microsoft Test Manager. IntelliTrace enables test teams to have much better experiences
using Visual Studio 2010 and Visual Studio 2010 Team Foundation Server—http.//msdn.
microsoft.com/en-us/library/bb385901(VS.100).aspx.

Index

A

AcceptVerbs attribute, 51,
165, 263
account controller, 2003 to 2010
account view, creating, 59-66
ASP.NET MVC, 43-44
creating, 43-58
current user profile retrieval,
51-53
functionality implementation,
44-46
profile data, updating, 53-58
user authentication, 46-51
account controller, 2005 to 2010
account view, creating, 173-180
ASP.NET MVC, 157-158
creating, 157-173
current user profile retrieval,
165-167
functionality implementation,
158-160
profile data, updating, 167-173
user authentication, 160-165
account controller, 2008 to 2010
account view, creating, 270-278
ASP.NET MVC, 255-256
creating, 255-270
current user profile retrieval,
262-265
functionality implementation,
256-287
profile data, updating, 265-270
user authentication, 258-262
account view, creating, 59-66,
173-180, 270-278
Add method, 27, 32, 143, 146,
244, 246
Add Web Service Reference,
32-33, 146
add-in module projects, 75-77,
188-190, 286-288
ADO.NET Entity Framework (EF).
See Entity Framework
ADO.NET POCO entity generator,
23-25, 138-140, 222,
239-241
AJAX, 54, 168-169, 266
AntiForgeryToken, 54, 168, 265
AppFabric caching, 36-37, 150-151,
248-249

architecture, 3-5, 117-119,
217-219
areas folder, 40, 154, 252
ASP.NET Forms Authentication,
46-51, 160-165, 258-262
ASP.NET Membership Service,
46-51, 160-165, 258-262
ASP.NET MVC, 2003 to 2010
account controller, 43-44
caching, 37
component folders, 40-41
Model Binding, 52, 54
overview, 39
requests, 54
Web Forms versus, 44
ASP.NET MVC, 2005 to 2010
account controller, 157-158
caching, 151
component folders, 154-155
Model Binding, 166, 168
overview, 153
requests, 168
Web Forms versus, 158
ASP.NET MVC, 2008 to 2010
account controller, 255-256
caching, 249
component folders, 252-253
Model Binding, 263, 265-266
overview, 251
requests, 266
Web Forms versus, 256
ASP.NET Web Forms. See Web Forms
attributes
2003 to 2010, 51, 54, 66
2005 to 2010, 165, 168, 179
2008 to 2010, 263, 265, 277
authenticating user, 46-51,
160-165, 258-262
Authorize attribute, 51, 165, 263

Bing Maps Web services data,
32-34, 146-148
breakpoint enhancements, 82-87,
196-200, 294-298
business logic and data, from 2003
to 2010
AppFabric caching, 36-37
architecture, 3-5

Bing Maps Web services data,
32-34
database data retrieval, 27-32
Entity Framework data, 6-26
parallel programming, 35-36
Plan My Night data, 5-6
business logic and data, from 2005
to 2010
AppFabric caching, 150-151
architecture, 117-119
Bing Maps Web services data,
146-148
database data retrieval,
142-146
Entity Framework data, 121-142
parallel programming, 149-150
Plan My Night data, 119-121
business logic and data, from 2008
to 2010
AppFabric caching, 248-249
architecture, 217-219
database data retrieval, 243-247
Entity Framework data, 222-243
parallel programming, 247-248
Plan My Night data, 219-221

C

caching, 36-37, 150-151, 248-249

code-behind files, 60, 62, 174, 176,
272,273

code-only support, 222

component folders, 40-41,
154-155, 252-253

content folders, 41, 155, 253

contract interface components, 4,
118, 218

contracts project, entity classes,
moving to, 25-26, 140-142,
241-243

Controller.RedirectToAction, 48,
162, 260

controllers, 40, 154, 252

Copy Project deployment method,
105-106

CreateProfile, 48, 162, 260

CreateUser method, 48, 162, 260

CSS application, 69, 183, 280

current user profile retrieval, 51-53,
165-167, 262-265

315

316

data inspection

D

data inspection, 87-91, 200-205,
298-303
data visualizers, 87-88, 201, 299
database, connecting to existing, 8,
123,224
database data retrieval, 27-32,
142-146, 243-247
database scripts, 20-22, 135-138,
236-239
datacenters/servers, deploying
applications to, 104
DataTip enhancements, 88-91,
201-205, 299-303
debugging an application, from
2003 to 2010
breakpoint enhancements,
82-87
data inspection, 87-91
minidump debugger, 92-95
overview, 81-82
session management, 82-100
Threads window, 100
unit testing, 95-100
web.config transformations, 95
debugging an application, from
2005 to 2010
breakpoint enhancements,
196-200
data inspection, 200-205
minidump debugger,
205-208
overview, 195-196
session management, 196-213
Threads window, 213
unit testing, 208-213
web.config transformations, 208
debugging an application, from
2008 to 2010
breakpoint enhancements,
294-298
data inspection, 298-303
minidump debugger, 303-307
overview, 293-294
session management, 294-311
Threads window, 311-312
unit testing, 307-311
web.config transformations, 307
deploying an application, from
2003 to 2010
to enterprise datacenters/
servers, 104
to hosting company, 103-104
one-click publish, 112-113
web deployment packages,
104-111
Designer view, 66-74, 180-187,
278-285

designing application look and feel,
from 2003 to 2010
account controller, 43-58
account view, creating, 59-66
designer view, 66-74
extending application with MEF,
74-79
overview, 39
PlanMyNight.Web project, 39-42
designing application look and feel,
from 2005 to 2010
account controller, 157-173
account view, creating, 173-180
designer view, 180-187
extending application with MEF,
188-193
overview, 153
PlanMyNight.Web project,
153-156
designing application look and feel,
from 2008 to 2010
account controller, 255-270
account view, creating, 270-278
designer view, 278-285
extending application with MEF,
286-291
overview, 251
PlanMyNight.Web project, 251-254

enterprise datacenters/servers,
deploying applications to, 104
entity classes, moving to contracts
project, 25-26, 140-142, 241-243
Entity Data Model (EDM) Designer,
2003 to 2005
ADO.NET POCO entity generator,
23-25
existing database import model,
7-16
POCO templates, 22-23
wizard modifications, 8-9, 16-20
Entity Data Model (EDM) Designer,
2005 to 2010
ADO.NET POCO entity generator,
138-140
existing database import model,
122-131
manual modifications, 126-129
POCO templates, 138
wizard modifications, 123-124,
131-142
Entity Data Model (EDM) Designer,
2008 to 2010
ADO.NET POCO entity generator,
222, 239-241
existing database import model,
222-232

manual modifications, 227-230
POCO templates, 222, 239
wizard modifications, 224-225,
232-243
Entity Framework (EF), 2003 to 2005
data with, 6-26
existing database, importing, 7-16
Model First approach, importing,
16-26
overview, 6
PlanMyNight existing solutions, 7
Entity Framework (EF), 2005 to 2010
data with, 121-142
existing database, importing,
122-130
Model First approach, importing,
131-142
overview, 121
PlanMyNight existing solutions,
122
Entity Framework (EF), 2008
to 2010
data with, 222-243
existing database, importing,
222-232
Model First approach, importing,
222,232-243
overview, 222
PlanMyNight existing
solutions, 223
Visual Studio 2008 and, 222
EntitySet, 127, 225, 228
EntityType, 127, 225, 228
exception handling, 6674,
180-187, 278-285. See
also headings starting with
“debugging”
exporting breakpoints, 86, 200, 298
exporting DataTips, 91, 205, 303
extending application with MEF,
74-79, 188-193, 286-291
extension methods, 52, 166

F

filtering breakpoints, 86, 200, 297

foreign key associations, 235

function imports, 15-16, 130-131,
231-232

G

Generate Database Wizard, 21-22,
136-138, 237-239
generics, Visual Studio 2003
and, 29
GetCurrentProfile, 52, 166, 263
GetReturnUrl, 52, 166, 263

H

helpers, 41, 155, 253

hosting companies, deploying
applications to, 103-104

HTML methods, 62-63, 176,
273-274

IActivitiesRepository interface,
4,45, 118, 159, 218, 257
ICachingProvider interface, 4,
118, 218
ID attribute, 66, 179, 277
IFormsAuthentication, 45,
159, 257
lltinerariesRepository interface, 4,
27,118, 142, 218, 243
IMembershipService, 45, 159, 257
importing breakpoints, 87,
200, 298
importing data from existing
database, 2003 to 2010
fixing generated data model,
9-14
function imports, 15-16
initial process, 7-9
stored procedure, 15-16
importing data from existing
database, 2005 to 2010
fixing generated data model,
124-131
function imports, 130-131
initial process, 122-124
stored procedure, 130-131
importing data from existing
database, 2008 to 2010
fixing generated data model,
226-230
function imports, 231-232
initial process, 222-226
stored procedure, 231-232
importing DataTips, 91, 205, 303
independent key associations, 235
Index method, 51, 165, 262-263
Index view, 59-63, 173-176,
270-274
infrastructure components, 41,
155, 253
InjectStatesAndActivityTypes
method, 52-53, 167, 264-265
InstallShield, 109
instance fields, 45, 159, 256-257
interfaces
|ActivitiesRepository, 4, 45,
118, 159, 218, 257
ICachingProvider, 4, 118, 218

IFormsAuthentication, 45,
159, 257
IltinerariesRepository, 4, 27, 118,
142, 218, 243
IMembershipService, 45,
159, 257
IReferenceRepository, 45,
159, 257
IWindowsLivelLogin, 45,
159, 257
IReferenceRepository, 45,
159, 257
ItineraryActivities navigation
property, 9, 124-125,
225-226
IWindowsLivelogin, 45, 159, 257

J

jQuery, 87,298
JsonResult, 54, 168-169, 266

L

labels, debug breakpoint feature,
84-86, 198-199, 296-297

Language Integrated Query (LINQ),
28,143, 299

lazy loading, 222

LivelD method, 49-50, 163-164,
261-262

Login method, 50, 164, 262

M

Managed Extensibility Framework
(MEF), 74, 188, 286
minidump debugger, 92-95,
205-208, 303-307
Model Binding, 52, 54, 166, 168,
263, 265-266
Model First approach, 2003
to 2005
ADO.NET POCO entity generator,
23-25
generating database script,
20-22
initial process, 16-20

moving entity classes to contracts

project, 25-26

POCO templates, 22-23

Model First approach, 2005 to 2010

ADO.NET POCO entity generator,
138-140

generating database script,
135-138

initial process, 131-135

Plain-Old CLR Objects

moving entity classes to contracts
project, 140-142
POCO templates, 138
Model First approach, 2008 to 2010
ADO.NET POCO entity generator,
222,239-241
generating database script,
236-239
initial process, 232-236
moving entity classes to contracts
project, 241-243
POCO templates, 222, 239
Visual Studio 2008 and, 222
MSBuild, 104, 107, 108, 113
msdeploy tool, 109, 113
multicore computers, 100,
213,311
multimonitor support for
debugging, 88, 201, 299
multithreaded applications, 100,
213,311

N

namespaces, 44, 158, 256
naming, singular vs. plural, 225
navigation properties, 9, 20,
124-125, 135, 226, 236
NavigationProperty, 225
NET Framework 4.0, 2003 to 2010
AppFabric caching, 37
Managed Extensibility Framework
(MEF), 74
parallel programming, 35-36
PLINQ libraries, 36, 100
NET Framework 4.0, 2005 to 2010
AppFabric caching, 151
Managed Extensibility Framework
(MEF), 188
parallel programming, 149-150
PLINQ libraries, 150
.NET Framework 4.0, 2008 to 2010
AppFabric caching, 249
Managed Extensibility Framework
(MEF), 286
parallel programming, 247-248
PLINQ libraries, 248

(0

one-click publish, 112-113

P

parallel programming, 35-36,
149-150, 247-248

Plain-Old CLR Objects. See POCO
templates

317

Plan My Night application

Plan My Night application, 2003
to 2010
add-in module projects, 75-77
AppFabric caching, 36-37
architecture, 3-5
ASP.NET caching, 37
Bing Maps Web services data,
32-34
data, 5-6
database data retrieval, 27-32
Entity Framework data, 6-26
existing projects, 7
parallel programming, 35-36
Visual Studio 2003 and, 5-6
Plan My Night application, 2005
to 2010
add-in module projects,
188-190
AppFabric caching, 150-151
architecture, 117-119
ASP.NET caching, 151
Bing Maps Web services data,
146-148
data, 119-121
database data retrieval, 142-146
Entity Framework data, 121-142
existing projects, 122
parallel programming, 149-150
Visual Studio 2005 and, 119-121
Plan My Night application, 2008
to 2010
add-in module projects, 286-288
AppFabric caching, 248-249
architecture, 217-219
ASP.NET caching, 249
data, 219-221
database data retrieval, 243-247
existing projects, 223
parallel programming, 247-248
Plan My Night application,
deploying application,
103-113
PlanMyNight.Web project, 39-42,
153-156, 251-254
PLINQ libraries, 36, 100, 150, 248
plug-ins support, 77, 190, 288
POCO templates, 22-23, 138,
222,239
PrintIntinerary.Addin project, 77-79,
190-193, 288-291
profiles
CreateProfile, 48, 162, 260
retrieving current user data,
51-53, 165-167, 262-265
updating data, 53-58, 167-173,
265-270
UserProfile, 10-14, 126-129,
227-230

Q

query writing, 28, 143

R

requests, ASP.NET MVC, 54,
168, 266

S

SearchByActivity, 27, 28-30, 142,
143-144, 244-245
SearchByRadius, 27, 31-32, 143,
145-146, 244, 246
SearchByZipCode, 27, 30-31, 142,
144-145, 244, 245
self-tracking entities, 222
server-side controls, 62, 176, 273
SOS tool, 92, 205, 303
stored procedure, 15-16, 130-131,
231-232

T

T4 templates (Text Template
Transformation Toolkit), 22-23,
25,138, 140, 222, 239, 241

testing, unit, 95-100, 208-213,
307-311

TFSBuild, 104, 111, 113

Threads window, 100, 213, 311-312

U

unexpected conditions, 6674,
180-187, 278-285

unit testing, 95-100, 208-213,
307-311

Update method, 53-54, 168, 265

UpdateSuccess view, 63-66,
177-180, 274-278

user authentication, 46-51,
160-165, 258-262

user data retrieval, 51-53, 165-167,
262-265

UserProfile, 10-14, 126-129,
227-230

Vv

ValidateAntiForgeryToken attribute,
54,168, 265

ValidateUser method, 48, 162, 260

ViewModels, 41, 155, 253

views, 40, 154, 252

Visual Studio 2003
Add Web Service Reference,
32-33
add-ins to generate code, 25
attributes, 51, 66
breakpoint window, 84
CSS application, 69
debugging, 83, 87, 88, 92
extension methods, 52
generics and, 29
InjectStatesAndActivityTypes
method, 52-53
jQuery, 87
Plan My Night data and, 5-6
plug-ins support, 77
query writing and, 28
requests, 54
server-side controls, 62
SOS tool, 92
unit testing, 96
Web Forms and, 44
web.config file, 40-41
Visual Studio 2005
Add Web Service Reference, 146
attributes, 165, 179
breakpoint window, 198
CSS application, 183
debugging, 198, 201, 205,
213,312
extension methods, 166
InjectStatesAndActivityTypes
method, 167
Plan My Night application, 2005
to 2010 and, 119-121
Plan My Night data, 119-121
plug-ins support, 190
query writing and, 143
requests, 168
server-side controls, 176
SOS tool, 205
unit testing, 209
Web Forms and, 158
web.config file, 155
XSD processing, 140
Visual Studio 2008
attributes, 263, 277
breakpoint window, 296
debugging, 296, 299, 303
Entity Framework
enhancements, 222
foreign key associations, 235
jQuery, 298
LINQ debugging, 299
plug-ins support, 288
requests, 266
server-side controls, 273
singular vs. plural naming, 225
SOS tool, 303

unit testing, 307
Web Forms and, 256
web.config file, 253
XSD processing, 241

w

WOCF. See Windows Communication
Foundation (WCF)

Web Application Project, 107

web deployment packages,
104-111

Web Forms

ASP.NET MVC applications versus,

44,158, 256

using Designer View, 66-74,
180-187, 278-285
Visual Studio 2003 and, 44
Visual Studio 2005 and, 158
Visual Studio 2008 and, 256
Web service data retrieval, 32-34,
146-148
Web Service Proxy, 34, 148
Web Setup Project deployment
method, 104-106
web.config file, 40-41, 154-155, 253
web.config transformations, 95,
208, 307
Windows Communication
Foundation (WCF), 33-34,
147-148

XSD processing

Windows Live ID authentication,
46-51, 160-165, 258-262
Windows Server AppFabric. See
AppFabric caching
WindowsLiveLogin.User object,
47-48, 161-162, 259-260
Wix Toolset, 109, 113

X

XCOPY deployment, 104-111
XSD processing, 140, 241

319

About the Authors

Ken Haines is a software development engineer at Microsoft, working in the Consumer and
Online Division. He has a passion for distributed applications in the cloud and strives to help
customers and partners find the right solution for their needs.

For the past 12 years, he has worked in various roles in a wide range of industries, including
Internet service providers, satellite telecommunications, and network monitoring and

Web analytics. Some of these jobs have taken him to extremely remote locations, such as the
Nunavut and Northwest Territories of Canada.

When not at Microsoft or developing software in his spare time, he enjoys hiking, mountain
biking, nature photography, reading, and spending time with family. He resides with his
family in Monroe, Washington.

Pascal Paré has worked at Microsoft since 2006, where he has held positions as a software
engineer on both development and testing teams. He is currently a software development
engineer in the Consumer and Online Division.

He graduated 13 years ago from Université Laval in Québec, Canada, as a computer
engineer. He worked as a tester and developer in different companies and in a variety of
industries (including fiber optics test equipment, telecommunications, and medical software)
before joining Microsoft.

For leisure, he enjoys hiking, cycling, and skiing in the Pacific Northwest, as well as cooking
and traveling. His favorite pastime is to take his Lotus Elise out for a spirited drive in the back
roads around Puget Sound. He is married and currently lives in the Seattle area.

Patrice Pelland is a principal development manager at Microsoft, working in the Consumer
and Online Division. He leads a development team that is focused on innovation and
incubation across all Microsoft consumer products. He has a passion for complex distributed
systems, for mobile development, and for helping consumers and partners around the world
get the most out of Microsoft products.

For the past 17 years, he has worked in software development as both an individual
contributor and a manager in various industries, including Web development, developer
tools, fiber optics telecommunications, aviation, and coffee and dairy companies. He also
spent three years teaching computer science and software development at a college in
Canada.

When he is not developing software at Microsoft—and for fun in his spare time—he enjoys
spending time with family and friends having great dinners with good food and fine drinks,
traveling, cooking, reading books, reading about Porsche cars, watching hockey and football,
and training at the gym. He resides with his family in Sammamish, Washington.

	Cover
	Copyright page

	Contents

	Introduction
	Who Is This Book For?
	What Is the Book About?
	How Will This Book Help Me Move to Visual Studio 2010?
	Designing the Look and Feel
	Business Logic and Data
	Debugging the Application
	Deploying Plan My Night

	What Is Plan My Night?
	Why Should You Move to Visual Studio 2010?
	Errata and Book Support

	Part I: Moving from Microsoft Visual Studio 2003 to Visual Studio 2010
	Chapter 1: From 2003 to 2010: Business Logic and Data
	Application Architecture
	Plan My Night Data in Microsoft Visual Studio 2003
	Data with the Entity Framework in Visual Studio 2010
	EF: Importing an Existing Database
	EF: Model First
	POCO Templates

	Putting It All Together
	Getting Data from the Database
	Getting Data from the Bing Maps Web Services
	Parallel Programming
	AppFabric Caching

	Summary

	Chapter 2: From 2003 to 2010: Designing the Look and Feel
	Introducing the PlanMyNight.Web Project
	Running the Project

	Creating the Account Controller
	Implementing the Functionality

	Creating the Account View
	Using the Designer View to Create a Web Form
	Extending the Application with MEF
	Print Itinerary Add-in Explained

	Summary

	Chapter 3
: From 2003 to 2010: Debugging an Application
	Visual Studio 2010 Debugging Features
	Managing Your Debugging Session
	New Threads Window

	Summary

	Chapter 4: From 2003 to 2010: Deploying an Application
	Visual Studio 2010 Web Deployment Packages
	Visual Studio 2010 and Web Deployment Packages

	Summary

	Part II:
Moving from Microsoft Visual Studio 2005 to Visual Studio 2010
	Chapter 5
: From 2005 to 2010: Business Logic and Data
	Application Architecture
	Plan My Night Data in Microsoft Visual Studio 2005
	Data with the Entity Framework in Visual Studio 2010
	EF: Importing an Existing Database
	EF: Model First
	POCO Templates

	Putting It All Together
	Getting Data from the Database
	Getting Data from the Bing Maps Web Services
	Parallel Programming
	AppFabric Caching

	Summary

	Chapter 6
: From 2005 to 2010: Designing the Look and Feel
	Introducing the PlanMyNight.Web Project
	Running the Project

	Creating the Account Controller
	Implementing the Functionality

	Creating the Account View
	Using the Designer View to Create a Web Form
	Extending the Application with MEF
	Print Itinerary Add-in Explained

	Summary

	Chapter 7
: From 2005 to 2010: Debugging an Application
	Visual Studio 2010 Debugging Features
	Managing Your Debugging Session
	New Threads Window

	Summary

	Part III: Moving from Microsoft Visual Studio 2008 to Visual Studio 2010
	Chapter
8: From 2008 to 2010: Business Logic and Data
	Application Architecture
	Plan My Night Data in Microsoft Visual Studio 2008
	Data with the Entity Framework in Visual Studio 2010
	EF: Importing an Existing Database
	EF: Model First
	POCO Templates

	Putting It All Together
	Getting Data from the Database
	Parallel Programming
	AppFabric Caching

	Summary

	Chapter 9
: From 2008 to 2010: Designing the Look and Feel
	Introducing the PlanMyNight.Web Project
	Running the Project

	Creating the Account Controller
	Implementing the Functionality

	Creating the Account View
	Using the Designer View to Create a Web Form
	Extending the Application with MEF
	Print Itinerary Add-in Explained

	Summary

	Chapter 10
: From 2008 to 2010: Debugging an Application
	Visual Studio 2010 Debugging Features
	Managing Your Debugging Session
	New Threads Window

	Summary

	Index
	About the Authors

