Azure Web Apps
for Developers

Microsoft Azure Essentials

Visit us today at

—.a D

microsoftpressstore.com

Hundreds of titles available — Books, eBooks, and online
resources from industry experts

Free U.S. shipping

eBooks in multiple formats — Read on your computer,
tablet, mobile device, or e-reader

Print & eBook Best Value Packs

eBook Deal of the Week — Save up to 60% on featured titles

Newsletter and special offers — Be the first to
hear about new releases, specials, and more
b
Register your book — Get additional benefits ﬂ, ‘ -!
Microsoft n

https://www.microsoftpressstore.com?WT.mc_id=BOB_store_pg

Hearabout
I ﬂrst =

Get the latest news from Microsoft Press sent to
your inbox.

« New and upcoming books
« Special offers
« Free eBooks

« How-to articles

Sign up today at MicrosoftPressStore.com/Newsletters

B8 Microsoft

https://www.microsoftpressstore.com/newsletters?WT.mc_id=BOB_news_pg

Wait, there's more...

Microsoft Press

Guided
Tours

Introducing Micra e HDInsight ~ Microsoft Azure E
Fundamentals of A

rage, high availability, and more

m Dyt

Welcome

Deseribing new and evobing
Mictcnofttechemoggies, 1 3pp.

[Wotehvigeo » |

Find more great content and resources in the
Microsoft Press Guided Tours app.

The Microsoft Press Guided Tours app provides
insightful tours by Microsoft Press authors of new and
evolving Microsoft technologies.

Share text, code, illustrations, videos, and links with
peers and friends

Create and manage highlights and notes

View resources and download code samples

Tag resources as favorites or to read later
Watch explanatory videos
Copy complete code listings and scripts

(g Download from
Windows Store

http://aka.ms/mspressguidedtours
http://aka.ms/mspressguidedtours
http://aka.ms/mspressguidedtours
http://aka.ms/mspressguidedtours

PUBLISHED BY

Microsoft Press

A division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2015 Microsoft Corporation. All rights reserved.

No part of the contents of this book may be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

ISBN: 978-1-5093-0059-4
Microsoft Press books are available through booksellers and distributors worldwide. If you need support

related to this book, email Microsoft Press Support at mspinput@microsoft.com. Please tell us what you
think of this book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the authors’ views and opinions. The views, opinions, and
information expressed in this book, including URL and other Internet website references, may change
without notice.

Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos,
people, places, and events depicted in examples herein are fictitious. No association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be
inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are
trademarks of the Microsoft group of companies. All other marks are property of their respective owners.

Acquisitions, Developmental, and Project Editor: Devon Musgrave
Editorial Production: nSight, Inc.

Copyeditor: Ann Weaver

Cover: Twist Creative

http://www.microsoft.com
http://aka.ms/tellpress

Table of Contents

Foreword

Introduction

Who should read this book

Assumptions

This book might not be for you if...

Organization of this book

Conventions and features in this book

System requirements

O W 00 00 N N N o

Acknowledgments

Errata, updates, & support

Free ebooks from Microsoft Press

Free training from Microsoft Virtual Academy

We want to hear from you

Stay in touch

Chapter 1 Microsoft Azure Web Apps

Introduction to Azure Resource Groups

Introduction to App Service Plans

Create an Azure Web App using the Azure portal

Create a Web App and SQL Database

Add an Azure Redis Cache to the Azure Resource Group

Create an Azure Web App using Visual Studio

Create a Web App by using Server Explorer

Create a Web App by using the ASP.NET Web Application template

Create a Web App using the Azure Resource Group template

Connection strings and application settings

Set connection strings and app settings in the environment

Retrieve connection strings and app settings from the environment

How connection strings and app settings are stored in the environment

W W W oW NN NN R R R R R R oPB R R s)
N o A DN O M P RBP O UL W NN R R R O O O

Add a deployment slot for an Azure Web App
Scale to a Standard App Service Plan
Add a deployment slot
Set up continuous deployment with Visual Studio Online
Introduction to Visual Studio Online
Set up deployment from source control to a staging slot
Add Visual Studio solution to source control
Commit Visual Studio solution to source control
Role Based Access Control
Subscription-level roles
Resource-level roles
Summary
Chapter 2 Azure WebJobs
Introduction to Azure WebJobs
Create an Azure WebJob
Publish a web job from Visual Studio
Invoke a web job manually
View the WebJobs Dashboard
Create a web job from the Azure portal
Introduction to the Azure WebJobs SDK
WeblJobs SDK .NET libraries and dependencies
Create a web job designed for use with Azure Storage Queues
Examine the web job project and code
Publish a web job to Azure
Examine new features in the WebJobs Dashboard
Summary
Chapter 3 Scaling Azure Web Apps
Scale Up
Scale Out

Dealing with the challenges of scaling out a web app

3

38
39
40
41
41
43
45
45
46
47
48
49
50
50
51
52
54
54
55
57
58
58
60
64
65
68
69
69
71
71

Scaling web apps using Autoscale

73

Autoscale based on CPU percentage

73

74

Autoscale based on a recurring schedule

Understanding Autoscale rules

Turn off Autoscale

77
79

Scale globally with Azure Traffic Manager

79

Create a Traffic Manager profile

81

83

Additional services for achieving massive scale

Scaling WebJobs

83

Summary

84

Chapter 4 Monitoring and diagnostics

86

Introduction to diagnostic logs

86

88

Enable application and site diagnostic logs

Store log files in the web app file system

88

Store log files in Azure Storage

89

Access and download diagnostic log files

91

Access log files stored in the web app file system

91

95

Access log files from Azure Storage

Log streaming

96

Log streaming using Visual Studio

96

Log streaming using command-line tools

97

Remote debugging

98

Diagnostics as a Service (Daa$)

Install the Diagnostics as a Service site extension

Run Daa$

View Daa$ analysis reports

Site Admin Tools/Kudu

Install the Site Admin Tools/Kudu

Run the Site Admin Tools

Monitor web app endpoints externally using web tests
4

100
100
101
102
105
105
105
109

Create a URL ping web test

Monitoring

Monitor a resource group using the Azure portal

Application Insights
Add Application Insights to an existing ASP.NET MVC Web Application

Summary

110
112
112
114
115
119

Foreword

I'm thrilled to be able to share these Microsoft Azure Essentials ebooks with you. The power that
Microsoft Azure gives you is thrilling but not unheard of from Microsoft. Many don't realize that
Microsoft has been building and managing datacenters for over 25 years. Today, the company's cloud
datacenters provide the core infrastructure and foundational technologies for its 200-plus online
services, including Bing, MSN, Office 365, Xbox Live, Skype, OneDrive, and, of course, Microsoft Azure.
The infrastructure is comprised of many hundreds of thousands of servers, content distribution
networks, edge computing nodes, and fiber optic networks. Azure is built and managed by a team of
experts working 24x7x365 to support services for millions of customers’ businesses and living and
working all over the globe.

Today, Azure is available in 141 countries, including China, and supports 10 languages and 19
currencies, all backed by Microsoft's $15 billion investment in global datacenter infrastructure. Azure is
continuously investing in the latest infrastructure technologies, with a focus on high reliability,
operational excellence, cost-effectiveness, environmental sustainability, and a trustworthy online
experience for customers and partners worldwide.

Microsoft Azure brings so many services to your fingertips in a reliable, secure, and environmentally
sustainable way. You can do immense things with Azure, such as create a single VM with 32TB of
storage driving more than 50,000 IOPS or utilize hundreds of thousands of CPU cores to solve your
most difficult computational problems.

Perhaps you need to turn workloads on and off, or perhaps your company is growing fast! Some
companies have workloads with unpredictable bursting, while others know when they are about to
receive an influx of traffic. You pay only for what you use, and Azure is designed to work with common
cloud computing patterns.

From Windows to Linux, SQL to NoSQL, Traffic Management to Virtual Networks, Cloud Services to
Web Sites and beyond, we have so much to share with you in the coming months and years.

| hope you enjoy this Microsoft Azure Essentials series from Microsoft Press. The other ebooks in the
series cover fundamentals of Azure, Azure Automation, and Azure Machine Learning. (Take a look at
Microsoft Press's blog to find these.) And | hope you enjoy living and working with Microsoft Azure as
much as we do.

Scott Guthrie
Executive Vice President

Cloud and Enterprise group, Microsoft Corporation

Introduction

Azure Web Apps is a fully managed platform that you can use to build mission-critical web
applications that are highly available, secure, and scalable to global proportions. Combined with first-
class tooling from Visual Studio and the Microsoft Azure Tools, the Azure Web Apps service is the
fastest way to get your web application to production. Azure Web Apps is part of the Azure App
Service that is designed to empower developers to build web and mobile applications for any device.

Developing web applications to host on Azure Web Apps is a familiar experience for developers
accustomed to hosting web applications on Internet Information Services (IIS). Developers can use
ASP.NET, Java, Node.js, PHP, and Python for their application development locally and easily deploy to
Azure Web Apps. The environment supports continuous deployment to multiple staging environments,
enabling development teams to deploy application updates rapidly and reliably.

Azure Web Apps is more than a host for web front-end applications. It also supports development
of robust background processes using the Azure WebJobs feature. WebJobs can be invoked on
demand, scheduled, or automatically invoked using a feature-rich WebJobs SDK.

The monitoring and diagnostics built into Azure Web Apps are exceptional. The Azure portal
delivers a professional Ul experience that you can use to interact with your monitoring and diagnostics
data. Site extensions are available to further enhance this experience, and services such as Application
Insights can be used to gain deeper insight into your application code running in Azure.

This ebook will guide you through these topics, point you to some best practices along the way, and
provide detailed walkthroughs for you to gain hands-on experience.

Who should read this book

This book focuses on providing essential information about developing web applications hosted on
Azure Web Apps. It is written with the developer who has experience using Visual Studio and the .NET
Framework in mind. If Azure Web Apps is new to you, then this book is for you. If you have experience
developing for Azure Web Apps, then this book is for you, too, because there are features and tools
discussed in this text that are new to the platform.

Assumptions

It is expected that you have at least a minimal understanding of cloud computing concepts and basic
web services. Some familiarity with developing web applications using Visual Studio and C# is not
required but may help fast-track your learning. You should have general knowledge of how to use the
Azure Preview portal at http://portal.azure.com.

http://portal.azure.com/

This book might not be for you if...

This book might not be for you if you are looking for guidance developing ASP.NET MVC or Web API
applications. Instead, this book focuses on the features and services of the Azure platform used to
develop web-based cloud applications. Although ASP.NET MVC may be used to demonstrate concepts,
it is only to the extent necessary to support the in-depth discussion on how to use Azure Web Apps to
host your web application.

Organization of this book

This book provides information you can use to start building web applications using Azure Web Apps.
It will guide you through development, deployment, and configuration tasks that are common for
today's developer building cloud applications.

Each chapter stands alone; there is no requirement that you perform the hands-on demonstrations
from previous chapters to understand any chapter. The topics explored in this book include the
following:

e Chapter 1, "Microsoft Azure Web Apps”: This chapter starts with an introduction to Azure
Resource Groups and App Service Plans and progresses into essential tasks such as creating and
configuring a web app. Learn best practices for storing and retrieving app settings and
connection strings. Configure deployment slots and set up continuous deployment using Visual
Studio Online. Wrap up with a discussion about Role Based Access Control (RBAC) and how you
can use it to manage access to your Azure resources.

e Chapter 2, “Azure WebJobs”: Learn everything you need to know to build and deploy
background processing tasks using Azure WebJobs. You will learn the basics of the WebJobs
feature and proceed into a deeper discussion on how to use the WebJobs SDK. You will learn
about the Azure WebJobs Dashboard and how the WebJobs SDK enhances the dashboard
experience.

e Chapter 3, "Scaling Azure Web Apps”: Learn how to scale up and scale out your Azure web app
and web jobs. You will learn how to configure Autoscale to scale your web app dynamically
based on performance metrics and schedules. See how you can use Azure Traffic Manager to
achieve global scale for your web apps.

e Chapter 4, "Monitoring and diagnostics”: Learn about the many logging features built into the
Azure Web Apps platform and how to configure logging to get the diagnostics data you need
to troubleshoot issues. You will learn how to configure storage locations and retention policies
for logs, how to view logs in real time using the log streaming service, and even how to debug
your web app remotely while it is running in Azure. You will get an introduction to some

8

powerful site extensions you can use to view logs and perform analysis directly from your
browser. Finally, you will learn how you can monitor your resource group down to individual
resources and how you can use Application Insights to deliver a complete 360-degree view into
your application code for monitoring and diagnostic purposes.

Conventions and features in this book

This book presents information using conventions designed to make the information readable and
easy to follow:

e There currently are two management portals for Azure: the Azure Management Portal at
http://manage.windowsazure.com and the new Azure Preview Portal at http://portal.azure.com.
This book assumes the use of the new Azure Portal unless noted otherwise.

e A plussign (+) between two key names means that you must press those keys at the same time.
For example, “Press Alt+Tab” means that you hold down the Alt key while you press Tab.

System requirements

For many of the examples in this book, you will need a browser (Internet Explorer 10 or higher) to
access the Azure portal, Visual Studio 2013 with Update 4, and the Microsoft Azure Tools v2.6. You can
download a free copy of Visual Studio Express at the link below. Be sure to scroll down the page to the
link for “Express 2013 for Windows Desktop”: http://www.visualstudio.com/en-us/products/visual-
studio-express-vs.aspx.

The system requirements are as follows:

e Windows 7 Service Pack 1, Windows 8, Windows 8.1, Windows Server 2008 R2 SP1, Windows
Server 2012, or Windows Server 2012 R2

e Computer that has a 1.6 GHz or faster processor (2 GHz recommended)

e 1 GB (32 bit) or 2 GB (64 bit) RAM (Add 512 MB if running in a virtual machine)
e 20 GB of available hard disk space

e 5,400 RPM hard disk drive

e DirectX 9 capable video card running at 1,024 x 768 or higher-resolution display
e DVD-ROM drive (if installing Visual Studio from DVD)

° Internet connection

http://manage.windowsazure.com/
http://portal.azure.com/
http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx

Depending on your Windows configuration, you might require Local Administrator rights to install
or configure Visual Studio 2013.

Acknowledgments

It is with great pleasure to personally thank Rick Anderson and Tom Dykstra for their expert technical
reviews, feedback, guidance, and encouragement. If you have used the online documentation at
http://azure.com or http://asp.net, then you probably already know the fantastic work these two
gentlemen produce. It was an honor to have them on the team for this project.

Special thanks to the entire team at Microsoft Press for their awesome support and guidance on this
journey. Most of all, it was a pleasure to work with my editor, Devon Musgrave, who provided
guidance from the very beginning when this was just an idea to the final copy you are about to read.

Errata, updates, & support

We've made every effort to ensure the accuracy of this book. You can access updates to this book—in
the form of a list of submitted errata and their related corrections—at:

http://aka.ms/AzureWebApps/errata

If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered through the
previous addresses. For help with Microsoft software or hardware, go to http://support.microsoft.com.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from Microsoft
Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and Mobi for Kindle
formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

10

http://azure.com/
http://asp.net/
http://aka.ms/AzureWebApps/errata
mailto:mspinput@microsoft.com
http://support.microsoft.com/
http://aka.ms/mspressfree

Free training from Microsoft Virtual Academy

The Microsoft Azure training courses from Microsoft Virtual Academy cover key technical topics to
help developers gain the knowledge they need to be a success. Learn Microsoft Azure from the true
experts. Microsoft Azure training includes courses focused on learning Azure Virtual Machines and
virtual networks. In addition, gain insight into platform as a service (PaaS) implementation for IT Pros,
including using PowerShell for automation and management, using Active Directory, migrating from
on-premises to cloud infrastructure, and important licensing information.

http://www.microsoftvirtualacademy.com/product-training/microsoft-azure

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset.
Please tell us what you think of this book at:

http://aka.ms/tellpress

We know you're busy, so we've kept it short with just a few questions. Your answers go directly to
the editors at Microsoft Press. (No personal information will be requested.) Thanks in advance for your
input!

Stay in touch

Let's keep the conversation going! We're on Twitter: http://twitter.com/MicrosoftPress

11

http://www.microsoftvirtualacademy.com/product-training/microsoft-azure
http://aka.ms/tellpress
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

Chapter 1

Microsoft Azure Web Apps

Azure App Service Web Apps (formerly Azure Websites) is a platform-as-a-service (PaaS) offering that
enables developers to build secure, mission-critical, and highly scalable web applications. Developers
can choose from languages such as C#, HTML5, PHP, Java, Node.js, and Python to write their code and
use familiar tools such as Visual Studio and platform-specific Azure SDKs to get started quickly.

This chapter will introduce you to essential knowledge to get started building Azure web apps. This
text will present topics with the ASP.NET developer in mind and, therefore, will use C# for code
samples and Visual Studio 2013 with the Azure SDK for .NET installed.

This book focuses exclusively on Azure Web Apps, not on essential aspects of the Microsoft Azure
platform or the Azure portal. Therefore, it is recommended that the reader have some knowledge of
the Microsoft Azure platform. An excellent resource to gain this knowledge is Microsoft Azure
Essentials: Fundamentals of Azure, which you can download for free from
http://blogs.msdn.com/b/microsoft press/archive/2015/02/03/free-ebook-microsoft-azure-essentials-
fundamentals-of-azure.aspx.

Introduction to Azure Resource Groups

When you create any resource in Azure, you will associate that resource with a new or existing resource
group. Therefore, before creating a resource such as an Azure web app, it is important to understand
Azure Resource Groups.

An Azure Resource Group is a logical container for grouping Azure resources. As an example,
consider a typical website implementation that has a web front end with which users interact and a
database in which to store data. The web front end and the database are individual resources that
comprise the full website solution. An Azure Resource Group gives you a natural way to manage and
monitor resources that comprise a solution. Figure 1-1 is an example of what an Azure Resource Group
could look like for a web application consisting of an Azure web app, Redis Cache, SQL database,
DocumentDB, and an Azure Storage account.

12

http://blogs.msdn.com/b/microsoft_press/archive/2015/02/03/free-ebook-microsoft-azure-essentials-fundamentals-of-azure.aspx
http://blogs.msdn.com/b/microsoft_press/archive/2015/02/03/free-ebook-microsoft-azure-essentials-fundamentals-of-azure.aspx

Azure Resource Group

e

Redis Cache) SQL Database

Azure Storage

Web App E
B @

Document DB Blob Storage Queue Storage

FIGURE 1-1 A hypothetical representation of an Azure Resource Group.

Grouping resources this way helps simplify the implementation, deployment, management, and
monitoring of resources in the resource group. From a billing perspective, it gives you a way to view
costs for the resource group rather than for individual resources, eliminating the need to figure out
which resources are related. You can think of an Azure Resource Group as a unit of management.

The resources in a resource group can span regions if needed. For example, you may have a web
app that is deployed in two or more regions for high availability in the unlikely event that an entire
datacenter were to go down where your app is deployed. In this scenario, each web app could be part
of the same resource group.

A single resource may exist in only one resource group. But it is possible for resources from different
resource groups to be linked. These are referred to as linked resources in the Azure portal. An example
of this could be a SQL database that is shared between web apps in different resource groups. Assume
you have a SQL database named “sqldbl1” that is a resource in a resource group named “resgrpl.”
Now, assume you have a second resource group named “resgrp2” with a web app resource that will
use “sgldbl.” In this example, “sqldbl” will appear as a linked resource in “resgrp2.”

Introduction to App Service Plans

An App Service Plan provides a way for you to define the region and pricing tier (capacity and features)
that can be shared across the app service types, which are Web Apps, Mobile Apps, Logic Apps, and
API Apps. There are five pricing tiers available for Azure App Services:

e Free The Free tier is intended for evaluation purposes; this is why it is free. Web apps in this
tier share machine resources with other web apps from other Azure subscribers. Because the
resources are shared, you have limited daily compute and network bandwidth limits.

e Shared The Shared tier also shares machine resources with other web apps, but the daily
compute and network bandwidth limits are increased. This tier is intended for low-traffic sites
and enables support for a few features, such as custom domains and the ability to scale out to

13

multiple shared instances.

e Basic The Basic tier gives you dedicated machine instances to host your web app and,
therefore, has no daily resource limits. In this tier, you are able to scale up the size of your
dedicated virtual machine to increase the number of cores and RAM. This tier enables
additional Azure Web App features and also is backed by a service level agreement (SLA).

e Standard The Standard tier has all the features of the Basic tier, and it enables all features
available to Azure Web Apps. Features such as autoscale, deployment slots, automated backups,
support for Microsoft Azure Traffic Manager, and more are enabled in this tier.

e Premium The Premium tier (in preview) provides the same set of features as the Standard tier
but with some extra capacity for features such as the number of deployment slots, storage, and
backups. It also enables BizTalk integration capabilities.

For details on the capacity, features, and costs associated with each pricing tier, see
http://azure.microsoft.com/en-us/pricing/details/app-service/.

An Azure web app may exist in a single App Service Plan at any given time. Or when needed, a web
app may be moved to another App Service Plan. This gives you the flexibility of starting your web app
development in an App Service Plan configured for the Free tier and then upgrading to an App Service
Plan configured for a higher pricing tier as your application and development requirements expand.

An App Service Plan can be used for multiple Web Apps, Mobile Apps, Logic Apps, and APl Apps.
For example, you may have a plan that you use for development and testing your web apps that is
configured with less capacity and fewer features. Or you may have a plan that you use for a common
set of customer web apps in a specific region.

At any time, you can change the pricing tier for your App Service Plan. So it is not necessary to
create a new one if you need to move to a higher or lower pricing tier.

Important Changing the pricing tier for an App Service Plan will change the tier for all web apps in
the plan. For example, if you have five web apps running in a plan configured for the Basic tier and
later change the pricing tier to Standard, then all five web apps will be upgraded to run on Standard
Virtual Machines instead of Basic Virtual Machines.

An App Service Plan is a component of Azure Resource Groups, discussed in the previous section. At
first, this may not seem intuitive, but if you think of an Azure web app as a resource in a resource
group and an App Service Plan as a way to define the features and capacity available to your web app,
then the relationship between the two is easier to comprehend. For more information on the
relationship between Azure Resource Groups and App Service Plans, see
http://azure.microsoft.com/en-us/documentation/articles/azure-web-sites-web-hosting-plans-in-

depth-overview/.

14

http://azure.microsoft.com/en-us/pricing/details/app-service/
http://azure.microsoft.com/en-us/documentation/articles/azure-web-sites-web-hosting-plans-in-depth-overview/
http://azure.microsoft.com/en-us/documentation/articles/azure-web-sites-web-hosting-plans-in-depth-overview/

Create an Azure Web App using the Azure portal

The Azure portal at https://portal.azure.com provides a rich user interface to provision and manage
resources in your Azure subscription. In this section, you will create an Azure web app with a SQL
database and then add an Azure Redis Cache to the resource group. After completing the steps, you
will have an Azure web app environment to which you can publish a web application. Publishing a web
application such as an ASP.NET MVC application is covered later in this chapter.

Create a Web App and SQL Database

After signing in to the Azure portal, click the +NEW button in the lower-left corner of the page. In the
Create blade, select the Web + Mobile option. In the Web + Mobile blade, you will see options for
creating various resources in Azure App Service, such as Web Apps, Mobile Apps, Logic Apps, and API

Apps.

Note If your goal is to create just an Azure web app, then you could select the option for Web Apps
where you would have the opportunity to specify an Azure Resource Group and App Service Plan for
the web app.

At the bottom of the Web + Mobile blade, click Azure Marketplace. In the Azure Marketplace,
additional options are available for creating common Azure Web App environments, such as a web
app with a SQL database or a web app with a MySQL database, as shown in Figure 1-2.

Web More

® &

Web app Web app + QL Web app = MySQL

FIGURE 1-2 Web App solutions in the Azure Marketplace.

Tip There are many options for Web Apps you can choose from in the Azure Marketplace that
provide solutions for popular configurations such as blogging sites, frameworks, ASP.NET Starter apps,
and more. The full selection of solutions can be found in the Web Applications section of the
Marketplace at http://azure.microsoft.com/en-us/marketplace/web-applications/. To create a web app
using one of the solutions, click the solution. You will be redirected back to the Azure portal where
you can configure the solution settings for your needs.

Select the Web App + SQL option, which will open a blade describing the resources that this
solution will create and also provides links to relevant resources. Next, click the Create button at the
bottom of the blade to begin configuring the web app and SQL database.

15

https://portal.azure.com/
http://azure.microsoft.com/en-us/marketplace/web-applications/

In the Web App + SQL blade, the first thing you must do is specify the Azure Resource Group name
to create a new resource group. After entering a resource group name, select the Web App (Configure
Required Settings) option to open the Web App blade.

Configure required Web App settings

In the Web App blade, you must specify a globally unique URL for the web app. All web apps are
created in the *.azurewebsites.net domain and, therefore, must be unique to this domain. Later, you
can configure a custom domain you own to map to this URL. For information on configuring custom
domains, see http://azure.microsoft.com/en-us/documentation/articles/web-sites-custom-domain-
name/.

Next, you need to specify an App Service Plan. You can choose an existing plan or create a new one.
To create a new App Service Plan, enter a name in the text box. Creating a new App Service Plan will
unlock the Pricing Tier and Location options in the Web App blade so you can configure those settings.

Click the Pricing Tier option and change it to D1 Shared. If you don't see the D1 Shared option, then
click the View All link in the upper-right corner to show all the pricing tiers.

Click the Location option and select a region close to you.

Tip You can use http://azurespeedtest.azurewebsites.net/ to find the lowest latency region for your
client. The Web App + SQL and Web App blades will look similar to Figure 1-3.

Web app + SQL

Resource Group URL

ContosD v [contesd v]
.azurewebsites.net

WEB APP > CREATE NEW APPSERVICE PLAN
Configure required settings contos0 v
DATABASE > Or select existing
Configure required settings
PRICING TIER >
D1 Shared
SUBSCRIPTION >
Azure Pass
LOCATION >

South Central US

| Add to Startboard

FIGURE 1-3 Web App + SQL blade and Web App blade.

|

16

http://azure.microsoft.com/en-us/documentation/articles/web-sites-custom-domain-name/
http://azure.microsoft.com/en-us/documentation/articles/web-sites-custom-domain-name/
http://azurespeedtest.azurewebsites.net/

Apply the required Web App settings by clicking the OK button at the bottom of the Web App
blade. This will close the Web App blade and take you back to the Web App + SQL blade.

Configure required SQL Database settings

In the Web App + SQL blade, select the Database (Configure Required Settings) option to open the
Database blade. If you have an existing SQL database, then you will have the option to select an
existing database or create a new database. If you are presented with this option, select the option to
create a new database, which will open the New Database blade.

Note Selecting an existing SQL database would result in the SQL database appearing as a “Linked”
resource in the Summary section of the Azure Resource Group blade.

In the New Database blade, specify the name of the new SQL database you will create. Optionally,
you may choose to change the Pricing Tier for your Database (not the web app) and Collation settings.

Next, select the Server (Configure Required Settings) option to open the New Server blade. In the
New Server blade, specify a name for the server in which your database will be created and provide
server admin credentials you later can use to sign in and manage the server.

The New Database blade and New Server blade will look similar to Figure 1-4.

New database New server

Name SERVER NAME

contos(-db -f‘ | contos0-server \/l
.database.windows.net

PRICING TIER > SERVER ADMIN LOGIN

Standard S0 [sdminuser 7]

COLLATION
SQL_Latin1_General CP1_CI_AS

SERVER 5
Configure required settings

LOCATION >
South Central US

CREATE VW12 SERVER (LATEST UPDATE)
ALLOW AZURE SERVICES TO ACCESS SERVER

oK
| A |

FIGURE 1-4 New Database blade and New Server blade.

17

Apply the required server settings by clicking the OK button at the bottom of the New Server blade.
This will close the New Server blade and take you back to the New Database blade.

Apply the new database settings by clicking the OK button at the bottom of the New Database
blade. This will close the New Database blade and take you back to the Web App + SQL blade.

The Create button at the bottom of the Web App + SQL blade will be enabled after all the required
settings described above have been applied. Click the Create button to create the Web App and SQL
database.

After a moment, the Azure Web App and SQL database (and server) will be provisioned and the
Azure portal will open the Resource Group blade the resources were created in. In the Summary part of
the blade, you can see all the resources that were created in the resource group, which will look similar
to Figure 1-5.

Contos0
W o

Delete

Essentials v A AR 0

Summary
[’] Contos(0

contasD Q contos0 @ contos0-db

0 linked resources

FIGURE 1-5 Summary part of the Resource Group blade.

Notice that an Application Insights resource was added by default in addition to the Azure Web
App and SQL database resources. Application Insights is used to surface critical metrics from your web
app that can be used for monitoring and troubleshooting. Application Insights will be discussed in
Chapter 4, "Monitoring and diagnostics.”

If you scroll through the blade, you will see web parts for monitoring, billing, and configuring alerts
for the resource group. As you can see, the Resource Group blade provides the unit of management
that enables you to drill down into the individual resources and apply resource-specific configuration
settings.

18

Add an Azure Redis Cache to the Azure Resource Group

Many web apps will leverage caching to improve performance. For applications that need caching,
Azure provides a fully managed Redis Cache as a service. The Azure Redis Cache is based on the
popular open source Redis Cache that is a distributed, in-memory cache service. It provides a level of
performance and features unmatched by previous cache offerings in a way that is easy to use. You can
learn more about this service at http://azure.microsoft.com/en-us/services/cache/.

You can add an Azure Redis Cache in the Resource Group blade by clicking the Add button at the
top of the blade, as shown in Figure 1-6.

Contos0
LT RESOURCE GROUP

L + Lo}

Settings Add Delete

FIGURE 1-6 Azure Resource Group toolbar.

In the New Resource blade, select the Redis Cache option from the list of resources, which will look
similar to Figure 1-7. Selecting this option will open a Redis Cache blade describing the services, pricing
tiers, uses for the cache, and links to relevant resources. Click the Create button at the bottom of the
Redis Cache blade to begin configuring the resource.

Redis Cache

Microsoft

FIGURE 1-7 Azure Redis Cache resource option.

In the New Redis Cache blade, enter a globally unique DNS name for your cache, choose a pricing
tier, and choose a location. The Resource Group and Subscription will appear locked in the blade
because the Redis Cache is being added to the current resource group. The New Redis Cache blade will
look similar to Figure 1-8.

19

http://azure.microsoft.com/en-us/services/cache/

New Redis Cache

DNS name
contosd v]
redis.cache.windows.net

PRICING TIER >

Standard: 1 GB

RESOURCE GROUP a8
Contos0

SUBSCRIPTION a8
Azure Pass

LOCATION >

South Central US

| Add to Startboard

Create

FIGURE 1-8 The New Redis Cache blade.

After adding the Redis Cache, you may not see the new resource in the Summary part of the
Resource Group blade as you did with other resources shown in Figure 1-5. However, if you look
closely at the Resource Group icon in the Summary part, you will see the total number of resources in
the resource group under the name. Clicking the Resource Group icon will open the Resources blade,
where you can see all the resources in the resource group, including the Redis Cache, as shown in
Figure 1-9.

fte)
NAME RESOURCE GROUP DESCRIPTION STATUS
PEER RESOURCES
= contos0 Contos® A redis cache [
@ contos0 Contos0 Application Insights
(5o} contos0-db Contos0 5QL Database []
contos0 Contos® Web app [

FIGURE 1-9 Resources blade.

20

Create an Azure Web App using Visual Studio

There are several ways to create a web app by using Visual Studio. For simple Dev/Test scenarios where
you just want to quickly create an Azure web app environment and provision some resources, the
Server Explorer window in Visual Studio can be very handy. It provides features for provisioning and
managing resources in your Azure subscription from within your native development environment. It
doesn't offer the same level of management capabilities the Azure portal does, but for the resources
for which it does provide management capabilities, it is a significant time saver. Using Server Explorer
to create a web app produces a web app environment to which you can publish a web application
later.

Another approach for creating web apps is to use the ASP.NET Web Application template to create
a new web application project. This is the experience ASP.NET developers have become very familiar
with in recent years for starting web application development. With the Azure SDK Tools installed, this
template also enables you to target Web Apps or Virtual Machines when hosting in Azure. Taking this
approach to create a web app produces a web app environment and a web application project with
the configuration needed to publish the web application to the host environment.

Perhaps the most feature-rich approach to creating a web app is to use the Cloud Deployment
Project template to create your new web application project. This template further exposes the notion
of Azure Resource Groups when creating a new project by producing both a web application project
and a deployment project in the solution. The deployment project leverages the Azure Resource
Manager to create the web app environment for your web application and includes Windows
PowerShell scripts and JSON files describing the environment that you can use to automate the
deployment to Azure.

Note You can download the Azure SDK Tools from http://azure.microsoft.com/en-us/downloads/.
Under the SDK section, you can download language-specific SDKs and tools for your development
environment. The steps demonstrated in this section are based on version 2.5.1 of Azure SDK Tools.

This section will discuss each of these techniques for creating an Azure web app using Visual Studio.

Create a Web App by using Server Explorer

The Server Explorer window in Visual Studio brings certain management capabilities directly into your
Visual Studio environment. This is useful particularly in Dev/Test environments where you just want to
provision some resources and quickly start developing or testing ideas without leaving your
development environment.

Note If Server Explorer is not visible, you can open it from the main menu by selecting View > Server
Explorer.

21

http://azure.microsoft.com/en-us/downloads/

To use the Server Explorer with your Azure Subscription, you must first connect it to your Azure
Subscription. Do this by right-clicking the Azure icon and selecting the option to Connect To Microsoft
Azure Subscription, as shown in Figure 1-10.

Server Explorer 3 x
[} ¥wialpk
4 %) Azure (1 subscriptions)

P & App Service @ Refresh

> & Cloud Services
HDinsight Connect to Microsoft Azure Subscription...
(L) Mobile Services Manage and Filter Subscriptions..

& Notification Hubs
@ Service Bus

oM SQL Databases

P ¥ Storage

[Virtual Machines
¥ Data Connections

FIGURE 1-10 Connect Server Explorer to your Microsoft Azure Subscription.

Open "Getting Started” page..

When prompted to sign in to your Azure Subscription, use the same credentials you use to sign in
to the Azure portal. After successfully authenticating, the Azure node in Server Explorer will display
resources from each of your Azure Subscriptions.

If you have multiple subscriptions associated with your account, then you may want to filter the
resources shown in the Azure node to a single subscription with which you are working. You can do
this by right-clicking the Azure node in Server Explorer and selecting the option to Manage
Subscriptions. This opens a dialogue where you can select the subscriptions and regions for which you
want to filter Server Explorer’s user interface, as shown in Figure 1-11.

Manage accounts and certificates that authorize Visual Studio to work with your Microsoft Azure
subscriptions.

Subscriptions (4) Regions (13) | Certificates (1)
Signed in as: rick@cloudalloc.com Sign out

|| MSDN - Rick (hotmail)
Subscription ID:

User Account: | fick@cloudalloc.com -

[¥] Azure Pass

Subscription ID:

User Account: rick@cloudalloc.com
|| Pay-As-You-Go

Subscription ID:

User Account: | fick@cloudalloc.com v

Close

FIGURE 1-11 Dialog in Visual Studio for managing Azure Subscription settings.
To create a new web app and, optionally, a SQL database using Server Explorer, right-click the App

Service node and select the option Create New Site. This will open a single page dialog where you can
specify settings for the web app, as shown in Figure 1-12.

22

n Create a Web App on Microsoft Azure Learn more

‘ Sign Out | Signed in as rick@cloudalloc.com

Web App name; contos0 (/]
-azurewebsites.net

Subscription: MCT

App Service plan: Create new App Service plan v
contos0

Resource group: Create new resource group v
contos0-group

Region: South Central US -

Database server. Create new server

Database server: contos0-server

Database username: adminuser
Database password: ssssssnane
Confirm password: CLLLITITTTS

If you have removed your spending limit or you are using Pay As You Go, there
may be monetary impact if you provision additional resources. legal terms

FIGURE 1-12 Create an Azure Web App from Server Explorer in Visual Studio.

Because there are few options for configuring the web app and SQL database, you should expect
some limitations when taking this approach. Some of these limitations are as follows:

e For the App Service Plan, you have the option to select an existing plan or to specify the name
to create a new plan. If you choose to create a new plan, the pricing tier will default to F1 Free.
You later can change this to a pricing tier appropriate for your needs.

e Although you have the option to specify the Database Server name or select an existing server,
the name of the SQL database will be set for you and defaults to <web app name>_db, where
<web app name> is the web app name specified at the top of the dialog. This cannot be
changed.

e You cannot specify the tier for your SQL database if you choose to create one. You later can
change this to an appropriate tier.

e ltis assumed that if you want a database, you want an Azure SQL database. In other words,
there is not an option to select a MySQL database. You would need to use the Azure portal if
you want a MySQL database.

e There is no option to add an Azure Redis Cache. But as demonstrated earlier, you can add an
Azure Redis Cache later by using the Azure portal.

23

The main reason for showing this technique is to introduce you to Server Explorer, connect it to
your Azure subscription, and then demonstrate how to create an Azure web app environment. Server
Explorer will be referenced throughout the text, so having it connected to your Azure subscription will
facilitate those topics later.

Create a Web App by using the ASP.NET Web Application
template

Web application development traditionally starts with the developer going through the New ASP.NET
Web Application Project Wizard in Visual Studio and selecting from a number of available templates.
This experience is enhanced when the Azure SDK Tools for Visual Studio are installed, which enable you
to configure and provision your Azure web app resources as you progress through the wizard.

To begin, from the Visual Studio main menu select File > New > Project.

In the New Project dialog, expand the Templates node on the left and click the Cloud node to view
the available cloud templates. From the list of templates, select the ASP.NET Web Application template.
The New Project dialog will look similar to Figure 1-13.

b Recent NET framework45 = | Sort by: | Default

un

pes e

n rick@cioudalloccom
Agure Pass

WebApp

Location: EA\Visual Studio 2013\Projects - Browse...

Solution name: ContosOWebApp V| Create directory for solution
Add to source control

oK Cancel |

FIGURE 1-13 Create a new ASP.NET Web Application project.

If you select the option for Application Insights, then code and configuration are added to the
project to capture telemetry data. This will be covered in more detail in the Application Insights section
of Chapter 4.

Application Insights can be added to a web app later, so unchecking it does not prevent you from
taking advantage of this feature later.

On the next page in the New Project Wizard, you can select from the many ASP.NET project

24

templates, such as the MVC template. With the Azure SDK Tools installed, the wizard allows you to
change the authentication and Azure hosting options, as shown in Figure 1-14.

Select a template:

= =<3 = =<7 ASP.NET MVC allows you to build applications using the
e-l e-] Q—] @—I Model-View-Controller architecture. ASP.NET MVC
Empty ‘Web Forms MVC Web API includes many features that enable fast, test-driven
development for creating applications that use the latest
(] =<3 (it | =y standards.
e_l o @_] @_]
Single Page Azure APl App Azure Mobile Azure Mobile Learn more

Application (Preview) App (Preview) Service

Add folders and core references for: 8 Microsoft Azure
| Web Forms & MVC [] Web API (&) & Hostin the cloud
Web App

__| Add unit tests

Wen App jalloc.com
Test projectname: | Contos0O.WebApp Test: Virtual Machine

A project template for creating ASP.NET MVC applications.

[Change Authentication

Authentication: Individual User Accounts.

oK Cancel

FIGURE 1-14 New ASP.NET Project templates for Visual Studio.

The authentication option defaults to Individual User Accounts, but you can change this by clicking
the Change Authentication button. The authentication options are as follows:

No Authentication For applications that do not require users to sign in.

Individual User Accounts For applications that will store user profiles in a SQL database. This
option also adds code to the project to support users registering and signing in using social
networking accounts such as Facebook, Twitter, Google, and Microsoft. This option uses
Microsoft's Open Web Interface for .NET (OWIN) implementation, OAuth 2.0, and cookie-based
authentication to authenticate users. You can learn more about OWIN at http://owin.org/.

Work And School Accounts For applications that will authenticate users against Active
Directory, Azure Active Directory, or Office 365. Choosing this option enables you to specify the
domain name for the organization and directory access permissions. This option uses an OWIN
implementation of OpenID Connect and JSON Web Token (JWT) tokens when authenticating
users.

Windows Authentication For applications running in a traditional intranet environment. This
option uses an OWIN implementation supporting Kerberos and NTLM protocols when
authenticating users.

Selecting the option to Host In The Cloud using Microsoft Azure enables you to host your
application using a Microsoft Azure Web App or Microsoft Azure Virtual Machine. The latter is similar

25

http://owin.org/

to what you may be used to in an on-premises environment where you have a cluster of servers (or
virtual machines) running IIS that you want to run your application on. This is different from the Azure
Web App option, which does not require you to manage the virtual machine. In other words, the Azure
Web App option is a platform-as-a-Service (PaaS) approach, and the Virtual Machine option is an
infrastructure-as-a-service (laaS) approach to hosting your web application.

The last page in the New Project Wizard is the same as referenced in Figure 1-12. On this page, you
can specify settings for the URL, Subscription, App Service Plan name, Resource Group name, Region,
and SQL database credentials.

After completing the New Project Wizard, you will have a fully functioning ASP.NET MVC
application that you can run locally. If you selected the option to Host In The Cloud with Azure Web
Apps, then your web app environment also has been created in Azure and your solution has the
information it needs to publish the application to that web app environment.

Publish from Visual Studio

When you are ready to publish the application, right-click the ASP.NET project in Solution Explorer and
select the Publish option. Alternatively, you can select Build > Publish <your project name> from the
main menu.

Create a Web App using the Azure Resource Group template

The Azure Resource Group template is relatively new. It was introduced in version 2.6 of the Azure SDK
tools. This template contains JSON files (templates) used by the Azure Resource Manager to describe
your resources and the resource group in which they are contained. It also includes a Windows
PowerShell script you can use to automate creating the resources, making it easy to redeploy to
multiple environments. And if you want the project to deploy artifacts such as an ASP.NET MVC Web
Application project to your web app resource, you have the option to do so.

Important The Azure Resource Group project template uses Windows PowerShell scripts to
communicate with the Azure Resource Manager when provisioning and deploying your resource
group and resources. These scripts are executed from your local computer. Therefore, unless you have
already done so, you will need to set your Windows PowerShell execution policy on your computer to
allow Visual Studio to run the scripts. You can do this from the Windows PowerShell ISE or Windows
PowerShell console using the following command: Set-ExecutionPolicy-ExecutionPolicy
RemoteSigned-Force. For more information on this command, see https://technet.microsoft.com/en-
us/library/hh849812.aspx.

Create an Azure Resource Group project

To begin, from the Visual Studio main menu select File > New > Project. In the New Project dialog,
expand the Templates node on the left and click the Cloud node to view the available cloud templates.
From the list of templates, select the Azure Resource Group template. The New Project dialog will look

26

https://technet.microsoft.com/en-us/library/hh849812.aspx
https://technet.microsoft.com/en-us/library/hh849812.aspx

similar to Figure 1-15.

¥ Recent NET Framework 45 = | Sort by: | Default - ' alled Te P
4 Installed
€5 Auure Cloud Service Visual C# Type: Visual C#
4 Templates ; This template creates an Azure Resource
4 Visual C# .'-I_] ASPNET Web Application Visual C# Group deployment project. The
¥ Store Apps depioyment project will contain artifacts
- Deeded to Drovision AZUre resources using
Windows Desktop A2yt Wbkl e Azure Resource Manager that will create
b Web an environment for your application.
b Infragistics
Reporting ED Azure Mobile Service Visual C#
Silverlight
Test Az Visual C#
¥ Oniine
Click here 10 go online and find templates

FIGURE 1-15 New Azure Resource Group template.

The next page in the New Project Wizard displays templates for common cloud configurations. At
the top of the list are templates to create a Web App and Web App + SQL Database. To demonstrate
how to create the environment from the previous section using the Azure portal, select Web App +
SQL, as shown in Figure 1-16, and click OK.

x
- Web app + SQL
Web aj
@ P By Microsoft
MICROSOFT
Enjoy secure and flexible development, deployment, and
B Web app + SQL scaling options for your web app plus a SQL database,
% MICROSOFT
VERSION: 0.2.15-preview
E Windows Virtual Machine
MICROSOFY Create and deploy web apps in seconds, as
Windows Server Virtual Machines powe las you.n them
ICIf with Load Balancer - - i
— MICROSOFT Leverage your existing tools to create and deploy applications without the hassle
of managing infrastructure. App Service web apps offers secure and flexible
E development, deployment, and scaling options for any sized web application.
@ Logic App Use frameworks and templates to create web apps in seconds. Choose from
MICROSOFT source control options like TFS, GitHub, and BitBucket. Use any tool or 05 to
develop your app with .NET, PHP, Mode,js or Python.
Logic App and APl App
MICROSOFT Use this Azure template to create a Web app and SQL Database together to start
developing even faster.
BRI Docker on Ubuntu Server ® Fastest way to build for the cloud
CANONICAL + MS OPEN TECH « Provision and deploy fast
® Secure platform that scales automatically
Ubuntu Server Great experience for Visual Studio developers
(G \osorr + Open and flexible for everyone
* Monitor, alert, and auto scale {preview)
[|

FIGURE 1-16 Dialog to select an Azure Resource Group template.
Visual Studio will create a single Azure Resource Group project that you will be able to see in the

Solution Explorer window. Expand the folders in the deployment project to view the contents, as shown
in Figure 1-17.

27

4

4

Solution Explorer * B x

R o--85 &=

P~

| &7 Solution ‘Contos0' (1 project)
4 ¥ Contos0
=8 References

Scripts

« Deploy-AzureResourceGroup.ps1
Templates
&J WebsSiteSQLDatabase json
&J WebsiteSQLDatabase.param.dev.json
Tools

) AzCopy.exe

FIGURE 1-17 Solution Explorer with an Azure Resource Group project.

The contents of the deployment project are grouped in folders as follows:

Scripts This folder contains a Windows PowerShell script that is used to fully automate
creating the web app environment. If you open the script and look near the bottom of the
script, you will see that it calls the Azure PowerShell command New-AzureResourceGroup to
create the resource group and resources (web app and SQL database).

Templates This folder contains two JSON files. The WebSiteSQLDatabase json file describes the
Azure Resource Group and Azure Resources (web app and SQL database) that the Azure
Resource Manager will use to provision the web app environment. The
WebSiteSQLDatabase.param.dev.json file is a parameters file that defines resource-specific
parameters.

Tools This folder contains a copy of AzCopy.exe and is used to copy files to an Azure Storage
Account used during deployment. This is only used if you plan to deploy project artifacts such
as an ASP.NET MVC Web Application using this deployment script in the Scripts folder.

See Also PowerShell tools for Visual Studio 2013 and Visual Studio 2015 are available that enable you to
develop and debug PowerShell scripts directly in your Visual Studio environment. If you install the PowerShell
Tools for Visual Studio, you also get syntax highlighting, brace matching, and IntelliSense, making it easier to
read and edit PowerShell scripts. To learn more about the PowerShell Tools for Visual Studio and to install
them, see https.//visualstudiogallery.msdn.microsoft.com/c9eb3ba8-0c59-4944-9a62-6eee37294597.

Add a resource to a resource group

You can add additional resources, such as an Azure Redis Cache, to the resource group by editing the
JSON template. To demonstrate this, double-click the WebSiteSQLDatabase.json file to open it in the
Visual Studio editor. This file is structured into two sections: resources (web app, SQL database, etc.)
and parameters used to configure the resources. Figure 1-18 shows the two sections collapsed in the
Visual Studio editor.

28

https://visualstudiogallery.msdn.microsoft.com/c9eb3ba8-0c59-4944-9a62-6eee37294597

WebSiteSQLDatabasejson # X
http://schema.management azure.com/schemas/2015-01-01/deploymentTemplate json#
=

“http://schema. t.azure.com/schemas/2015-81-81/deploymentTemplate. json#”,
= *l.peen,

FIGURE 1-18 Azure resource group deployment template.

If you expand the resources section, you see the JSON descriptions of the resources for this
template, which include the web app, SQL database, application insights, and more. Adding a resource
such as an Azure Redis Cache involves adding the JSON description of the resource to the resources
section of the file. Fortunately, Visual Studio provides a Ul tool to do this called JSON Outline. Open
this by selecting View > Other Windows > JSON Outline from the Visual Studio menu. The JSON
Outline will appear as shown in Figure 1-19.

JSON Outline -3 x
®

£} parameters (14)
4

&, SqiServer
. HostingPlan
% Website
& AutoScaleSettings
@ ServerErmorsAlertRule
@ rorbiddenRequestsAlertRule
@ CPUHighAlertRule
@ AutoScaleSettings
& AppinsightsComponent

FIGURE 1-19 JSON Outline window showing resources from the resource group deployment template.

Notice the resources described in the deployment file are visualized in the JSON Outline window. To
add an Azure Redis Cache, right-click the resources node and select Add New Resource. Scroll down
the list of resource types and select the Redis Cache resource. Specify a name for the resource and click
Add as shown in Figure 1-20.

Redis Cache
Creates a Redis Cache.

1 PowerShell DSC
L Extension

Public IP Address

Contos0

SQL Database

SQL Database Import

L

° Redis Cache Name:

[

@_ SQL Server
M

FIGURE 1-20 Add a resource to an Azure Resource Group project.
29

If you expand the resources section of the JSON deployment template file, you will see the resource
description for the Redis Cache near the end of the section, as shown in Figure 1-21.

}

FIGURE 1-21 JSON description of an Azure Redis Cache.

Note If you want to remove a resource from a deployment template, you can do so using the JSON
Outline window. Right-click on the resource you want to remove and select Delete. This will delete the
resource in the resources section of the file.

Press Ctrl+S to save the changes to the JSON deployment template.

See Also For more information about editing resource manager deployment templates using the JSSON Editor
and JSON Outline, see the Azure SDK 2.6 announcement at
http.//azure.microsoft.com/blog/2015/04/29/announcing-the-azure-sdk-2-6-for-net/.

Deploy a resource group using Visual Studio

The Deploy-AzureResourceGroup.psl PowerShell script is used to deploy your resources to Azure. It
creates an Azure Resource Group and then sends the deployment template file and template
parameter file (the two JSON files) to the Azure Resource Manager (ARM). ARM then takes this
information and provisions the resources in Azure. You can run this deployment script from a Windows
PowerShell console or you can invoke it directly from Visual Studio.

To demonstrate deploying from Visual Studio, right-click on the project and select Deploy > New
Deployment. A dialog to deploy to a resource group will be displayed, as shown in Figure 1-22.

30

http://azure.microsoft.com/blog/2015/04/29/announcing-the-azure-sdk-2-6-for-net/

Signed in as: rick@cloudalloc.com l Sign Out

Subscription:
Azure Pass (rick®cloudalloc.com) L

Resource group:

Deployment template:
websitesgldatabase json v

Template parameters file:

websitesgldatabase.param.dev.json - | Edit Parameters...

Artifact storage account

How do | deploy project artifacts with an Azure deployment template?

—
| Cancel

FIGURE 1-22 Deploy to Azure Resource Group.

In the Resource group field, you can choose an existing resource group to deploy to or create a new
resource group. Select the option <Create New...>. This will open another dialog where you can
specify the resource group name and region for the new resource group, as shown in Figure 1-23. Click
Create to create the resource group and return to the previous dialog.

Signed in as: rick@cloudalloc.com

Subscription:
Azure Pass (rick@cloudalloc.com)
Resource group name:
Contos0
Resaurce group location:

South Central US v

| Create || Cancel

FIGURE 1-23 Create a new Azure Resource Group.

In the Deploy to Resource Group dialog, the fields for Deployment template and Template
parameters file default to the two JSON files discussed earlier and, therefore, usually won't need to be
changed.

Tip You can create different template parameter files for different environments, enabling you to
automate the deployment to multiple environments.

The template parameters file in the Templates folder of the deployment project is where resource-
specific settings for your deployment are stored. Because this is the first deployment, you must specify
required settings that have not been provided yet. Click the Edit Parameters button. This will open the
Edit Parameters dialog, as shown in Figure 1-24.

31

The following parameter values will be used for this deployment:

Parameter Name Value
siteName null
hostingPlanName null

siteLocation <null>

sku Free -
workerSize 0 i
serverName null

serverLocation null

administratorLogin null
administratorLoginPassword <null>

databaseName <null>

collation SQL Latin1_General CP1_CI AS
edition Web

maxSizeBytes 1073741824
requestedServiceObjectiveld 910b4fcb-8a29-4c3e-9581-77ba79438
ContosOName null

ContosOLocation nul

ContosOSKUName Standard h.d
Contos0SKUFamily C >
ContosOSKUCapacity 0 4
ContosORedisVersion 28 -

] Save passwords

[sme][comen |

FIGURE 1-24 Missing parameters from the deployment template parameters JSON file.

The required parameters that need to be specified have a <null> value. Others have default values
that you can change to meet your needs.

Note Location parameters such as siteLocation have to be typed instead of selected from a
dropdown menu. Be careful to enter the location text exactly as Azure expects or you will have
problems with your deployment. You can get the Azure region names and services available in each
region at http://azure.microsoft.com/en-us/regions/#services.

After you fill in the required parameters, the Edit Parameters dialog will look similar to Figure 1-25.

32

http://azure.microsoft.com/en-us/regions/#services

Parameter Name
siteName
hostingPlanName
siteLocation

sku

workerSize
serverName
serverLocation
administratorLogin
administratorLoginPassword
databaseName
collation

edition
maxSizeBytes
requestedServiceObjectiveld
ContosOName
ContosOLocation
ContosOSKUName
ContosOSKUFamily
Contos0SKUCapacity
ContosDRedisVersion

W] Save passwords

The following parameter values will be used for this deployment:

Value
contosd
‘contos0
South Central US
Basic
0
contos0-srv
South Central US
adminuser
ssessness
‘contos0-db
SQL_Latin1_General CP1_CIAS
Web
1073741824
910b4fcb-8a29-4c3e-958f-f7ba79438
contas0
South Central US
Standard
C
0
28

< [« &

" Cancel

FIGURE 1-25 Parameters filled in to store in the deployment template parameters JSON file.

Click Save to save the changes to the template parameters file. The parameters entered in Figure 1-
25 are stored in the JSON file named WebSiteSQLDatabase.param.dev.json in the Template folder of
the project. At any time, you can go back and edit these values using the Visual Studio JSON editor or

by using the Edit
In the Deploy
will display loggi

template. Figure
provisioned.

Parameters dialog.

to Resource Group dialog, click Deploy to start the deployment. The Output window
ng as the resource group and resources are provisioned in Azure. The time it takes to
deploy will depend on the number of resources and types of resources described in your deployment
1-26 shows a brief section of the logging in the Output window as the resources are

Output

Show output from: | Contos0 Deployment

10:35:25 - VERBOSE: 10:35:25 AM -
10:35:26 - VERBOSE: 10:35:26 MM -
- VERBOSE: 10:35:26 A -
- VERBOSE: 10:35:33 AM -
- VERBOSE: 10:35:33 AM -
10:35:35 - VERBOSE: 10:35:35 AM -
10:35:35 - status is succeeded
10:35:38 - VERBOSE: 10:35:38 AM -
10:35:38 - VERBOSE: 10:35:38 AM -
10:35:38 - succeeded
10:35:38 - VERBOSE: 10:35:38 MM -
10:35:40 - VERBOSE: 10:35:40 MM -
10:35:40 - VERBOSE: 10:35:40 AM -
10:35:40 - VERBOSE: 10:35:40 AW -
10:35:40 - VERSOSE: 10:35:40 AM -
10:35:42 - VERSOSE: 10:35:42 M -

FIGURE 1-26 Output window showing resource group deployment logging during deployment.

Tip If you don't see the Output window in Visual Studio, select View > Output from the main menu.

After a few mi

E
Created resource group "Contos@’ in location 'southcentralus’
Template is valid.
Create tesplate deployment "websitesqldatabase’.
Resource Microsoft.Sql/servers 'contos-srv' provisioning status is succeeded
Resource Microsoft.Web/serverfarms “contosd’ provisioning status is succeeded
Resource Microsoft.Sql/servers/firewallrules °contos-srv/AllowAllWindowsAzurelps® provisioning

Resource Microsoft.Web/sites/config 'contosd/web’ provisioning status is succeeded
Resource Microsoft.Sql/server: *contose- " pre

status 1s

Resource Microsoft.Web/sites ‘contos@’ provisioning status is succeeded

Resource Microsoft. Insights/autoscalesettings ‘contosd-Contos@’ provisioning status is succeeded
Resource Microsoft. Insigh *contose” status is succeeded

Resource Microsoft. Insights/alertrules ‘LonghttpQueve contosd’ provisioning status is succeeded
Resource Microsoft.Cache/Redis ‘contosd’ provisioning status is running

Resource Microsoft. Insights/alertrules *CPUHigh contosd’ provisioning status is succeeded

nutes, you will have a resource group provisioned that contains an Azure web app,
SQL database, Azure Redis Cache, and Application Insights. To verify, open the Azure portal in your

33

browser and select Browse > Resource Groups. Click on the resource group you just created and
explore the resources in the group. You will see the same resources that you saw earlier in the chapter
in Figure 1-9.

See Also For a detailed walkthrough creating and deploying Azure Resource Groups using the Azure
Resource Group project template see https.//msdn.microsoft.com/en-us/library/azure/dn872471.aspx.

Connection strings and application settings

In the past, it was common practice to store application settings and connection strings in the
web.config file for an application. This led to another common practice: encrypting portions of the
web.config file that contained sensitive information. This doesn't address the problem of having
sensitive information checked into your source control system that your entire development team has
access to.

Azure Web Apps offers a better solution whereby your application settings and connection strings
can be stored in the web app environment and then retrieved by your application at runtime. This
technique avoids the problems described above and offers some additional benefits. For example, your
Dev/Test environment should be configured to use different resources (databases, non-production web
services, and so on) from your production environment. By storing these settings in the environment,
you can publish your application to different environments, knowing that it will be using the correct
resource for each environment. In addition, you won’t have to modify configuration files or perform
configuration transforms when publishing the application to different environments. And, by using
Role Based Access Control (RBAC), you can restrict access to the production environment to essential
personnel who should have access to that environment. RBAC is discussed later in this chapter.

Set connection strings and app settings in the environment

The Cloud Deployment Project templates for Azure Web Apps take full advantage of this feature for
you. If you look in the web.config file for the ASP.NET project, you will see the connection string for the
LocalDB that is used for local development and testing. But you will not find connection string
information for the SQL database that was provisioned because the templates stored it in your Azure
web app environment. To see this, expand the App Service node in Server Explorer so you can see the
web app that was created earlier. Right-click the web app and select the option to View Settings, as
shown in Figure 1-27.

34

https://msdn.microsoft.com/en-us/library/azure/dn872471.aspx

Server Explorer
Q ¥eialk

4 @ App Service
4 @ Contosd

4 & Azure (Filtered - 1 subscriptions)

2 x

| T
b @ Default-Weo| &

b & Cloud Services | &

b #* HDInsight o

& [Mobile Services

P & Notification Hub

P @ Service Bus

4 B S0l Databases

Refresh

View in Browser
View Settings

Attach Debugger
View Streaming Logs

Stop

W contos0-db
¥ Storage -
b b Virtual Machines
& Data Connections | g,
b & Servers

Open in Management Portal

Download Publish Profile

Properties Alt+Enter

FIGURE 1-27 Access the Web App settings from Server Explorer.

In the Settings window, you can edit the configuration for the web app by clicking the
Configuration tab on the left of the window. The Configuration tab is divided into sections for Web
App Settings, Connection Strings, and Application Settings. Scroll down to the Connection Strings
section to see the connection string for the SQL database provisioned in Azure, as shown in Figure 1-
28.

Connection Strings

Name Connection String Database Type

DefaultConnection Data Source=tcpicontas-srv.databasewindows.net 1433:Initial Catalog=contos0-dbiUser | SQL Azure

Add

FIGURE 1-28 Connection Strings for Azure Web App.

Notice that the name of the connection string is the same as the name of the connection string in
web.config for the LocalDB. This is intentional because connection strings and app settings defined in
the environment will override settings of the same name defined in web.config. So when you are
developing locally, the connection string to your LocalDB in web.config is used, but when the
application is deployed and running in Azure, the connection string defined in the environment is
used.

Another thing to notice is the value in the Database Type column, which is set to SQL Azure. This
indicates that a SQL Azure database is the database the connection string is intended to be used for.

Note The SQL Azure database type is carried over from earlier brandings of what today is referred to
as SQL Database. The Visual Studio tools still use this name, but the Azure portal correctly displays SQL
Database as the name for this database type.

There are four database types as follows:

35

e SQL Azure / SQL Database Indicates the connection string is for a SQL database.

e SQL Server Indicates the connection string is for a SQL server such as an Azure Virtual
Machine (or cluster) running SQL Server.

e MySQL Indicates the connection string is for a MySQL database.

e Custom A connection string to essentially any storage resource. For example, you could store
the connection string the Azure Storage Client Libraries use for connecting to an Azure Storage
account.

The Application Settings section essentially works the same as the Connection Strings section,
except that this section is used to specify key/value pair settings that normally would be in the
<appSettings> section of the web.config. This could be useful, for example, when storing the Redis
Cache access key and endpoint address for the web app to use. To do this, click the Add button in the
Application Settings section and add a key/value pair for the Redis Cache access key and another for
the cache endpoint. The Name for the key/value pair can be any string you want. The Value can be
retrieved from the Azure portal. Figure 1-29 shows what this section may look like.

Application Settings

Name Value
WEBSITE_NODE_DEFAULT_VERSION 01032
RedisAccessKey 6e7LyVUrgiU3k3ZCIrONSASmS 1 pnwWm/sLsBDjT +jM=

RedisEndpoint contos0.redis.cache.windows.net

Add Remove

FIGURE 1-29 Application Settings for Azure Web App.

After adding your settings, remember to click the Save button in your Visual Studio toolbar or press
Ctrl+S. This will apply the settings to the web app environment in Azure.

Retrieve connection strings and app settings from the
environment

In your application code, you can retrieve the connection strings and app settings by using the
ConfigurationManager class. If you are running your application locally, it will retrieve the values for
connection strings and app settings from your configuration files. If you are running the application in
Azure, it will retrieve the values for connection strings and app settings from the environment. Using
the settings from the previous section, you could have static variables defined somewhere in your
application, as shown in Listing 1-1.

LISTING 1-1 Static variables to identify connection string and app setting key/value pairs.

// Name of app setting

36

private static string redisAccessKey = "RedisAccessKey";
private static string redisEndpoint = "RedisEndpoint";

// Name of connection string setting
private static string defaultConnection = "DefaultConnection";

Then, using ConfigurationManager, you can retrieve the values, as shown in Listing 1-2.

LISTING 1-2 Retrieve connection string and app setting values.

// Get app settings
string redisAccessKeyValue = ConfigurationManager.AppSettings[redisAccessKey];
string rediEndpointValue = ConfigurationManager.AppSettings[redisEndpoint];

// Get connection string
string contosoDbConnStr =
ConfigurationManager.ConnectionStrings[defaultConnection].ConnectionString;

It is important to note that this strategy works only if you use the same names for connection
strings and app settings in your configuration files as you do in your web app environment. When you
do, the Azure web app environment setting will take precedence over a setting of the same name in a
configuration file. If the setting is not defined in the web app environment, then
ConfigurationManager will return the value from the configuration file if it has been set.

As mentioned earlier in this section, storing sensitive data in web.config is not recommended.
Guidance on storing and deploying sensitive data for ASP.NET Applications to Azure is available at
http://www.asp.net/identity/overview/features-api/best-practices-for-deploying-passwords-and-other-

sensitive-data-to-aspnet-and-azure. The technique described in this guidance recommends moving

the connection strings and app settings to external files that are referenced from the web.config file
and then never checking the external files holding these settings into source control.

How connection strings and app settings are stored in the
environment

How connection strings and app settings are stored as environment variables is not necessarily
important if you are using ASP.NET. As demonstrated in the previous sections, this is all transparent to
you when using the ConfigurationManager class to retrieve the values. But if you are using other
frameworks such as PHP, then you need to know this so you know the name of the environment
variable you want to retrieve.

When you set connection strings and app settings in the environment, they are stored as
environment variables. Connection string environment variables have a naming convention that
identifies them with the database types discussed previously. The naming convention is <database type
prefix> <connection string name>, where the prefix for each of the database types is shown in Table 1-1.

37

http://www.asp.net/identity/overview/features-api/best-practices-for-deploying-passwords-and-other-sensitive-data-to-aspnet-and-azure
http://www.asp.net/identity/overview/features-api/best-practices-for-deploying-passwords-and-other-sensitive-data-to-aspnet-and-azure

TABLE 1-1 Connection string environment variable prefixes

Connection String Type Environment Variable Prefix
SQL Database SQLAZURECONNSTR_

SQL Server SQLCONNSTR_

MySQL MYSQLCONNSTR_

Custom CUSTOMCONNSTR_

As an example, for the connection string named DefaultConnection for the SQL database discussed
earlier, the environment variable will be named SQLAZURECONNSTR_DefaultConnection in the Azure
Web App environment.

Similarly, application settings are stored as environment variables named APPSETTING_<setting
name>, where <setting name> is the name of the key/value specified in the Application Settings
section.

You can see these environment variables using the Site Control Manager (“Kudu”) for your web app
by browsing to https://<appname>.scm.azurewebsites.net, where <appname> is the name of your
web app. If you are prompted to sign in, use the same credentials you use to sign in to the Azure
portal. After signing in, click the Environment menu option at the top of the page and then scroll down
to the Environment Variables section of the page. The application settings defined previously will be
close to the top of the section, as shown in Figure 1-30.

Environment variables

- ALLUSERSPROFILE = D:local\ProgramData

- APP_POOL_CONFIG = C:\DWASFiles\Sitesi#1contos0\Configlapplicationhost.config

- APP_POOL_ID = ~1contos0

- APPDATA = D:llocalAppData

- APPSETTING_RedisAccessKey = 6e7LyVIJrgjU3x3ZCIrONSASM51pnWm/sLsBDT+jM=
- APPSETTING_RedisEndpoint = contos0.redis.cache. windows.net

- APPSETTING REMOTEDEBUGGINGVERSION = 11.0.611103.400

FIGURE 1-30 App settings as environment variables in the Kudu portal.

Scroll down toward the bottom and you will see environment variables for the connection string, as
shown in Figure 1-31.

» SITE_BITNESS = x86
+ SQLAZURECONNSTR_DefaultConnection = Data Source=tcp:contos0-srv.database windows.net, 1433;Initial
Catalog=contos0-db;User Id=adminuser@contos0-srv;Password=P@ssword1;

FIGURE 1-31 Connection string as environment variables in the Kudu portal.

Add a deployment slot for an Azure Web App

One of the many benefits of an Azure web app running in a Standard or Premium pricing tier is the
ability to add deployment slots. A deployment slot technically is an independent web app with its own
content, configuration, and even a unique host name. So it functions just like any other web app.

38

https://<appname>.scm.azurewebsites.net

There are many benefits to adding a deployment slot to your web app, including the following:

e You can deploy changes for your application to a staging deployment slot and test the changes
without impacting users who are accessing the production deployment slot. When you are
ready to move the new features into production, you can just swap the staging and production
slots with no downtime.

e You can do A/B testing with a small set of users to try out new features of your application
without impacting the majority of users who are using the production slot. This is an extremely
powerful scenario, and you can learn more about it at
http://blogs.msdn.com/b/tomholl/archive/2014/11/10/a-b-testing-with-azure-websites.aspx.

e You can "warm up” your application in a staging slot before swapping it into the production
slot, avoiding the long delays a cold start of your application may incur because of some
lengthy initialization code.

e You can swap back to the previous deployment if you realize that the new version of your
application is not working as you expected.

Scale to a Standard App Service Plan

Deployment slots are available in Standard and Premium pricing tiers. The Standard plan allows up to 5
deployment slots, while the Premium plan provides up to 20. You can have different deployment slots
for different stages of your application lifecycle such as development, test, user acceptance testing,
integration, staging, and more.

To change the pricing tier for a web app using the Azure portal, click Browse > Web Apps. In the
Web Apps blade, click the web app created previously to open the Web App blade. In the Web App
blade, scroll down to the Usage section and click the Pricing Tier part, as shown in Figure 1-32.

Usage
File System Storage Quotas Scale
CONTOSD CONTOSD CONTOSD

CPUTime 1m/1h Autoscale Off
1.15% Data Qut 3MB/327.21... Instances 1
[Memory.. 214MB/1GB Web apps 1
Pricing tier
CONTOSD
- . gan
g (4 i &

Shared Infrastructure

FIGURE 1-32 Usage section of Web App blade showing Pricing Tier part.

In the Pricing Tier blade, select the S1 Standard pricing tier, as shown in Figure 1-33, and then click
39

http://blogs.msdn.com/b/tomholl/archive/2014/11/10/a-b-testing-with-azure-websites.aspx

the Select button to apply the change.

51 Standard *

1 Core
1.75 GBRAM
- 50GB

5 5i

Custom domains / S5L

Up to 10 instances
Auto scals

» NG

Daily
Backup

5 slots
Web app stagin

Traffic Manager
Geo availability

FIGURE 1-33 S1 Standard pricing tier.

Add a deployment slot

In the Web App blade, scroll down to the Deployment section and click the Deployment slots part, as
shown in Figure 1-34.

Deployment

Deployment slots
Set deployment

0 credentials

FIGURE 1-34 Deployment slots part in the Web App blade.

In the Deployment slots blade, click the Add slot button in the toolbar. In the Add a slot blade,
enter a name such as “staging” for the deployment slot name and click OK. After a few seconds, the
new staging deployment slot will appear in the Deployment slots blade, as shown in Figure 1-35.

Deployment slots

N\
lMJ CONTOSD

+

Add Slat

NAME STATUS APP SERVICE PLAN

contos0-staging Running contosl)

FIGURE 1-35 Deployment slots blade.

The web app now has two deployment slots: the production slot that is the default when the web
app is first created and a staging slot. If you click the name of the staging slot, it will open the Web
App blade where you can configure and manage the staging web app just as you would the
production web app.

Tip Deployment slots for a web app incur costs just as the production slot does. So to minimize costs,
you should consider stopping your non-production deployment slots when you are not using them.
You can do this in the Web App blade for the deployment slot by clicking the Stop button in the

40

toolbar.

Close the Deployment slots blade to return to the Web App blade for the production slot. Scroll
down to the Deployment section and observe that the Deployment slots part is now showing one slot.

For more information on adding, configuring, and managing deployment slots, see
http://azure.microsoft.com/en-us/documentation/articles/web-sites-staged-publishing.

Set up continuous deployment with Visual Studio Online

Support for continuous deployment is available for Azure Web Apps running in any pricing tier,
including the Free tier. By using continuous deployment, you can configure your web app to build and
deploy your application automatically when you push changes into your source code repository. By
using continuous deployment from source control, development and test teams can greatly increase
the rate at which software changes are published to support business operations.

The continuous deployment feature of Azure Web Apps works with many popular source control
systems, such as Visual Studio Online, GitHub, Bitbucket, and Dropbox. Combined with Team Explorer,
which is part of Visual Studio, developers can push changes to source control quickly and monitor
builds and deployments, all directly from Visual Studio.

When you set up continuous deployment for your Azure web app, you generally will want to target
a deployment slot other than your production slot, such as a deployment slot designated for Dev/Test
purposes. When changes are pushed into your source control repository, they can be compiled
automatically and deployed to the Dev/Test slot and then swapped into staging or production after
the changes have been verified. Or if your Dev/Test environment is one that takes many changes from
many developers, you may want to have builds and deployments scheduled hourly. Both scenarios are
possible with Visual Studio Online. Using the staging deployment slot added in the previous section,
this section will demonstrate continuous deployment as changes are pushed into your source code
repository.

Introduction to Visual Studio Online

Visual Studio Online is a complete application lifecycle management tool that is delivered as a service.
If you are familiar with Team Foundation Server (TFS) in an on-premises environment, then you can
think of Visual Studio Online as a software-as-a-service (SaaS) version of TFS. Visual Studio Online
provides a build service to automate builds and features for team collaboration, work items, source
control, user stories, backlogs, Kanban boards, load testing, reporting, and more. In this section, we
look at the source control feature of Visual Studio Online and setting up continuous deployment for an
Azure Web App.

Visual Studio Online supports two types of source control repositories as follows:
41

http://azure.microsoft.com/en-us/documentation/articles/web-sites-staged-publishing

e Team Foundation Version Control (TFVC) A centralized server repository where developers
check out, edit, and check in source code changes

e Git A distributed version control system where developers apply changes to a local repository
and then share their changes by pushing and pulling changes through a remote shared
repository

Today, most development teams are using Git for their source control needs. So Git will be the type
of repository used for discussion in this section.

Although Visual Studio Online integrates seamlessly with Azure, you need a separate Visual Studio
Online account to use it. If you don’t already have one, you can get one for free at
https://www.visualstudio.com/get-started/setup/sign-up-for-visual-studio-online.

Create a Visual Studio Online project with Git

Visual Studio’s Team Explorer brings the features of Visual Studio Online directly into your
development environment. If Team Explorer is not visible in your Visual Studio environment, select
View > Team Explorer from the main menu. Next, click the plug icon in the Team Explorer toolbar, as
shown in Figure 1-36.

Team Explorer - Home -1 x

oo @¥ @ t m P -

FIGURE 1-36 Team Explorer toolbar.

Next, click the link that says Create Team Project. This will launch your browser and take you to the
Visual Studio Online portal. If you are prompted to sign in, use the credentials you used when you set
up your Visual Studio Online account.

In the Create New Team Project dialog, specify a project name and change the Version control field
to Git, as shown in Figure 1-37.

42

https://www.visualstudio.com/get-started/setup/sign-up-for-visual-studio-online

CREATE NEW TEAM PROJECT x

Project name Contosa Web App

Note: You cannat change the name of your project after you have crested it

Description A Sample Azure Web App to demanstrate continuous deployment,

Process template Microsoft Visual Studio Scrum 20134 -

This

plate is for teams whe follow the Scrum methadology and use Scrum

terminology

Version control

local re y
elopers by pushing

Create project || Cancel

4

FIGURE 1-37 Create a new team project in Visual Studio Online.

Click the Create project button. In a few seconds, your project and Git repository will be ready in
Visual Studio Online. When the project is ready, a dialog will show some team project information
where you can navigate to the project or close the dialog. Click the Close button to close it.

Visual Studio Online is an amazing service with a massive number of features we cannot cover here.
If you want to learn more about it, go to http://azure.microsoft.com/en-us/services/visual-studio-

online/.

Set up deployment from source control to a staging slot

To set up deployment from source control so that deployments are published to a staging slot, you will
need to sign in to the old portal at https://manage.windowsazure.com because the Azure portal does
not support this capability at the time of this writing.

In the old portal, click Web Apps in the left navigation pane. For the web app created previously,
click the arrow icon to the left of the name to expand the web app so you can see the staging
deployment slot, as shown in Figure 1-38.

web apps
NAME STATUS
4 contosd Running
contos0(staging) Running

FIGURE 1-38 Web App with production and staging slot.

Click the staging deployment slot name and then click the Dashboard tab at the top of the page. In
43

http://azure.microsoft.com/en-us/services/visual-studio-online/
http://azure.microsoft.com/en-us/services/visual-studio-online/
https://manage.windowsazure.com/

the quick glance section of the dashboard page, click the link to Set up deployment from source
control. This will launch a wizard, the first page of which will ask where your source code will reside, as
shown in Figure 1-39.

Where is your source code?

Visual Studio Online

Local Git repository

Visual Studio Online provides a

complete solution for software

GitHub mansgsmsl?t, source control, \ssrus
tracking, build and test automation,
and more.

Dropbox

Jafofefs

FIGURE 1-39 Set up deployment from source control.

Select the Visual Studio Online option and then click the right arrow to continue.

On the next page of the wizard, you can specify the name of your Visual Studio Online account and
authorize Azure Web Apps to access the account for the purposes of publishing changes when you
push them into source control. Enter the name of your account and then click the Authorize Now link.
Visual Studio Online will ask you to confirm this authorization, as shown in Figure 1-40.

5 Visual Stuho Ondne

CONNECTION REQUEST

The appiication MANAGE-PROD WEBSITES from Windows Azure is requesting permissian te:
- Make requests on your behalf 1o access all private resources (praject. version control items, builds. etc) within the rickraln account,

If you change your mind at any tme, you can revoke access by accessing your profile and managing the applications in the connections tab.
FIGURE 1-40 Visual Studio Online authorizing the connection request from Azure Web Apps.

Click Accept to accept the connection request.

The final page of the wizard will display a message indicating the authorization was successful and
then ask you to select the repository you want Azure Web Apps to deploy from. Select the repository
you previously created in Visual Studio Online, as shown in Figure 1-41.

44

i The authorization was successful. L

x

Choose a repository to deploy

REPOSITORY NAME

[Contoso Web App j

FIGURE 1-41 Choose a repository to deploy from

Click the check mark button to complete the wizard. You will be redirected to the DEPLOYMENTS
page for the staging slot of the web app, where a message will indicate that your team project is linked
and that Visual Studio Online will build and deploy your project on the next check-in.

The Azure web app now is configured for continuous deployment to your staging deployment slot.

Add Visual Studio solution to source control

The previous sections linked the Azure web app environment and your Visual Studio Online Git
repository for the project so that Visual Studio Online can build and then publish deployments to your
Azure web app staging slot. But you still need to link the Visual Studio solution for your web
application to your Visual Studio Online project so you can push changes to the remote repository in
Visual Studio Online.

In the Solution Explorer window in Visual Studio, right-click the solution and select the option to
Add Solution to Source Control. When prompted to choose between Team Foundation Version Control
or Git, choose Git.

Commit Visual Studio solution to source control

In the Team Explorer window, click the Changes option, as shown in Figure 1-42.

45

Team Explorer - Home v B X
Com@¥ | B P
Home a M

4 Project

|® Changes |V Branches
|T,L Unsynced Commits l{;} Settings

4 Solutions

51 Contos0.sin

FIGURE 1-42 Team Explorer project options.

Enter a description such as “Initial Web App Commit” and click the Commit button to commit the
solution to the local Git repository. Next, click the Sync link to sync the changes with the remote
repository in your Visual Studio Online project. The first time you sync, you will need to provide the
URL for the Git repository, which you can get from your Visual Studio Online portal in the Code page.
Copy the Git URL and paste it into the remote repository field. The Team Explorer window will look
similar to Figure 1-43.

Team Explorer - Unsynced Commits v 3 x
Co@¥ @ p
Unsynced Commits v

4 Publish to Remote Repository

https://cloudalloc.visualstudio.com/DefaultCollection/
git/Contoso%20Web%20App

Publish

FIGURE 1-43 Remote repository URL in Unsynced Commits page of Team Explorer.

Click the Publish button to push the changes to the remote Git repository in your Visual Studio
Online project. Because you linked the Visual Studio Online project to your Azure web app, Visual
Studio Online will build and then publish the application to the staging deployment slot. When you are
ready to move it to your production slot, you can click the Swap button at the bottom of the
Dashboard page in the Azure portal.

Role Based Access Control

Role Based Access Control (RBAC) is an access control feature in the Azure platform that enables you to
manage access to resources in your Azure subscription. With RBAC, you are able to get granular with
your access permissions so that only users (or groups) have access to the resources they need. This is
very different from previous access management scenarios in which the only ways to give a user
management capabilities were to add the user as a co-administrator to the subscription or to create a
management certificate, giving the user access to the entire subscription.

46

RBAC uses Azure Active Directory exclusively to authenticate users and authorize access to resources
based on the user's roles. The RBAC feature is available in the new Azure portal (in preview) and
programmatically through the Azure Resource Manager (ARM) REST APIs. The ARM REST API
documentation is available at https://msdn.microsoft.com/en-us/library/azure/dn790568.aspx.

Note If you are using the Azure Service Management REST APIs to manage resources in your Azure
subscription programmatically, then you should start getting familiar with the ARM REST APIs. The
ARM REST APIs eventually will replace the Azure Service Management REST APIs.

Subscription-level roles

RBAC can be managed at the subscription level by using three built-in roles provided by the Azure
platform:

e Owner Can create and manage resources of all types, including managing access for child
resources.

e Contributor Can create and manage resources but cannot add or delete role assignments for
users.

e Reader Can read resources but cannot read secrets. For Azure Web Apps, secrets would be
things such as application settings, connection strings, and deployment credentials.

If you are a service administrator or co-administrator on a subscription, then you automatically are
added to the Owners role. When you assign owners to these roles, the level of permissions for the role
applies to all resources in the subscription.

Using the Azure portal, you can view these roles and manage users in these roles from the
Subscription blade. To get to the Subscription blade, select Browse > Subscriptions. In the
Subscriptions blade, click the subscription to open the Subscription blade. Scroll down to the Access
section to locate the Roles and Users parts, as shown in Figure 1-44.

Access

Roles Users

Owner o 1

Ly P

Contributor o o

Reader o o

FIGURE 1-44 Roles and Users parts in the Azure Subscription blade.
To add a user to one of the roles, click the role to open the Role blade. Next, click the Add button

at the top of the Role blade to open the Add Users blade. In the Add Users blade, you can add
individual users or groups from the Azure Active Directory.

47

https://msdn.microsoft.com/en-us/library/azure/dn790568.aspx

Tip You can add an external user to a role, provided the user has a Microsoft Account. When you do
this, an external user will be added to your Azure Active Directory.

Resource-level roles

Perhaps the greatest benefit of RBAC is the ability to assign user access to a single resource. For
example, if you want a user or group to have access to a single web app, then you could add the user
to the Contributor role from the Web App blade. To do this, click the Settings icon in the toolbar for
the Web App blade. In the Settings blade, click Roles to open the Roles blade, on which you can add a
user or group to one of the roles for that resource. Notice in Figure 1-45 that the three built-in roles
discussed earlier are present in addition to two roles that are specific to Azure Web Apps. These
additional roles are made possible by the Azure Web App Resource provider. To learn more about
resource providers, see https://msdn.microsoft.com/en-us/library/azure/dn790572.aspx.

The built-in roles are inherited from the subscription. However, adding users or groups at this level
(the Web App Resource blade) limits their access to this web app only.

NAME USERS GROUPS
» Owner 0 1
» Contributor 0 o
» Reader 0 o
» User Access Administrator 0 o
» Wehsite Contributor 0 o

FIGURE 1-45 Built-in roles for Azure Web Apps.

For an example using this feature to assign a developer permissions to publish source code changes,
see http://azure.microsoft.com/blog/2015/01/05/rbac-and-azure-websites-publishing/.

To learn more about RBAC, built-in roles, and managing permissions to resources, see
http://azure.microsoft.com/en-us/documentation/articles/role-based-access-control-configure/.

48

https://msdn.microsoft.com/en-us/library/azure/dn790572.aspx
http://azure.microsoft.com/blog/2015/01/05/rbac-and-azure-websites-publishing/
http://azure.microsoft.com/en-us/documentation/articles/role-based-access-control-configure/

Summary

This chapter started with an introduction to Azure Resource Groups and App Service Plans and then
applied that knowledge to demonstrate different scenarios for creating Azure Web Apps and
resources. We discussed a unique feature of Azure Web Apps for storing and retrieving application
settings and connection strings. Next, we discussed how to add deployment slots and configure
continuous deployment to a staging deployment slot by using Visual Studio Online. This chapter
concluded with a discussion about RBAC and how it can be used to assign user permissions to
resources.

49

Chapter 2

Azure WebJobs

One of the many features provided by Azure Web Apps is the ability to run background processes to
augment your web application. This feature is called Azure WebJobs.

Azure WebJobs addresses a need common to many websites, which is to offload time-consuming or
CPU-intensive tasks to another process. This helps ensure that the web front end that users are
interacting with is able to respond to user requests quickly while asynchronously performing work in
another process. Azure WebJobs also provides an excellent solution for running routine maintenance
tasks such as moving log files or updating databases the web app uses.

Microsoft provides a .NET SDK specifically for Azure WebJobs that further enhances this feature.
While use of the SDK is not technically required, it significantly simplifies some common patterns for
invoking web job functions.

If you use Azure WeblJobs as part of your web app solution, the Azure WebJobs Dashboard provides
a nice web interface where you can view, monitor, and invoke your web jobs.

This chapter will introduce you to the Azure WebJobs feature and take you on a journey through
each of these topics.

Introduction to Azure WebJobs

Because it is a feature of Azure Web Apps, you might assume that developing an Azure WebJob will
involve using web frameworks such as ASP.NET, MVC, or Web API, to name a few. But this is not the
case. In fact, the C# code in Listing 2-1 could be compiled and deployed as a web job. It certainly is not
useful, but its simplicity is well received by developers.

LISTING 2-1 A simple .NET console application.

class Program

{
static void Main(Q)
{
Console.WriteLine("Hello from web job.");
}
}

50

As enticing as this may be, it is not the only choice for building web jobs. A web job also could be
implemented using a variety of scripting languages. The following are all valid candidates for
implementing a web job:

.cmd, .bat, .exe (Windows)
.psl (PowerShell)

.sh (Bash)

.php

.py (Python)

Js (Node.Js)

When you add a web job to your web app environment, you must specify how your web job should
be invoked. Azure WebJobs provides you three options to indicate how your web job should run.
These options are as follows:

Continuous A continuous web job is always running and therefore may be implemented using
a looping structure such as a while loop. But as you will see later, there are more elegant ways
of implementing this kind of web job using the Azure WebJobs SDK.

Scheduled A scheduled web job is invoked on a schedule. The schedule can be one where
your web job is invoked only once at a date and time you specify. Or it can be a recurring
schedule where your web job is invoked sequentially with a specified time span between
invocations. A recurring schedule can be defined so that the time span between invocations is
specified in minutes, hours, days, weeks, or months. As an example, the code in Listing 2-1
could be put on a recurring schedule to run every two hours.

On-Demand An on-demand web job will be invoked only when you specifically take action to
invoke it. You can invoke the web job by using the Azure portal, programmatically by using the
WebJobs REST API, or by using Windows PowerShell.

Tip To invoke a web job by using Windows PowerShell, use the Start-AzureWebsiteJob cmdlet and set
the JobType parameter to Triggered. To learn how you can use the WebJobs REST API to invoke a web
job, see the documentation at https://github.com/projectkudu/kudu/wiki/WebJobs-API.

Create an Azure WebJob

To demonstrate some essential concepts for Azure WebJobs, we will leverage the code from Listing 2-1

to create a very simple .NET console application using Visual Studio. From the main menu, select File >

New > Project and choose the Console Application template. For the name of the project, enter
“SimpleWebJob.”

51

https://github.com/projectkudu/kudu/wiki/WebJobs-API

In the Main method of the application, add the WriteLine statement from Listing 2-1.

Press Ctrl+F5 to build and run the application locally.

Publish a web job from Visual Studio

To run this simple console application in Azure as a web job, you can leverage the Azure SDK tools to
publish it to a web app environment. To do this, right-click the SimpleWebJob project in Solution
Explorer and select Publish as Azure WebJob, as shown in Figure 2-1.

& Build
Rebuild
Clean
View ¢
Analyze 4
© Publish
2% Publish as Azure WebJob.

Scope to This

=

=)

FIGURE 2-1 Publish as Azure WebJob from Visual Studio.

New Solution Explorer View

This will open a dialog where you can specify the name of the web job and configure how you want
it to run. For this demonstration, configure the web job as follows:

Set the WebJob run mode setting to Run on a Schedule.
Set the Recurrence setting to Recurring Job.
Set the Recur every setting to 1 Hours.

The Add Azure WebJob dialog will look similar to Figure 2-2. Click OK to proceed to the next
dialog.

Add Azure WebJob

D Microsoft Azure WebJobs

Project name Starting on: Ending on
SimpleWeblob « April 2015 3 “ Apri 2015 >

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
Weblob name:

Simpl

Weblob run mode:

Run on a Schedule

Recurrence: Starting time Ending time:

Recurring Job No end date 1200 AM 1200 AM

Recur every Starting time zone: Ending time zone:

1 Hours (UTC-06:00) Central Time (US & Canadial [UTC-06:00) Central Time (US & Canada)

oK Cancel

FIGURE 2-2 Add an Azure WebJob to run on a recurring schedule.

Note The ability to publish an Azure WebJob from Visual Studio is provided by the

52

Microsoft. Web.WebJobs.Publish NuGet package. When you click OK in the Add Azure WebJob dialog,
you may see a dialog briefly appear, indicating that this package is being downloaded. It's quick, so
you have to be paying attention or you may miss it. Whether you see it or not, this step adds a
packages.config file to your console application project with a package reference to this NuGet
package.

In the Publish Web dialog, click Microsoft Azure Web Apps, as shown in Figure 2-3.

& Publish web
Select a publish target
Connection | @ Microsoft Azure Web Apps

| B import

Find other hosting options at our web hosting gallery

<Prev Next > Pubis || Close

FIGURE 2-3 Select a publish target for the web job.

In the Select Existing Web App dialog, set Existing Web Apps to the web app created in Chapter 1,
“Microsoft Azure Web Apps.” If you don’t have an existing web app, then click New to create a new
web app. Click OK to continue.

Note A web job runs on the same machine hardware that the Azure web app is running on. For
example, if you have an ASP.NET MVC application deployed in the web app environment and then
add a web job to the same web app, the web job process (SimpleWebJob.exe) will share the machine
resources the ASP.NET MVC application process (w3wp.exe) is running.

The ability to specify a new web app when publishing a web job gives you the option later of scaling
out your web job instances independently where the web job is running in its own web app. In other
words, you are not required to have a web application such as an ASP.NET MVC application in the web
app environment to publish a web job. The web job can be the sole application running in the web
app environment. A deployment strategy such as this may be appropriate if your web job is CPU-
intensive and you don't want it consuming the resources of your web application.

After selecting an existing web app or creating a new web app, click Publish in the Publish Web

53

dialog to publish the web job to Azure. Because this is a scheduled web job, the Azure Scheduler
service is used behind the scenes to invoke the web job on the schedule you configured. The Scheduler
service uses the WebJobs REST APl mentioned earlier to invoke the web job. If you are interested in
learning more about the Azure Scheduler service, see http://azure.microsoft.com/en-
us/services/scheduler/.

Tip If you want a frequency of less than once per hour for a scheduled web job, you will need to
make sure your Scheduler service is configured for either the Standard or Premium plan. Additional
information on the Scheduler limits and default settings is available at https://msdn.microsoft.com/en-
us/library/azure/dn479786.aspx.

Invoke a web job manually

The web job you created in the previous section will be invoked by the Azure Scheduler service based
on the schedule you specified. But you can also invoke it on demand just as you would an On-Demand
web job.

To invoke the web job, expand the WebJobs > On Demand & Scheduled node in Server Explorer.
Then, right-click the SimpleWebJob and select Run, as shown in Figure 2-4.

Server Explorer * Q3 x
(] Yeiuk
4 3% Azure (Azure Pass)
4 & App Service
4 & Contos0
4 @& contos0
b @i Files
b @ Log Files
4 &) Weblobs
#" Continuous
4 £\ On Demand & Scheduled
| ®lsimpleWeblob

@ Refresh

R View Dashboard
; Run

b [[JMobile Services

FIGURE 2-4 Invoke a web job from Visual Studio.

This web job is very small, so you may not even notice the "Starting...” text appear after the web
job’s name as it is starts and then quickly exits. So how can you tell if the web job ran successfully? That
is what the WebJobs Dashboard is for, which will be discussed next.

View the WebJobs Dashboard

The WebJobs Dashboard is a site extension of the web app you can easily access from Visual Studio by
right-clicking the web job in Server Explorer and selecting View Dashboard, as shown in Figure 2-4.
This will launch your browser and place you directly into the details page for your web job in the
WebJobs Dashboard. Your dashboard will look similar to Figure 2-5.

54

http://azure.microsoft.com/en-us/services/scheduler/
http://azure.microsoft.com/en-us/services/scheduler/
https://msdn.microsoft.com/en-us/library/azure/dn479786.aspx
https://msdn.microsoft.com/en-us/library/azure/dn479786.aspx

Microsoft Azure WebJobs

WebJobs

WebJob Details simpewenion

Run command: SimpleWeblob.exe

Recent job runs

TIMING STATUS

55 seconds ago {453 ms running time)

Do more with Microsoft Azure Weblobs SDK. The SDK integrates Microsoft Azure
Storage, triggering a function in your program when items are added to Queues,

Blobs, or Tables,

FIGURE 2-5 WebJob Details page in the WebJobs Dashboard.

This page shows the relative time your web job was run, how long it ran, and the status of the job
run. The data shown in the Timing column is linkable, and clicking it will open the log file for that job
run. If your application writes data to the console like this one does, you will see it in the output log file
with other data that the host writes, as shown in Figure 2-6.

oft Azure WebJobs

Weblobs / SimpleWeblob

WebJob Run Details sin

Success a moment ago (297 ms running time)
Run ID: 201504181504273118

Toggle Output

download

[04/18/2015 15:04:27 > 4853c3: SYS INFO] Status changed to Initializing

[04/18/2015 15:04:27 > 4853c3: SYS INFO] Run script 'SimpleWeblob.exe' with script host - "WindowsScriptHost'
[04/18/2015 15:04:27 > 4853c3: SYS INFO] Status changed to Running

[04/18/2015 15:04:27 > 4853c3: INFO] Hello from web job.

[04/18/2015 15:04:27 > 4853c3: SYS INFO] Status changed to Success

Do more with Microsoft Azure WebJobs SDK. The SDK integrates Microsoft Azure Starage, triggering a function in your program when
items are added to Queues, Blobs, or Tables.

FIGURE 2-6 WeblJob run details in the WebJobs Dashboard.

Create a web job from the Azure portal

You can add a web job to your web app using the Azure portal. This approach involves adding the web

55

job to the web app and then uploading the file that contains your web job application. If your web job
is a script or .exe that has dependencies on other files such as scripts, DLLs, or configuration files, you
must zip the files and upload the .zip file. When you upload a .zip file, the web app environment will
automatically unzip the contents in a file location designated for web jobs.

Note If you want to learn more about where web jobs are stored and some of the environment
settings specific to Azure WeblJobs, see the WebJobs documentation at
https://github.com/projectkudu/kudu/wiki/Web-jobs.

To demonstrate this approach using the ContosO web app, go to the web app blade in the Azure
portal. In the toolbar of the web app blade, click the Settings icon.

In the Settings blade, click WebJobs. The WebJobs blade shows all the web jobs that exist for the
web app. If you followed along in the previous section, the WebJobs blade will show the
SimpleWebJob, as shown in Figure 2-7.

WebJobs
conTosa
NAME TYPE STATUS LOGS
SimpleWeblob On Demand Completed Just now httpsi//contosOscma...

FIGURE 2-7 WebJobs blade in the Azure portal.

Note If you click the link in the Logs column, a browser window will open and take you to the
WebJobs Dashboard discussed in the previous section.

Create a new web job by clicking Add in the WebJobs blade toolbar. In the Add WebJob blade,
configure the web job properties as follows:

1. Set the Name field to SimpleWebJobFromPortal.
2. Set the How To Run field to On Demand.

3. Click the folder icon next to the File Upload field and locate the SimpleWebJob.exe you
compiled in the previous section. Because this application has no dependencies, you can upload
the .exe without zipping it first.

The Add WebJob blade will look similar to Figure 2-8.

56

https://github.com/projectkudu/kudu/wiki/Web-jobs

Add WebJob

Name

| SimpleWeblobFromPortal |

How To Run

[on bemand v

[simpiewebicb.exe |

FIGURE 2-8 Add WebJob blade in the Azure portal.

Click Create at the bottom of the Add WeblJob blade. This will return you to the WebJobs blade,
and the SimpleWebJobFromPortal web job will be present.

If the web job is an On-Demand web job like the two that have been added so far, you can run the
web job from the WeblJobs blade by right-clicking the web job name and selecting Run. Similarly, you
can delete a web job by right-clicking it and selecting Delete.

Introduction to the Azure WebJobs SDK

Using the Azure WebJobs SDK to build your web job simplifies some common application patterns by
providing basic infrastructure that you otherwise would have to code yourself. For example, a common
web pattern is one where a web application takes input from a user and then puts a message on a
queue to be processed asynchronously. As messages are added to the queue, a separate background
process pulls the messages off the queue to do the work. This helps eliminate bottlenecks in the web
application by offloading time-consuming tasks to a separate background process. In Azure, a solution
such as this may look similar to Figure 2-9.

Contoso Resource Group

[=p :
[e Contoso Web App
o - . |
[o |
web app web job
[=
[
.

queue storage

FIGURE 2-9 A queue-centric work pattern.

You could imagine extending the web job in the previous section to poll a queue for messages,
keep track of a message’s de-queue count, handle message visibility in the queue, delete the message
after processing, and potentially move poison messages to a different queue. Or you could get all of

57

this for free by using the WebJobs SDK and spend more of your time coding the business logic of your
web job and less time writing infrastructure code.

See Also For a complete tutorial on how to implement this type of pattern, see
http.//azure.microsoft.com/en-us/documentation/articles/websites-dotnet-webjobs-sdk-get-started).

The WebJobs SDK puts in place infrastructure to automatically invoke methods in your web job that
have been decorated with trigger attributes that are also provided by the SDK. These attributes are
designed to work with Microsoft Azure Storage account services such as queues, blobs, and tables and
with ServiceBus queues and topics. Methods in the web job that use these attributes are identified as
functions in the web job and, as a result, become visible in the WebJobs Dashboard.

Using the WebJobs SDK lights up additional features in the WebJobs Dashboard, such as the ability
to see basic statistics for each function in the web job. You can view function invocation logs and the
data that was passed to the function for processing. You can even replay functions from the invocation
log and edit the original data before it is passed to the function.

In this section, we will take a closer look at the web job infrastructure, attributes, and dashboard
capabilities that become available when using the WebJobs SDK.

WebJobs SDK .NET libraries and dependencies

The WebJobs SDK is delivered through two NuGet packages: Microsoft Azure WebJobs and
Microsoft Azure WebJobs Core. Installing the Microsoft.Azure.WebJobs package will automatically
install the Microsoft.Azure.WebJobs.Core package for you. Because the WebJobs SDK is designed to
work closely with services in your Azure Storage account, it will also install the Azure Storage NuGet
package if you don't already have it.

You can start your web job development from a simple console application, add these packages to
your project, and start coding. Or you can leverage the QuickStart templates that provide the client
libraries, prerequisite code and configuration, and some sample methods that show some nifty ways to
use the WebJobs SDK for common scenarios.

We will use the QuickStart templates in the following section to create a web job that uses the
WebJobs SDK and then examine essential facets of the project.

Create a web job designed for use with Azure Storage Queues

From the Visual Studio main menu, select File > New > Project. In the New Project dialog, navigate to
the Cloud > QuickStarts > Compute node and select the Azure WebJobs SDK Queues template, as
shown in Figure 2-10.

58

http://azure.microsoft.com/en-us/documentation/articles/websites-dotnet-webjobs-sdk-get-started/

TN
Recent |

4 inctailed

Van 9 Webleot 52

FIGURE 2-10 Create a new Azure WebJobs SDK Queue project in Visual Studio.

Set the Name for the project to SampleQueueWebJob and click OK to create the project.

From the main menu, select Build > Build Solution. This will download the NuGet packages needed
for the project.

If you press Ctrl+F5 to run the console application, you will get a message indicating that you need
to add Azure Storage account credentials to your app.config.

Configure connection strings for Azure Storage

Open app.config in your project, and you will see two empty connection strings in the
<connectionStrings> section named AzureWebJobsDashboard and AzureWebJobsStorage. Classes in
the WebJobs SDK look for these two connection strings by name. The WebJobs Dashboard uses the
AzureWebJobsDashboard connection string to store logs and parameter data surfaced by the
dashboard. Your web job application uses the AzureWebJobsStorage connection string to bind
methods in your web job to Azure Storage services such as queues, blobs, and tables.

You can configure both connection strings to use the same storage account, and some of the
documentation you will see online does this out of convenience. This is also an acceptable practice for
Dev/Test environments. But it is a recommended best practice to use separate storage accounts to
keep application data separate from logging data. Doing so ensures that the entire capacity and
throughput limits of your storage account are dedicated to your application and not used for logging
purposes. This can be especially important for high-volume applications running in production.

See Also For information on Azure Storage capacity and limits, see http://azure.microsoft.com/en-
us/documentation/articles/azure-subscription-service-limits/.

We will configure the AzureWebJobsDashboard and AzureWebJobsStorage connection strings to
use the same storage account created for the web app in Chapter 1, “Microsoft Azure Web Apps.” To
get this value, expand the Storage node in Server Explorer and locate the storage account created for
the web app. Right-click the storage account and select Properties. In the Properties window, click the
ellipsis button in the Connection String property, as shown in Figure 2-11.

59

http://azure.microsoft.com/en-us/documentation/articles/azure-subscription-service-limits/
http://azure.microsoft.com/en-us/documentation/articles/azure-subscription-service-limits/

Properties v 0 x
contos0 Storage Account Properties
5m,

i

| Connection String B DefaultEndpointsProtocol=https

Connection String
Connection string that can be used to connect to the Microsoft Azure s.

FIGURE 2-11 Storage account Properties window in Visual Studio.

In the Storage Account Connection String dialog, click the icon to copy the full connection string to
your clipboard and then click Close. In app.config, paste the connection string into the
connectionString setting for the AzureWebJobsDashboard and AzureWebJobsStorage connection
strings.

Press Ctrl+F5 to run the web job locally. The output will look similar to Figure 2-12.

(o | CAWindows\system32\cmd.exe - 8 “
~

Creating Demo data

Functions will store logs in the 'azure-webjobs-hosts’ container in the specifie
d Azure storage account. The functions take in a Textliriter parameter for loggin|

9.
Found the following functions:
SampleQueuellebJob . Functions.MultipleOutput
SampleQueuellebJob . Functions . QueueToBlob
SampleQueuellebJob . Functions . PropertyBinding
SampleQueuellebJob . Functions.FailAlways
SampleQueuellebJob . Functions . BindToPoisonQueue
Job host started
Executing: ‘Functions.PropertyBinding’ because New queue message detected on 'in|
itialorderproperty’.

ing: 'Functions.MultipleOutput’' because New queue message detected on 'ini

: 'Functions.QueueToBlob' because New queue message detected on 'orders]

FIGURE 2-12 WebJobs SDK Queue sample application output.

One thing to notice about the output from the web job is that methods in the web job were found
and listed by name as functions in the web job. The web job was able to identify these as a result of
certain attributes from the WebJobs SDK being applied to these methods. Also notice that three of
these methods were invoked as a result of a message being added to a queue. That is because the
template used to create the project includes some code that generates sample data as part of the
application so you can see how things work. Finally, notice that this application is still running. Web
jobs developed using the WebJobs SDK frequently run continuously so that functions can be invoked
when messages (in this case) are added to queues in Azure Storage. How this all works will become
clear as we proceed through the rest of this chapter.

Press Ctrl+C to exit the application.

Examine the web job project and code

The general organization of project files that the WebJobs SDK project templates follow is one in which
functions of the web job are contained in a Functions class in the file Functions.cs. This file also may
include other classes used for sample data, such as the Order class, which is used to generate some
data the sample code uses. You can extend these classes to fit your needs or remove them from your

60

project. Their purpose is to demonstrate how the WebJobs SDK could be used. The rest of the project is
what you would expect to see for a simple console application, as shown in Figure 2-13.

Solution Explorer v 3 x
Rl o-2RFD +&=2]
" trl+ p-
& Solution 'SampleQueueWeblob' (1 project)
4[] sampleQueucWeblob
b # Properties
b =@ References
¥ App.config
4 C* Functions.cs
b *3 Order
4 %3 Functions
@ MultipleOutput(Order, out string, out string) : void
@ QueueToBlob(string, IBinder) : void
@ PropertyBinding(Order, string, int, TextWriter) : void
@ FailAlways(string, int, TextWriter) : void
@ BindToPoisonQueue(string, TextWriter) : void
¥ packages.config
b € Program.cs

FIGURE 2-13 Web job project files in Solution Explorer.

Understanding the JobHost class

The workhorse of the WebJobs SDK is the JobHost class. At runtime, it uses reflection to locate
methods in your web job that have been decorated with certain attributes from the WebJobs SDK. It
uses the connection strings you provided earlier to connect to your Azure Storage account and listen
for new messages being added to specified Azure Storage queues. When a new message is detected, it
invokes the function that is designated to receive messages from the queue. All of this is delivered to
your web job application with just two lines of code. If you open Program.cs and look in the Main
method of the application, you will see where JobHost is instantiated, followed by a single call to
RunAndBlock, as shown in Listing 2-2.

LISTING 2-2 Use of JobHost class in Main method.

static void Main(Q)
{
if (!VerifyConfiguration())
{
Console.ReadLine();
return;

}
CreateDemoData();
JobHost host = new JobHost();

host.RunAndBlock();
}

The RunAndBlock method blocks the main thread of the application so that the process is kept
running. The JobHost instance will invoke your web job functions on background worker threads.

61

If you wanted to make changes to some of the default configuration the JobHost class uses, you
could instantiate an instance of the JobHostConfiguration class and define configuration such as
connection string settings. Then, you could pass the JobHostConfiguration instance into the JobHost
constructor.

If you need to control when the JobHost monitors your storage account for changes, you can use
the Start/StartAsync and Stop/StopAsync methods.

If you want to manually invoke a function in your web job, you can use one of the Call/CallAsync
methods. If you want to see how this works, create a new WebJob project using the Azure WebJobs
SDK Tables QuickStart template.

Understanding the WebJobs SDK attributes

The WebJobs SDK provides a QueueTrigger attribute that you can use in your methods to indicate that
you want that method invoked by the JobHost when a new message is added to a queue. Similarly,
there is a BlobTrigger attribute and a ServiceBusTrigger attribute that can be used for those services.

Keeping with the queue-centric theme, suppose you have a queue named “neworders” and a
method in your web job named “ProcessNewOrder” that you want called when a new message arrives
in the neworders queue. This could be accomplished using the QueueTrigger attribute, as shown in
Listing 2-3.

LISTING 2-3 Process orders from a queue.

pubTlic static void ProcessNewOrder([QueueTrigger("neworders™)] Order newOrder)
{
//

// Do work to process the order.

//

The QueueTrigger attribute takes as a parameter the name of the queue you want JobHost to
monitor for new messages. The attribute is applied to the newOrder parameter so that when a
message (Order) is added to the neworders queue, this method will be invoked and the newOrder
parameter will contain the order that was added to the queue. In other words, you don’t have to write
any code to de-queue the message. The JobHost takes care of it. When your function completes, the
JobHost will make sure the message is deleted from the queue.

Another powerful attribute is the Queue attribute, which can be used to bind a method parameter
to a queue. Expanding on the previous example, suppose you have another queue named
“processedorders” that you use to store messages for orders that have been processed successfully.
Rather than writing code to insert a message into the processedorders queue, you can add an out
parameter to the ProcessNewOrder method and use the Queue attribute to bind that parameter to the
processedorders queue. Listing 2-4 is an example of how this could be achieved.

62

LISTING 2-4 Process orders from a queue and output to a separate queue.

public static void ProcessNewOrder(
[QueueTrigger("neworders")] Order newOrder,
[Queue("processedorders")] out string processedorders)

{

//

// Do work to process the order.

//

processedorders = newOrder.OrderId;
}

In this code, after the newOrder is processed, a message (this time a simple string) is added to the
processedorders queue that contains the order ID of the order. You then could have another function
that is invoked when messages are added to the processedorders queue to do any final work needed,
such as updating a database or sending out email to the customer.

Similar to the Queue attribute, there are Blob, Table, and ServiceBus attributes that can be used to
bind a parameter to those services.

The code in Listing 2-3 and Listing 2-4 is a simplified example only and is not part of the web job
project created by the QuickStart templates. To see how the code generated by the QuickStart
template uses these attributes, open Functions.cs and explore the methods in the Functions class.

Understanding how logging works

As you explore code in Functions.cs, you will notice that some of the methods take a TextWriter
parameter. This parameter is optional. But if you want to do any logging in your functions and have
the logging saved in log files that can be accessed later, this is the way to do it.

The JobHost creates an instance of TextWriter for you. All you have to do is ask for it by adding a
parameter of this type to your method. Listing 2-5 demonstrates how logging in your function could
be achieved by using TextWriter.

LISTING 2-5 Process orders and add logging capabilities by using TextWriter.

pubTlic static void ProcessNewOrder(
[QueueTrigger("neworders")] Order newOrder,
[Queue("processedorders™)] out string processedorders,
TextWriter log)

{
log.WriteLine("Started processing order Id '{0}'.", newOrder.OrderId);
//
// Do work to process the order.
//
log.WriteLine("Completed processing order Id '{0}'.", newOrder.OrderId);

processedorders = newOrder.OrderId;

63

This section covered some essential knowledge to introduce you to the power of the WebJobs SDK
and get you started using essential features in your code. You are encouraged to fully explore the
functions in Functions.cs to further understand the capabilities available to you.

Publish a web job to Azure

When you move your web job to Azure, you will need to make sure the AzureWebJobsDashboard and
AzureWebJobsStorage connection strings are in your web app environment. You can accomplish this
by adding the connection strings from app.config in your web job project to your web app
environment as environment variables. This adheres to the best practice guidance for storing
connection strings and will be demonstrated in the following section.

See Also More information on recommended best practices for working with connection strings and other
sensitive information is available at http.//www.asp.net/identity/overview/features-api/best-practices-for-
deploying-passwords-and-other-sensitive-data-to-aspnet-and-azure.

Add storage account connection strings to the web app environment

In Server Explorer, expand the App Service node and then the resource group for the web app created
in Chapter 1. Right-click the web app and select View Settings.

In the Connection Strings section, add the AzureWebJobsDashboard and AzureWebJobsStorage
connection strings and set the Database Type to Custom for both. Your Connection Strings settings will
look similar to Figure 2-14.

Connection Strings

Name Connection String Database Type
DefaultConnection Data Source=tcp:contos0-srv.database.windows.net. 1433;Initial Catalog=o SQL Azure
AzureWeblobsDashboard DefaultEndpointsProtocol=https:AccountName=contosOwjdashboard:Acco Custom

AzureWeblobsStorage DefaultEndpointsProtocol= https:AccountName=contosO:AccountKey=mzC Custom

Add Remove

FIGURE 2-14 Configuring connection strings for a web app using Visual Studio.
Press Ctrl+S to save the changes to the web app environment.

Publish the web job to Azure

In the Visual Studio Solution Explorer window, right-click the web job project and select Publish as
Azure WebJob.

In the Add Azure WebJob dialog, set the WebJob run mode to Run Continuously and click OK to
continue to the next page.

64

http://www.asp.net/identity/overview/features-api/best-practices-for-deploying-passwords-and-other-sensitive-data-to-aspnet-and-azure
http://www.asp.net/identity/overview/features-api/best-practices-for-deploying-passwords-and-other-sensitive-data-to-aspnet-and-azure

Tip Web jobs built using the WebJobs SDK frequently run continuously. However, web apps may
unload if they are idle for extended periods of time, which also would cause your web job to be
unloaded. It is recommended that you enable the Always On feature for web apps in the Basic or
Standard pricing tier to ensure reliable execution of your functions.

In the Publish Web dialog, click Microsoft Azure Web Apps and set the Existing Web Apps setting to
the web app created in Chapter 1.

Click Publish to publish the web job. After a few seconds, the web job will be published to the web
app environment.

In the Visual Studio Server Explorer window, right-click the WebJobs node for the web app and
select Refresh. The web job will be under the Continuous folder, as shown in Figure 2-15.

Server Explorer v R x
Q e iulpk
4 28 Azure (Azure Pass) -
4 & App Service
4 & Contos0
4 @ contosd
b @i Files
b @ Log Files
L4 BWebiobs |
4 & Continuous
9 SampleQueueWebJob
4 gW On Demand & Scheduled
£ SimpleWeblob
9 SimpleWebJobFromPortal

FIGURE 2-15 Server Explorer showing web jobs published to a web app.

Examine new features in the WebJobs Dashboard

In the Visual Studio Server Explorer window, right-click the SampleQueueWebJob and select View
Dashboard. Because this web job is using the WebJobs SDK, the dashboard is able to show you which
functions have been invoked, as shown in Figure 2-16.

Microsoft Azure WebJobs

WebJobs

Continuous WebJob Details sampieaueuewenso

Running
Run command: ComputeWeblobsSDKQueue.exe

Toggle Output

Functions invoked

FUNCTION STATUS STATUS DETAIL

Functions.QueueToBlob (3e0f2debc7924518ad ..) 5 minutes ago (234 ms running time}

Functions.MultipleQutput (5 minutes ago {424 ms running time)

Functions.PropertyBinding ([N

5 minutes ago (188 ms running time)

FIGURE 2-16 WebJobs Dashboard showing functions that have been invoked.

65

Each function invocation is linkable so that you can drill down into the details for that specific
invocation. Locate the function invocation for the PropertyBinding function and click it. The invocation
details show you why this function was invoked and the parameters that were passed to the function.
Click the Toggle Output button at the bottom of the page to see the logging that was captured when
the function was run. The Invocation Details page will look similar to Figure 2-17.

Microsoft Azure Weblobs Funcions ~ QUSearchBlobs About

WebJobs / SampleQueueWeblob / Functions.PropertyBinding

Invocation Details runcions properysinding

Replay Function

Success 17 minutes ago (188 ms running time}

4 New queue message detected on 'initialorderproperty’.

PARAMETER VALUE NOTES

initialorder ["Name""Alex’,"Orderld""3e0f2debc 79245 18adbacd 5727 cbee”}
Name Alex
dequeueCount 2

log

Toggle Output

download
New order from: Alex
Message dequeued 2 times

FIGURE 2-17 Invocation details for a web job function.

A powerful feature in the dashboard made possible by the WebJobs SDK is the ability to replay a
function with the same or different values. Click the Replay Function button near the top of the page.
This will open a new page that shows the original values that were passed to the function. In this page,
you have an opportunity to edit the values before replaying (invoking) the function. For example,
change the initialorder field (the queue message) so that the Name property is “JohnDoe” and the
Orderld property is “1010101.” Set the Name to JohnDoe, as shown in Figure 2-18.

66

Microsoft Azure WebJobs Functions O\ Search Blobs About

Functions | Functions PropertyBinding

Replay Function runctions.propertyBinding
initialorder enter the queue message body

{"Name":"JohnDoe","Orderld":"10101017}

Name enter 3 value

JohnDoe

dequeueCount enter a value

2

Replay

FIGURE 2-18 Replaying a function invocation with different values.

Click Replay to replay the function with these values.

You can view the invocation log for this and other recent function invocations from the Functions
page. To get to the Functions page, click Functions in the menu at the top of the page. This will show
you some statistics for each function in the web job, such as the number of times the function was
successful or failed, and an invocation log of recent function invocations. The items listed in both
sections of this page also are linkable, so you can drill down into them for more details. Figure 2-19
shows what this page looks like for this web job. Notice the invocation log at the top of the Invocation
Log section for the PropertyBinding function that was replayed earlier.

Microsoft Azure Weblobs

Functions Invocation Log

FUMECTION MANE STATINTICS TN sTanmn NTATUN DETASL

FIGURE 2-19 Functions page of WebJobs Dashboard.
See Also An excellent narrative on how Azure WebJobs were used recently in a production application and

the benefits gained from this feature is available at http://www.troyhunt.com/2015/01/azure-webjobs-are-
awesome-and-you.html.

67

http://www.troyhunt.com/2015/01/azure-webjobs-are-awesome-and-you.html
http://www.troyhunt.com/2015/01/azure-webjobs-are-awesome-and-you.html

Summary

In this chapter, we discussed how WebJobs can be used to address background processing needs for
an Azure web app. We started by creating a simple .NET console application and then published it to
Azure to demonstrate how web jobs and the WebJobs Dashboard work at their most primitive level.
Then, we introduced the WebJobs SDK and learned how common messaging patterns between a web
app and a web job can be achieved with just a few lines of code and a couple of well-placed attributes.
We then revisited the WebJobs Dashboard and explored new features available to web jobs developed
using the WebJobs SDK.

This chapter covered essential knowledge developers need to get started building Azure WebJobs.
More information, including sample applications, tutorials, blogs, videos, and scenarios you can
implement using WebJobs is available at http://azure.microsoft.com/en-
us/documentation/articles/websites-webjobs-resources/.

68

http://azure.microsoft.com/en-us/documentation/articles/websites-webjobs-resources/
http://azure.microsoft.com/en-us/documentation/articles/websites-webjobs-resources/

Chapter 3

Scaling Azure Web Apps

Azure Web Apps offers flexibility and features that you can use to scale your web app to handle the
load your users place on it. Whether your application needs to handle a few hundred requests per day
or a few million requests per day, the Azure Web Apps scalability features provide ways for you to
deliver the right level of scale in a robust, cost-effective manner.

When you consider the scalability requirements of an application, you should look at its resource
requirements vertically (scaling up) and horizontally (scaling out). When you scale up a web app, you
increase the resource capacity, such as RAM and CPU cores, of the virtual machine on which your web
app is running. This is an important concept whether you are running in the cloud or on-premises. It
ensures that your application has the resources it needs to perform properly. In other words, you
rightsize the machine resources for the application.

When you scale out a web app, you increase the number of virtual machine instances on which your
web app is running. For the properly architected app, this means your web app can handle more load
and therefore service more user requests. But an effective scale out strategy involves more than just
increasing virtual machine instances. There are a few things you should consider carefully, which will be
discussed shortly. Furthermore, by leveraging the breadth of scalability features that Azure Web Apps
offers, you can achieve high availability and elastic scale that is common for many modern cloud
applications.

This chapter will discuss essential knowledge you can apply to scale your web apps.

Scale Up

The ability to scale up a web app exists only for web apps configured for Basic, Standard, or Premium
pricing tiers. These tiers give you a dedicated virtual machine instance for your web app and therefore
some choices for the capacity of the virtual machine. Load testing your app will give you an idea of
your application’s requirements for resources such as CPU and RAM. Knowing this will help you
determine an appropriate pricing tier for your application.

The compute capacity of Virtual Machines in the different pricing tiers is shown in Table 3-1 and
includes the number of cores and amount of RAM.

69

TABLE 3-1 Virtual Machine core and RAM capacity in each pricing tier

Premium (P1) Premium (P2) Premium (P3) Premium (P4)
Standard (S1) Standard (S2) Standard (S3)

Basic (B1) Basic (B2) Basic (B3)

1 Core 2 Cores 4 Cores 8 Cores

1.75 GB RAM 3.5 GB RAM 7 GB RAM 14 GB RAM

Similarly, the capacity for storage and web socket connections available in the different pricing tiers
is shown in Table 3-2.

TABLE 3-2 Virtual Machine storage and connection capacity in each pricing tier
Basic (B1, B2, B3) Standard (51, S2, S3) Premium (P1, P2, P3)
10 GB storage 50 GB storage 250 GB storage

Premium (P4)
500 GB storage

Note These tables do not represent the full matrix of features available in each pricing tier. Instead,
they identify core resource limits that you may take into consideration when deciding how to scale
your web app vertically. The complete list of limits for Web Apps is available at
http://azure.microsoft.com/en-us/documentation/articles/azure-subscription-service-limits/#web-
apps-websites-limits.

As an example, if you load test your app with anticipated load and determine you need a Virtual
Machine with two cores and more than 2 GB of RAM to meet your response goals, then you should
scale your web app to a Standard (S2) pricing tier. To do this using the Azure portal, from the Web App
blade click the Pricing tier web part in the Usage section. In the Pricing Tier blade, select the Standard
S2 plan. Click Select to change the web app to the new pricing tier. The Pricing tier web part in the
Web App blade will look similar to Figure 3-1.

Pricing tier
CONTOSD

=] Pals)

52 1 Medium Instances

FIGURE 3-1 The Pricing tier web part in the Web App blade.

See Also At the time of this writing, Microsoft announced the App Service Environment (ASE) in preview,
which is a Premium service plan offering additional security and scalability options. The Premium (P4)
capacities listed in Tables 3-1 and 3-2 are specific to the App Service Environment. You can learn more about
this at http.//azure.microsoft.com/en-us/documentation/articles/app-service-app-service-environment-intro/.

70

http://azure.microsoft.com/en-us/documentation/articles/azure-subscription-service-limits/#web-apps-websites-limits
http://azure.microsoft.com/en-us/documentation/articles/azure-subscription-service-limits/#web-apps-websites-limits
http://azure.microsoft.com/en-us/documentation/articles/app-service-app-service-environment-intro/

Scale Out

To scale out is to increase the number of virtual machine instances on which your web app is running.
The number of instances you can scale out is limited by the pricing tier configured for your web app.
Table 3-3 shows the number of instances you can scale out to in the various pricing tiers.

TABLE 3-3 Maximum Virtual Machine instances available by pricing tier

Free & Shared Basic Standard Premium Premium w/ASE
1 Shared 3 Dedicated 10 Dedicated 20 Dedicated 50 Dedicated

You can scale out the number of instances manually by using the Azure portal. From the Web App
blade, click the Scale web part in the Usage section. In the Scale setting blade, set Scale by to an
instance count that | enter manually. Use the slider control to change the Instances value. Or type the
number of instances (up to the maximum allowed) in the box to the right of the slider control. For
example, to set the number of Standard instances to 5, your Scale setting blade will look similar to
Figure 3-2.

Sc \ \ﬂttmg

|‘"§”§3 5

Scaleby | aninstance count that | enter manually v

_ Manual setup means that the number of instances you choose won't change, even if
there are changes in load.

Instances _—_d] 5

FIGURE 3-2 Manually setting number of instances in the Scale setting blade.

Descriptio

Dealing with the challenges of scaling out a web app

Scaling an app typically requires scaling out other resources the app depends on, and for most apps,
the database is the resource that can be the greatest bottleneck. For example, a web app with a
database may perform fine when there is just one instance of the web app. If you increase the

71

instances of your web app, you put more load on the database. To support the extra demand from the
web app instances, you will need to consider scaling up and possibly scaling out your database. If you
are using Azure SQL Database, there is very good documentation on how to assess performance of
your SQL Database and how to scale the database at https://msdn.microsoft.com/en-
us/library/azure/dn741338.aspx.

See Also To learn more about load testing and how you can use Visual Studio Online to load test your
application, see https.//www.visualstudio.com/get-started/test/load-test-your-app-vs.

Many web applications use session state, which can create a problem because the default in-process
session state provider requires sticky sessions. Sticky sessions ensure that a user’s requests are routed
back to the same server instance where the session was created. Unfortunately, this results in less-than-
optimal load balancing of traffic over time between the instances. Adding a distributed session cache is
an effective way to deal with this challenge. The Azure Redis Cache is the recommended cache service
in Azure. It is a distributed, in-memory cache delivered as a service, and Microsoft provides an ASP.NET
Session State Provider for use with the Redis Cache.

The combination of caching and properly scaling your database can help you achieve massive
scalability for your applications. For an example that shows how to use the Azure Redis Cache with a
SQL database and use the ASP.NET Session State Provider, see
http://azure.microsoft.com/blog/2014/06/05/mvc-movie-app-with-azure-redis-cache-in-15-minutes.

See Also Azure Web Apps assumes by default that your web app uses sessions. It does this by using the
Application Request Routing (ARR) feature in IIS and placing an ‘ARRAffinity’ cookie in the user’s browser
session. As requests arrive, an ARR front-end processes the cookie and then routes the request back to the
server instance that is associated with the cookie. This ensures that the user is routed to the same instance
when multiple instances are available.

If your application uses a distributed cache (such as Redis) or is completely stateless, then you can get better
load balancing by disabling instance affinity. For more information on how Azure Web Apps implements this
and how to disable it, see http.//azure.microsoft.com/blog/2013/11/18/disabling-arrs-instance-affinity-in-
windows-azure-web-sites/.

If your web app uses Microsoft Azure Storage in any way, then scaling out your web app will
introduce bottlenecks if your web app instances start to exceed your storage account scalability
targets. In this scenario, you may consider adding storage accounts and restructuring your code to use
different storage accounts for different parts of the application. Or you may be able to leverage
caching to solve the problem. More information about Azure Storage account limits is available at
http://azure.microsoft.com/en-us/documentation/articles/storage-scalability-targets/.

There are many other resources in Azure that your web app could have dependencies on. This is not
intended to be a complete list. The main takeaway from this section is that you realize that although
scaling out your web app is achieved easily through a few simple clicks in the Azure portal, you first
should give careful thought to the impact this could have on other resources in your resource group.
Not doing so could potentially degrade the performance of your application.

72

https://msdn.microsoft.com/en-us/library/azure/dn741338.aspx
https://msdn.microsoft.com/en-us/library/azure/dn741338.aspx
http://azure.microsoft.com/blog/2014/06/05/mvc-movie-app-with-azure-redis-cache-in-15-minutes
http://azure.microsoft.com/blog/2013/11/18/disabling-arrs-instance-affinity-in-windows-azure-web-sites/
http://azure.microsoft.com/blog/2013/11/18/disabling-arrs-instance-affinity-in-windows-azure-web-sites/
http://azure.microsoft.com/en-us/documentation/articles/storage-scalability-targets/

Scaling web apps using Autoscale

Autoscale is a feature in the Azure platform that enables you to automatically scale out (and in) your
cloud applications. This can deliver substantial cost savings on your cloud computing while giving you
flexibility to scale out to capacity levels to support increased demand from end users.

The Autoscale feature is not unique to Azure Web Apps. It also is available to Cloud Services and
Virtual Machines. Although there are some differences in how Autoscale is configured for Web Apps
compared to other compute services, for the most part the concepts you will learn here can be applied
to other compute services.

Autoscale lets you scale out your web app instances based on predefined schedules, metrics such as
CPU, or both. To use Autoscale, you must be in a Basic pricing tier or higher, and you are limited to
scaling out to the maximum number of instances available for your pricing tier, as mentioned earlier in
Table 3-3.

Note Autoscale is a feature you can use to scale in/out your web app. You cannot use it to scale
up/down your web app.

Autoscale based on CPU percentage

Autoscale may be configured in the Scale setting blade of the Azure portal, which you can access from
the Web App blade by clicking the Scale web part in the Usage section.

To configure Autoscale to scale by CPU percentage, change the Scale by dropdown to CPU
Percentage. As a result, the Instances setting will become a number range instead of a single number.
You also will see a Target range setting appear under the Instances setting.

The Instances setting is used to define the minimum and maximum number of instances on which
you want your web app running. As the CPU percentage exceeds a certain threshold, Autoscale will
increase the number of instances up to the maximum instances you specify. As the CPU percentage
falls below a certain threshold, Autoscale will decrease the number of instances down to the minimum
instances you specify. Set Instances to be in the range of 3 and 8.

The Target range setting defines the minimum and maximum CPU percentage to target. As long as
the CPU percentage is within this range, Autoscale will not increase or decrease the number of
instances. When the CPU percentage exceeds the maximum CPU percentage you specify, Autoscale will
add an instance. If CPU percentage continues to exceed the maximum CPU specified, then Autoscale
will add another instance. At no point will you have more than the maximum number of instances
specified in the Instances setting. Similarly, when CPU percentage falls below the minimum CPU
percentage you specify, Autoscale will remove an instance. If CPU percentage continues to fall below
the minimum CPU percentage specified, then Autoscale will remove another instance. At no point will

73

you have fewer than the minimum number of instances specified in the Instances setting. Set the
Target range to be between 20 and 80 percent. The bottom of the Scale setting blade will look similar
to Figure 3-3.

Scaleby | CPU Percentage -

_ Automatically scale up or down based on CPU Percentage. Choose an average value
you want to target.

nees 3 [_———d] g
getrange | 20 E ::| 80

FIGURE 3-3 Scaling by CPU percentage in the Scale setting blade.

Click Save in the toolbar at the top of the Scale setting blade.

Note The CPU percentage is measured as an average across all instances. For example, if you have
two instances, one of which is running at 50 percent CPU and the other of which is running at 100
percent CPU, then the CPU percentage would be 75 percent for all the instances at that point in time.
Autoscale uses this value to determine when to scale instances up or down.

After several minutes, you will notice the number of instances step down to 3. The default
configuration will remove an instance every five minutes until the instance count reaches the minimum
instances configured for the range. Later, you will see where this can be changed.

Close the Scale setting blade and scroll down to the Usage section. The Scale web part should
indicate that Autoscale is On and the Instances are 3, as shown in Figure 3-4.

Scale
CONTOS0

Autoscale On

Instances 3

FIGURE 3-4 Scale web part in the Web App blade.

Autoscale based on a recurring schedule

Autoscale also can be configured based on a schedule. This can be particularly useful when demand for
your web app is predictable. For example, if your web app provides services for an industry where most
work is done Monday through Friday, then you could configure Autoscale to increase the number of
instances during the week to support peak demand and decrease the number of instances on
weekends when demand is very light.

You also can apply a schedule to a performance-based configuration, such as the CPU percentage
metric discussed in the previous section. This gives you the flexibility of scaling out dynamically to
support increasing traffic only during a time period you specify. To demonstrate, this concept, we'll

74

extend the Autoscale configuration based on CPU percentage to be bound to a particular time period.

In the Scale setting blade, change Scale by to schedule and performance rules. This will change the
content in the blade so that the Settings section shows the Autoscale profiles and rules, as shown in
Figure 3-5.

Scaleby | schedule and performance rules -

 Creste your own set of rules. Create a schedule that adjusts your instance counts based
on time and performance metrics.

Description
Defaul, scale 3 - 8
CPU Percentage > 80 (increase count by 1)
Settings CPU Percentage = 20 (decrease count by 1)
Add Rule

Add Profile

FIGURE 3-5 Configuring Autoscale in the Scale setting blade based on schedule and performance rules.

In Figure 3-5, there is one profile shown, which is identified as Default, scale 3 — 8. Under the profile
are two rules summarizing the CPU percentage minimum and maximum configurations. Click the
profile Default, scale 3 — 8. This will open the Scale profile blade, where you can rename the profile,
change the target range, and apply a schedule by changing the Type. The Scale profile blade will look
similar to Figure 3-6.

Scale profile

Mame
Default

Type
recurrence | fixed date

Target range

3 { e | 8

FIGURE 3-6 Scale profile blade in the Azure portal.

Set Type to recurrence.

Click the dropdown for Days and uncheck Saturday and Sunday, leaving Monday through Friday
checked. The Scale profile blade will now look similar to Figure 3-7.

75

Scale profile

Name
Default
e
ahways [T ficed date
Target range
3 { o o | 8
Days
5 selected v
Start time
12:00
Time zone

(UTC-06:00) Central Time (US & Canada) v

FIGURE 3-7 Scale profile blade with a recurring date configuration for weekdays.

Click OK in the Scale profile blade.
Click Save in the toolbar at the top of the Scale setting blade.

Now, the Autoscale based on CPU percentage will be in effect only Monday through Friday.

Note In this discussion, we are using a recurring schedule to demonstrate the scheduling features in
Autoscale. You also could have selected a fixed date for the type. This would allow you to specify a
specific starting date and time, and ending date and time for the profile.

Suppose now that you want to scale down the number of instances to just one on Saturday and
Sunday. To achieve this, you would add a profile to the Autoscale configuration. To demonstrate this,
click Add Profile in the Settings section of the Scale setting blade. Configure the Scale profile blade as
follows:

Set Name to Weekend.

Set Type to recurrence.

Set the minimum and maximum of the Target range to 1.
In the Days dropdown, check only Saturday and Sunday.

The Scale profile blade will look similar to Figure 3-8.

76

Scale profile

Name
‘ Weekend

Type

vy | v e

Target range
1 1

Days

[2 selected v

Start time
12:00
Time zone

(UTC-06:00) Central Time (US & Canada) v

FIGURE 3-8 Scale profile blade with a recurring date configuration for weekends.

Click OK in the Scale profile blade.
Click Save in the toolbar at the top of the Scale setting blade.

You now have two profiles defined for Autoscale: one that will scale between 3 and 8 instances
based on CPU percentage during the week and another that will scale down to 1 instance on the
weekends. The Scale setting blade will look similar to Figure 3-9.

Scaleby | schedule and performance rules v

Create your own set of rules. Create a schedule that adjusts your instance counts based

Description . time and performance metrics.
Default, scale 3 - &
CPU Percentage > 20 {increase count by 1)
CPU Percentage « 20 (decrease count by 1)
Settings Add Rule

Weekend, scale 1-1
Add Rule
Add Profile

FIGURE 3-9 Configuring Autoscale in the Scale setting blade with two profiles.

Tip It is not possible to configure Autoscale to scale down to 0 instances. If you want to shut down
your web app completely, then you could use the Stop-AzureWebsite command from the Azure
PowerShell module. You also could automate this on a schedule by creating a Runbook and using
Azure Automation, as explained at http://stackoverflow.com/questions/25929339/how-do-you-turn-
an-azure-website-on-and-off-on-a-schedule.

Understanding Autoscale rules

Earlier, you saw how to configure Autoscale based on CPU percentage, and if you were patient, you
noticed the number of instances decrease. This was based on default settings for the CPU Percentage
scale rule. You can change these behaviors by editing the Autoscale rule. As an example, if you wanted
to be more aggressive about scaling out your web app instances, you could have Autoscale add two

77

http://stackoverflow.com/questions/25929339/how-do-you-turn-an-azure-website-on-and-off-on-a-schedule
http://stackoverflow.com/questions/25929339/how-do-you-turn-an-azure-website-on-and-off-on-a-schedule

instances (or more) when it takes action to scale out your instances.

To demonstrate this, click the CPU Percentage > 80 (increase count by 1) rule in the Scale setting
blade. In the Scale rule blade, change the Value to 2, as shown in Figure 3-10.

80

300

Resource

contos0 (serverfarms) v
Metric name

CPU Percentage v
Operator

Greater than v

Threshold

Duration (minutes)

Time aggregation
Average

Action
increase count by ~

Value

2

5

Cool down (minutes)

FIGURE 3-10 Scale rule blade in the Azure portal.

Click OK to save the Scale rule. Now, if the CPU percentage were to exceed 80 percent, then
Autoscale will add two instances at a time up to the maximum number of instances you specified for

the instances range.

Additional metrics by which to scale

The Scale rule blade gives you an opportunity to specify metrics by which to scale other than CPU
percentage. In Figure 3-10, notice the Metric name field is a dropdown. You can select a different
metric when editing an existing scale rule or adding a new one. The available metrics are as follows:

CPU Percentage
Memory Percentage
Disk Queue Length
Http Queue Length
Data In

Data Out

Another option for configuring Autoscale rules is to scale by queue depth for a queue in your Azure
Storage account. To do this, in the Scale rule blade, set Resource to Storage Queue. This will add an
option where you can select an existing Azure Storage queue. Set the Metric name to Message Count.

78

The Threshold field in this scenario defines the queue depth for which you want an Autoscale action
triggered. For example, if you want instances added when your queue depth exceeds 125 messages,
then you could set this to 125, and Autoscale will add the number of instances indicated in the Value
field. A scale rule configuration such as this would look similar to Figure 3-11.

Resource

[storage Quewe v

QUEUE >
orders

Metric name

[Message Count v

Operator
Greater than v

Threshold

‘ 125

Duration (minutes)

200
Time aggregation

Average ~
Action

increase count by ~
Value

1

Cool down (minutes)

5

FIGURE 3-11 Scale rule blade configured to scale by queue depth in an Azure Storage queue.

You have a great amount of flexibility in how you scale your web apps and the behavior of
Autoscale actions. This section introduced you to some common scaling strategies you can apply in
your web apps. For more information on the properties that can be set for profiles and rules, consider
looking at the REST APl documentation for Autoscale at https://msdn.microsoft.com/en-
us/library/azure/dn510372.aspx.

Turn off Autoscale

Regardless of how Autoscale has been configured, it can be turned off in the Scale setting blade by
setting Scale by to an instance count that | enter manually. Next, set Instances to the number of
instances you want and click Save in the toolbar at the top of the blade.

Scale globally with Azure Traffic Manager

The scalability discussion until now has been limited to scalability within a single deployment. For
example, you have essential knowledge to scale your web app that is deployed in a single region, such
as the Central US region. If your users are mostly in the United States and the peak demand for your
web app is within the capacity of this single deployment, then you may have achieved your scalability
utopia. But for applications that need to scale beyond the capacity of a single deployment or whose
users are globally dispersed, additional scalability techniques should be considered.

79

https://msdn.microsoft.com/en-us/library/azure/dn510372.aspx
https://msdn.microsoft.com/en-us/library/azure/dn510372.aspx

Deploying your web app to multiple regions (or datacenters) is a scale-out strategy that can be used
to achieve massive scalability for your web app. Assume, for example, that you have a web app
deployment in the Central US region. If your users are dispersed around the world, then you may
choose to deploy to the West US, East US, and North Europe regions as well. Doing so will significantly
increase capacity of your web app. But this introduces some new challenges such as how users are
routed to the different deployments and how the database is synchronized between deployments.
Fortunately, Microsoft Azure provides services and features to achieve this level of scale and address
the challenge of data synchronization between deployments.

The challenge of routing users to one of many web app deployments can be met by using Azure
Traffic Manager. This is a networking service that can be used to achieve global scale for your web
apps by allowing you to control how user traffic is routed to multiple deployments of your application.
This service is not unique to Azure Web Apps. It can be used to direct traffic to deployments of Cloud
Services, Web Apps, and even external HTTP/S endpoints. To use Azure Traffic Manager with your web
apps, your web apps must be running in the Standard (or higher) pricing tier.

To use Traffic Manager, you first must create a Traffic Manager profile, which identifies a unique
DNS name for the profile in the *trafficmanager.net domain, a list of endpoints (web app deployments)
that you specify, and a load balancing method, which can be one of the following:

e Performance This method will route users to the deployment endpoint that has the lowest
network latency for the user. For example, if your web app is deployed in the West US, Central
US, and East US regions and a user is located geographically somewhere in the eastern United
States, then this method likely will resolve the user to the East US deployment.

e Round Robin This method will distribute users to endpoints in a round-robin fashion so that
traffic is distributed evenly across all the endpoints.

e Failover This method is used to identify a primary endpoint to be used for all traffic. If the
endpoint becomes unavailable, users are routed to the next endpoint listed in the profile. When
the primary endpoint becomes available again, Traffic Manager will continue routing users to
the primary endpoint.

See Also To learn more about how the Traffic Manager load balancing methods work, see
http.//azure.microsoft.com/en-us/documentation/articles/traffic-manager-load-balancing-methods/.

The DNS name for the profile is referenced in your DNS server as a CNAME record. For example,
suppose your custom domain is contoso.com and you have a Traffic Manager profile with the DNS
name contoso.trafficmanager.net. To use the Traffic Manager profile for your deployments, you would
create a CNAME record that maps www.contoso.com to contoso.trafficmanager.net. When users make
a request to www.contoso.com, a DNS query is invoked. The CNAME record results in the DNS query
being forwarded to contoso.trafficmanager.net, where your Traffic Manager profile is defined. Based
on the load balancing method you have configured for your profile, Traffic Manager selects an
endpoint and returns the endpoint’s DNS name, such as contoso-west-us.azurewebsites.net. The user’s

80

http://azure.microsoft.com/en-us/documentation/articles/traffic-manager-load-balancing-methods/
http://www.contoso.com/
http://www.contoso.com/

DNS server resolves contoso-west-us.azurewebsites.net to an IP address and returns it to the user,
where an HTTP request is then made against the web app endpoint.

Note Traffic Manager essentially is an extension of the DNS query process that occurs when users
access web endpoints. It is not a device through which all traffic is routed, so no overhead is incurred
beyond the initial DNS query.

Create a Traffic Manager profile

At the time of this writing, the Azure Traffic Manager was not available in the Azure portal, so this
section will use the old portal at https://manage.windowsazure.com.

To create a new profile, select NEW > NETWORK SERVICES > TRAFFIC MANAGER > QUICK CREATE.
Enter a unique DNS prefix name and set LOAD BALANCE METHOD to Performance, as shown in Figure
3-12.

Rew
Failover

CREATE

FIGURE 3-12 Create a new Traffic Manager profile in the Azure Management Portal.
Click CREATE to create the profile.

Add endpoints to the profile

After the Traffic Manager profile is created, click the profile name in the Traffic Manager page of the
portal. Next, click the ENDPOINTS tab at the top of the page.

Note The steps demonstrated in this section assume the Contoso web app already has been
published to three web app environments, as follows: contos0.azurewebsites.net, contos0-
west.azurewebsites.net, and contos0-east.azurewebsites.net.

In the ENDPOINTS page, click the ADD button at the bottom of the page.

In the ADD SERVICE ENDPOINTS dialog, set SERVICE TYPE to Web app.

81

https://manage.windowsazure.com/

In the Service Endpoints section, the dialog will list the available web app endpoints, and you can
check the ones you want to add to the Traffic Manager profile. Select the check box for each endpoint
you want to add. The ADD SERVICE ENDPOINTS dialog will look similar to Figure 3-13.

Select the endpoints to include in this profile.

SERVICE TYPE SELECTED ENDPOINTS
Web app ﬂ contos0-east.azurewebsites.net
contos0.azurewebsites.net

contos0-west.azurewebsites.n...
SERVICE ENDPOINTS

[¥] contoso-eastazurewebsites.
[4] contoso.azurewebsites.net

[¥] contos0-west.azurewebsites.

FIGURE 3-13 Adding web app endpoints to a Traffic Manager profile.
Click the check mark in the lower-right corner of the dialog to add the endpoints to the profile.

Note As the update to the profile is being made, Azure Traffic Manager will check each endpoint to
make sure it is functioning. By default, this means issuing an HTTP request to the root of each site. If it
receives an HTTP 200 (OK), then it is considered a healthy endpoint. If Traffic Manager is not able to
get a successful response from an endpoint, then it will stop routing traffic to the endpoint. When the
endpoint is determined to be healthy again, Traffic Manager will resume routing traffic to it.

After a few minutes, the endpoints will be added to the profile and will appear online, as shown in
Figure 3-14.

contosO

&3 DASHBOARD ENDPOINTS CONFIGURE

DNS NAME STATUS TYPE LOCATION el
contos.azurewebsites.net Online Web app South Central US
contosD-west.azurewebsites.net Online Web app West US

FIGURE 3-14 Endpoints shown as online in the Traffic Manager profile.

To test the configuration, click the CONFIGURE tab at the top of the page. In the general section of
82

the CONFIGURE page, copy the DNS NAME property. Open a browser and paste the DNS NAME into
the URL. The default page from one of the three deployments will be returned and will look similar to
Figure 3-15 if you are using the default MVC templates for your web app.

coniosi traffiomanagernet | Home Page - My ASP.NET _ |

ASP.NET

ASP.NET is a free web framework for building great Web sites
and Web applications using HTML, CSS and JavaScript.

v

FIGURE 3-15 Default web app page rendered as a result of navigating to the Traffic Manager DNS name.

Additional services for achieving massive scale

When you scale your web app to multiple deployments, you should consider how your application'’s
data is managed. For example, if you store customer data in a database and each deployment has its
own database resource, then you need a way to synchronize the data between locations. Azure SQL
Database provides an active geo-replication feature that can be used to achieve data continuity. More
information about this feature is available at https://msdn.microsoft.com/en-
US/library/azure/dn741339.aspx.

A content delivery network (CDN) can be used to cache static data used in your web app, such as
media and JavaScript files. A CDN caches static data at locations closer to your end users. This can
improve the experience for the end user by minimizing network latency. It also improves performance
of your web app by eliminating the load on the web server to serve the static content. Azure provides a
CDN service that you can use to cache data from Azure Blob storage and Azure Web Apps. More
information about this service is available at http://azure.microsoft.com/en-
us/documentation/services/cdn/.

Scaling WebJobs

Because web jobs run in the context of a web app, when you scale out your web app, your web job is
scaled out with it. This is the default behavior; therefore, no action is needed to scale out your web
jobs.

Note If you have multiple instances of a web job that use a trigger attribute to invoke a function,
Azure will try to invoke the function on a web job where the server resources are most available. One
way the load on a server is measured is via the request queue. If web traffic is high on one instance at

83

https://msdn.microsoft.com/en-US/library/azure/dn741339.aspx
https://msdn.microsoft.com/en-US/library/azure/dn741339.aspx
http://azure.microsoft.com/en-us/documentation/services/cdn/
http://azure.microsoft.com/en-us/documentation/services/cdn/

the time a function is being triggered, then Azure will find the instance with the lowest load and
invoke the function on that instance.

In some situations, it may be preferable to have only one instance of your web job running even
though you have multiple instances of your web app. For example, you may have a web job that
performs maintenance work that doesn’t need to be scaled out. This can be achieved by adding a file
to your web job project called settings.job. The contents of the file must be formatted as JSON and
must contain a property setting for is_singleton. Setting this property to true will result in only one
instance of a web job running, as shown in Listing 3-1.

LISTING 3-1 settings.job.

{ "is_singleton" : true }

If you add this file to your web job project, be sure to set Copy to Output Directory to Copy if
newer, as shown in Figure 3-16. Otherwise it won't get published when you publish the web app.

Solution Explorer v 3 x
@D o-20RFP F=]
p -

17 Solution ‘ScaleDemos.Solution (2 projects)
b &7 Contos0.WebApp
4 +[&] MaintenanceWeblob

b + & Properties

b = References

+¢¥2) App.config
P + € Functions.cs
+¥.) packages.config
b +€* Program.cs

ol settingsjob

-Soluuon [SGICIEY Team Explorer Notifications

Properties * i x
settings.job File Properties
B U

Build Action None

Copy to Output Directory Copy if newer

Custom Tool

Custom Tool Namespace

File Name settingsjob

FIGURE 3-16 Web job project with settings.job file.

Summary

This chapter discussed the notion of scale up and scale out and provided essential information
necessary to take advantage of the scalability features available in Azure Web Apps. You learned how
Autoscale can be used to scale out your web app automatically based on various metrics and how to
schedule Autoscale rules for web apps where traffic patterns are highly predictable. Next, you saw how
you can achieve massive scalability using Azure Traffic Manager. We concluded with a brief review of

84

how web jobs scale out and showed how you can make your web jobs run as a singleton in a multi-
instance deployment.

Throughout this chapter, you learned that scalability of an app is more than just increasing the
capacity of a machine or increasing the number of instances. You also should give careful thought to
the architecture of the application so that you can gain the maximum benefit. An excellent discussion
on these concepts is available at https://msdn.microsoft.com/en-us/magazine/dn786914.aspx. For a
discussion of scalability lessons learned from real production applications, see Mark Russinovich's
presentation at the 2015 Strategic Architect Forum at http://channel9.msdn.com/blogs/Microsoft-
Architecture/Mark-Russinovich-Strategic-Architect-Forum-2015-Building-Applications-for-Azure-
Lessons-from-Scale.

85

https://msdn.microsoft.com/en-us/magazine/dn786914.aspx
http://channel9.msdn.com/blogs/Microsoft-Architecture/Mark-Russinovich-Strategic-Architect-Forum-2015-Building-Applications-for-Azure-Lessons-from-Scale
http://channel9.msdn.com/blogs/Microsoft-Architecture/Mark-Russinovich-Strategic-Architect-Forum-2015-Building-Applications-for-Azure-Lessons-from-Scale
http://channel9.msdn.com/blogs/Microsoft-Architecture/Mark-Russinovich-Strategic-Architect-Forum-2015-Building-Applications-for-Azure-Lessons-from-Scale

Chapter 4
Monitoring and diagnostics

Microsoft Azure Web Apps, Visual Studio, and the Azure platform collectively provide a rich set of
services and tools that you can use to monitor and troubleshoot your applications. You can monitor
your application in real time and interact with near-real-time data using the Azure portal. Or you can
have the platform alert you if performance degrades or your application becomes unavailable. If you
need to debug your app live or post-mortem, you will find the Azure Web Apps platform rich with data
and analysis to get you to the root cause and resolution as fast as possible.

Monitoring and diagnostics is a large topic and easily could be an entire book by itself. So the goal
of this chapter is not to take you on a deep journey through every feature. Instead, the goal is to
introduce you to features of the platform and give you essential knowledge that you can use to get
started diagnosing and monitoring your web apps. We will start by examining the platform’s logging
features and then transition into monitoring and diagnostic services.

Introduction to diagnostic logs

Diagnostic logs for a web app generally fall into one of two categories: application diagnostic logs and
site diagnostic logs. Application diagnostic logs are generated as a result of logging code you add to
your application. Site diagnostic logs are generated automatically by a monitoring service configured
on the web server on which your web app is running.

For demonstration purposes, assume the HomeController of an MVC application contains the
following code as shown in Listing 4-1 and has been published to Azure Web Apps.

LISTING 4-1 Tracing code added to default page of HomeController.

public class HomeController : Controller

{

public ActionResult Index()

{
Trace.TraceInformation("Entered {0}.", this.GetType().Name);
Trace.TraceWarning("Something could be wrong here.");
Trace.TraceError("Something is definitely wrong here.");
Trace.TraceInformation("Leaving {0}.", this.GetType().Name);
Debug.WriteLine("This is a debug only trace message.");
return View();

}

86

We will use this code to generate some log files and explore the types of logs available. The types of
logs that can be enabled for a web app are as follows:

Application logging These are logs that are written specifically from your application code
using diagnostic classes such as the System.Diagnostics.Trace or the System.Diagnostics.Debug.
The latter only works if you publish a debug build of your web app (something you should
never do on a production app). When you enable application logging, you also must specify a
log level, which can be Error, Warning, Information, or Verbose. Each log level includes the
previous level. For example, if you want only error logs, then you would set the logging level to
Error. If you want only error and warning logs, then you would set the logging level to Warning,
and so on.

Web server logging These are HTTP logs (that is, IIS logs) that are written by the web server
on which your web app is running. Data in these logs contains fields defined in the W3C
extended log file format defined at
https://msdn.microsoft.com/library/windows/desktop/aa814385.aspx and includes things such
as the time it took the server to process a request, cookies that were sent to the client or
received by the client, the client’s IP address, and much more.

Detailed error messages These are HTML files written by the web server for any requests to
the server that result in an HTTP status code 400 or above response. For example, if you request
a resource that doesn't exist on the server, you will get an HTTP 404 (Not Found) response.
With detailed error messages enabled, an HTML file also will be generated containing
suggested causes, possible solutions, and additional details about the request.

Failed request tracing These are XML files written by the web server containing a deeper level
of trace information for failed requests. These logs contain visibility into the HTTP modules that
were invoked when processing the request, time taken in each module, module tracing
messages, and more. A new XML file is generated for each failed request and is named
fr<x>.xml, where <x> is an incrementing number. Failed request logs are intended to be
viewed using a browser, and Azure Web Apps facilitates this by generating a style sheet file
named freb.xs/ in the directory where these files are stored.

Tip The Verbose log-level in application logging will include logs written using the
System.Diagnostics.Debug class only if you publish a debug build of your web app. For example, if you
use Debug.WriteLine() as a debugging aid in your code, then setting the log level to Verbose will
enable you to see these logs when your web app is running in Azure. This behavior does not apply to
release builds of your web app.

Debug logging is intended primarily for local development and debugging, so you shouldn’t deploy
debug builds to Azure unless it is in a Dev/Test environment and you are troubleshooting an issue that
requires additional debug logging.

87

https://msdn.microsoft.com/library/windows/desktop/aa814385.aspx

Enable application and site diagnostic logs

Application and site diagnostic logs can be enabled from the Logs blade in the Azure portal. Starting
from the Web app blade, click Settings in the toolbar. In the Settings blade, click Application settings.
From here, you can enable the logging, as shown in Figure 4-1.

Application Logging (Filesystem)

KN -
Level

Web server logging

El -

Detailed error messages

KN -

Failed request tracing

El -

FIGURE 4-1 Application and site diagnostic log configuration in the Azure portal.

Logging also can be enabled from Visual Studio using the Server Explorer window. In Server
Explorer, expand the App Services node and right-click the web app. Select View Settings. In the Web
App Settings section, you can enable the logs using the drop-down boxes. To save the changes to your
web app environment, click Save at the top of the window, as shown in Figure 4-2.

W save @ Refre

Web App Settings
NET Framework Version | v4.5
Web Server Logging On
Detailed Error Messages On

Failed Request Tracing On

Application Logging

Ver
(File System) rtinee

Remote Debugging off

FIGURE 4-2 Application and site diagnostic log configuration in Visual Studio.

Store log files in the web app file system

Log files for an Azure web app are stored on the web server's file system hosting your web app. This is
the default configuration. The file system generally is intended to be used for short-term storage of log
files because it is limited to the capacity of the web hosting plan. Furthermore, when the virtual
machine (VM) on which your web app is running is updated, these logs are lost as a result of your web
app instance being moved to another VM instance.

The capacity available for site diagnostic logs is restricted by default to 35 megabytes (MB), but you
can increase it up to 100 MB. The capacity of application diagnostic logs is limited by the local storage
capacity your web hosting plan provides. As you reach capacity, existing log files are overwritten with

88

new log files as needed to preserve the storage space on the file system. Table 4-1 shows the path
where each type of diagnostic log is stored. Later in the chapter, you will learn ways you can access
these files.

TABLE 4-1 Diagnostic log file locations on a web server’s file system

Diagnostic Log Type File system Location

Application logs D:\home\LogFiles\application

Web server logs D:\home\LogFiles\http\RawLogs

Detailed error messages D:\home\LogFiles\DetailedErrors

Failed request tracing D:\home\LogFiles\W3SVC<x>, where <x> is a random number

Store log files in Azure Storage

Log files also can be stored in an Azure Storage account using table and blob storage. This has the
advantage of giving you more storage space (limited only to the capacity of your storage account) to
store your log files, more reliability (you don't lose data when the hosting VM is updated), more data
logged for each event, and the ability to set retention policies for the logs. Additional data that is
captured in the log files when using Azure Storage includes data such as the applicationName,
instanceld, eventTickCount, and Thread ID (TID).

At the time of this writing, configuring application diagnostic logs and site diagnostic logs for
storage in Azure Storage is not supported in the new Azure portal. To configure these logs for Azure
Storage, you must use the old portal at https://manage.windowsazure.com.

To configure your web app to store diagnostic logs in Azure Storage, go to the CONFIGURE page of
the web app in the Azure Management portal.

Application diagnostic logs are configured in the application diagnostics section. One thing unique
to application diagnostics is the ability to enable logging and log levels per storage location. For
example, you can have Verbose logs stored in the web app’s file system, Error and Warning logs stored
in Azure Table Storage, and Verbose logs stored in Azure Blob Storage all at the same time, as shown
in Figure 4-3. The green buttons labeled Manage Table Storage and Manage Blob Storage will pop out
a dialog where you can select a new or existing table or blob container in which to store the logs.

Tip Configuring logging and log levels per storage location has the added advantage of isolating log
files by levels. For example, you probably want to respond to errors quickly. This will be easier for you
to do if you are looking only at a log file of errors.

89

https://manage.windowsazure.com/

application diagnostics

APPLICATION LOGGING n OFF
(FILE SYSTEM)

APPLICATION LOGGING n OFF
(TABLE STORAGE)
i v

APPLICATION LOGGING n OFF
(BLOB STORAGE)

SET RETENTION D

FIGURE 4-3 Application diagnostics configuration in the Azure Management portal.

Site diagnostic logs are configured in the site diagnostics section. Storage of site diagnostics logs in
Azure Storage is limited to web server logging using Azure Blob Storage. It is not possible to store this
log using Azure Table Storage. Detailed error messages and failed request tracing cannot be
configured to use Azure Storage and therefore always will be written to the web app'’s file system.
Figure 4-4 shows the configuration to store web server logging (lIS logs) in Azure Blob Storage with a
retention policy of 14 days.

site diagnostics

WEB SERVER LOGGING OFF JEelicl FILE SYSTEM

SET RETENTION

RETENTION PERIOD days

DETAILED ERROR MESSAGES “ OFF
FAILED REQUEST TRACING “ OFF

FIGURE 4-4 Site diagnostics configuration in the Azure Management portal.

As a general rule, it is recommended that site diagnostic logging be enabled for your web app and
stored in Azure Storage. This ensures that you have diagnostics data with which to work when a
problem occurs. Then, if you need additional information for troubleshooting, enable application

90

diagnostic logging at the appropriate level (Error, Warning, or Information) to capture additional
application-specific information.

Access and download diagnostic log files

Whether your diagnostic logs are stored on your web app’s file system or in Azure Storage, it is easy to
get to your files to view or download them using a variety of tools.

Access log files stored in the web app file system

This section will introduce you to some common techniques for accessing files on your web app’s file
system.

Retrieve log files using FTP

You can use an FTP client to connect to your web app’s file system and access your logs. To connect to
the file system using an FTP client, you will need to configure your FTP client with the host name, user
name, and password. These can be obtained from the Web App blade in the Azure portal. The host
name and user name are available in the Essentials section at the top of the blade, as shown in Figure
4-5.

RUNNING

. contos0
WEB APP

8 @ 5 L @ ¥
Settings Browse Start Stoy Swap Restart Delete Get
publish .

Essentials -~ /’_f %Q\ 0

A \ ftpy//waws-prod-sn1-007.ftp.azurewebsites...
5 on id FTES hostname
21100501-3878-4f3c-8cac-a31550e74d9: ftps://waws-prod-sn1-007.ftp.azurewebsite...

FIGURE 4-5 FTP host name and user name in Web App blade.

The password can be retrieved from the PublishSettings file by clicking the Get PublishSettings icon
in the toolbar of the Web App blade. This will download the PublishSettings file for your web app. The
PublishSettings file is an XML file, so you can open it with any text editor. In the PublishSettings file,
locate the userPWD property in the <publishProfile> section.

Tip You should delete the PublishSettings file from your local drive after you are finished with it
because it contains credentials used to access your web app’s file system.

91

After connecting to the file system, drill down into the LogFiles folder, where you will find the
application and site diagnostic logs. Figure 4-6 shows the failed request logs and the associated style
sheet (.xsl) from an FTP client application.

Remote site: | /LogFiles/W3SV(C568291462

L/

N R R

R data
=- & LogFiles

application
DetailedErrors
http

kudu
SiteExtensions
Transform
W3SV(568291462
W3SV(568291463

Filename

ki

Filesize Filetype

£ £r000001.xml
@ 1r000002xm! 262,115 XML File
frebxs!

262,089 XML File

101,207 XSLFile

FIGURE 4-6 Accessing failed request logs using an FTP client.

Retrieve log files using Server Explorer

The Server Explorer window in Visual Studio gives you quick and easy access to your log files. Expand
the App Service node for your web app and locate the LogFiles folder, where you can navigate into
each of the diagnostic log folders. You can view the logs directly from Visual Studio or download them.
Figure 4-7 shows the failed request log opened in Visual Studio. Notice also that Visual Studio properly
applied the style sheet to the viewer for a richer viewing experience.

4

Server Explorer

¥'s
4 D Azure (Filtered - 1 subscriptions)
4 & App Service

alk

& Contos0
4 & contos0

b @i Files
4 [Log Files
3 application
b DetailedErrors
14 http
14 kudu
13 SiteExtensions
b Transform
4 W3SV(C568291462
[r000002xmi
[r000001.xmi
2* freb.xs!

14 W35SVC568291463
b & Weblobs

b & Cloud Services

b HDInsight

b [[J Mobile Services
b & Notification Hubs

URL: |C:\Users\Rick\AppData\Local\Ti

http://contos0:80/...0DE 404, 15 ms, GET + X ERGENE

15 ms, GET

(Do Request Compact
Summary [07" View

ails.

= Request Summary

Url http://contos0: 80/asd

App Pool contos0
Authentication anonymous

User from token 1IS APPPOOL\contosO

ache\contos0\Log

Request Diagnostics for GET http://contos0:80/asd

Activity 1D {00000000-0000-0000-B143-

008000000072}

= Errors & Warnings

No. | Severity Event

149. view Warning

Site 568291462
Process 332572

Failure Reason STATUS_CODE
Trigger Status 404

Final Status 404

Time Taken 15 msec

Module Name
ManagedPipelineHandler

trace MODULE_SET_RESPONSE_ERROR_STATUS

568291462\fr000001.xm!

FIGURE 4-7 Viewing a failed request log from Server Explorer.

If you want to download all the logs at once, you can do so by right-clicking the web app in Server
Explorer and selecting View Settings. Click on the Logs tab on the left of the settings dialog. Click the
Download Logs link in the Actions section, as shown in Figure 4-8.

92

Actions
1 oo

& Conf

Diagnostic Summary

2 messages in the last: | 15 minutes ~

Dateand T Application Level Mess. ProcessID Thread ID
5/13/2015 * contos0 Warning Some 338720 6
5/13/2015 * contos0 Error Some 338720 6

FIGURE 4-8 Logs dialog in Visual Studio.

Retrieve log files using the Azure Web App Logs Browser site extension

The Azure Web App Logs Browser is a site extension you can add to your web app, resulting in easy
access to your files using your browser. To get to it, starting from the Web App blade of your web app,
click Settings in the toolbar. In the Settings blade, click Extensions. In the toolbar of the Installed Web
App Extensions blade, click Add. Click Azure Web App Logs Browser. Click OK to accept the legal
terms. Click OK to install the extension. After a few seconds, the Installed Web App Extensions blade
will look similar to Figure 4-9.

EI Installed web app extensions
CONTOS0

Add

NAME VERSION UPDATE AVAILABLE

Azure Web Site Logs Browser 1.64 No

FIGURE 4-9 Installed Web App Extensions blade in the Azure portal.

Click the extension to open the Azure Web App Logs Browser blade. In the toolbar, click Browse.
This opens a browser window and navigates directly to
https://[web _app name].scm.azurewebsites.net/websitelogs/#, where you can drill down into each of
the folders. Figure 4-10 shows the failed request log folder. You can view the log files in the browser or
download them to your computer by clicking the download icon to the left of the file name.

93

https://[web_app_name].scm.azurewebsites.net/websitelogs/

i

o3 X :
/_f '3“#7 Azure Web Site Log Browser
:l \':?;.

File System - Log Files Directory
Dihome\LegFiles\W3sSWVCE68291452

Log File | Directory Date Size

-
F B 000002 xmi 0512/2015 11:37 AM 262115
4 B 000001 xmi 0511/2015 429 PM 262089]
& B hebl 0511/2015 439 PM 101707

FIGURE 4-10 Failed request logs viewed from the Azure Web Apps Log Browser site extension.

Retrieve log files using command-line tools

Two common command-line tools available for the Azure platform are the Azure PowerShell cmdlets
and the Cross-Platform Command-Line Interface (CLI) tools. These can be used to manage resources in
Azure from a command line or in an automated manner using script.

See Also For information on how to install and use the Azure PowerShell cmdlets, see
http.//azure.microsoft.com/en-us/documentation/articles/powershell-install-configure/. For information on
how to install and use the Cross-Platform Command-Line Interface (CLI) tools, see
http.//azure.microsoft.com/en-us/documentation/articles/xplat-cli/.

You can download all the log files for your web app using the Azure PowerShell cmdlets. Listing 4-2
shows the commands you can run from the PowerShell ISE.

LISTING 4-2 Downloading web app diagnostic logs using Azure PowerShell cmdlets.

Authenticate to Azure
Add-AzureAccount

Save log files to local drive
Save-AzureWebsiteLog -Name "Contos0" -Output e:\contosO_logs.zip

Note At the time of this writing, version 0.9.1 of the Azure PowerShell cmdlets has a quota limit that
prevents you from downloading logs if the total size exceeds 64 kilobytes (KB).

The Azure CLI tools also can be used to download the logs. For example, to download the log files
for a web app named "Contos0,” enter the commands as shown in Listing 4-3.

LISTING 4-3 Downloading web app diagnostic logs using CLI tools.

azure login
azure site Tog download ContosO -o e:\contosO_logs.zip

94

http://azure.microsoft.com/en-us/documentation/articles/powershell-install-configure/
http://azure.microsoft.com/en-us/documentation/articles/xplat-cli/

Access log files from Azure Storage

Most of the tools shown for retrieving log files from a web app’s file system can be used to retrieve
files from Azure Storage. The exception is using FTP because you cannot connect to Azure Storage
using an FTP client.

Retrieve log files using Server Explorer

In the Server Explorer window, expand the Storage node for the storage account you configured for
diagnostic logs. Expand the Blobs node. Locate and drill into the container where your application logs
are stored. These log files are stored by the hour in different folders so you are likely to see several
folders for a particular date. Click one, and you will see a .csv file similar to what is shown in Figure 4-
11

wawsapplogblobcontos0 [Container] & X

contos0/2015/05/12/15/

+ contos0/2015/05/12/15/
Name Size Last Modified (UTC) Content Type URL

0 43cdae.applicationlog.csv 66KB 5/12/2015 35246 PM application/octet-stream https://contos0.blo...

FIGURE 4-11 Application logs stored in Azure Blob Storage.

You can view the file directly in Visual Studio by double-clicking it. Or click the disk icon in the
toolbar as shown in Figure 4-11 to download it to your local drive.

Web server logs are retrieved in the same manner. In Server Explorer, go back to the Blobs node
and drill into the container where your web server logs are stored. These also are stored by the hour in
different folders. As you drill down, you will find your web server logs (IIS logs) with a .log extension.

To view logs stored in Azure Table Storage, expand the Tables node and double-click the table. For
example, Figure 4-12 shows application errors and warnings that were stored in Azure Table Storage.

wawsapplogtablecontos0 [Table] + X
rlAEAX B
Timest: EventTickCo Application Level Even Instanc: Pid Ti Message
v 5/12/... | 635670417... | contasO Waming ;D |43c4ae 338124 |7 |Something could be wrong here. ‘
.5“2_/.. jﬁEEﬁTUﬂT. .CDHIHSD .Ermr U i‘l](éae ‘333!24 .F ISUmelh ng is definitely wrong here.i

5/12/... |635670453... | contosD Waming U |43c4ae |342848 |7 |Something could be wrong here.

5/12/... |635670453... | contos0 Error D .43(430 342848 |7 |Something is definitely wrong here. |

FIGURE 4-12 Application errors and warnings stored in Azure Table Storage.

Retrieve log files using the Azure Web App Logs Browser site extension

You can view log files in your browser by using the Web App Logs Browser site extension. To install the
extension, go to the Web App blade in the Azure portal. Click Settings in the toolbar at the top of the
blade. In the Settings blade, click Extensions. Click the Add button at the top of the Installed Web App
Extensions blade. Select Azure Web Site Logs Browser. Click OK to accept the legal terms. Click OK to
install the extension.

95

After the extension is installed, open the extension blade by clicking the extension in the Installed
Web App Extensions blade. Click Browse in the toolbar. Next, click the folder titled Application Logs —
Table Storage. The application logs stored in Azure Table Storage will look similar to Figure 4-13.

T

/@‘%‘? Azure Web Site Log Browser
-

View Logs From Azure Table Storage & May 12, 2015 12:00 AM - May 12, 2015 5:00 PM~
Show 20 v entries Ssarch:
Date " Level Instance Acuvity Message
12 May 2016 10238 43cdae Something could be wrong here.
12 May 2015 10:36 = A3cdae Something i definitely w
12 May 2015 11:38 Adcdae 0O000000-0000-0000- T 5-00S001 00003 Something could be wiong her,
12 May 2015 11:35 == 43cdae 00000000-0000-0000- 7c45-008001 0000% Something is oefinitely wrong here:
Shawing 110 4 of 4 enlries Previous 1

FIGURE 4-13 Application errors and warnings viewed from the Azure Web App Logs Browser site extension.

The web server logs (IIS logs) can be retrieved in a similar manner. Go back to the previous page,
and this time click HTTP Logs — Blob Storage. Drill into this folder to view the individual web server
logs.

Log streaming

The log-streaming service in Azure Web Apps enables you to view application logs, web server logs,
and detailed error messages in nearly real time. You can connect to the log-streaming service and view
the logs from Visual Studio and by using command-line tools.

Log streaming using Visual Studio

Open Server Explorer if it is not already open. Double-click through the App Service node to get to the
web app. Right-click the web app and select View Streaming Logs, as shown in Figure 4-14.

Server Explorer > 8 x
R R
4 D Azure (Filtered - 1 subscriptions)

4 & App Seniice
4 & Contos0

b & Cloud Services| @ Refresh
I # HDInsight

b [[] Mobile Service{
b & Notification Hy View Settings

b @ SeviceBus | B Atach Debugger
b M SQL Databases

P ¥ Storage

[Virtual Machine Stop

P @¥ Data Connections | 28 Open in Management Portal
> B Servers

& View in Browser

View Streaming Logs

Download Publish Profile

| »

Properties Alt+Enter

96

FIGURE 4-14 View streaming logs using Visual Studio.

In the Output window, you will see a message stating You Are Now Connected To Log-Streaming
Service. To start viewing logs, browse to the default page of the web app using your browser. Almost
immediately, you will see the logs appearing in the output window. Figure 4-15 shows what the output
window may look like if you have Application Logging set to Verbose.

Output * 3 x
Show output from: | Microsoft Azure Logs - contos0 ¥, E i Ko | i
2015-05-26720:22:38 Welcome, you are now connected to log-streaming service. a

2015-05-26720:22:50 PID[50752] Information Entered HomeController.
2015-05-26720:22:50 PID[50752] Warning Something could be wrong here.
2015-05-26720:22:50 PID[50752] Error Something is definitely wrong here.
2015-05-26720:22:50 PID[50752] Information Leaving HomeController.
2015-05-26720:22:50 PID[50752] Verbose This is a debug only trace message.

FIGURE 4-15 Application logs shown in Visual Studio using the log-streaming service.

You can change the logs the log-streaming service monitors by clicking the gear icon in the toolbar,
as shown in Figure 4-15. This will open a dialog where you can select the logs you want the log-
streaming service to capture. In the dialog, you can choose to monitor all logs or specifically the
application and web server logs, as shown in Figure 4-16.

Select the Microsoft Azure Web logs that you wish to monitor. Selecting all
will monitor all logs on the server.

& Al logs
Specific logs
~ Application logs

Web server logs

oK || cancel |

FIGURE 4-16 Azure logging options in Visual Studio.

To disconnect from the log-streaming service, click the stop icon in the toolbar of the Output
window, as shown in Figure 4-17.

E M T &8 Fiter

| Stop manitoring real time Microsoft Azure logs

FIGURE 4-17 Stop monitoring real-time logs in Visual Studio.

Similarly, you can click the start icon in the toolbar to reconnect to the log streaming service.

Log streaming using command-line tools

Using the Azure PowerShell cmdlets, you can view streaming logs from a Windows PowerShell console
window. To connect to the log-streaming service, use the Get-AzureWebsiteLog command and specify
the —Tail parameter. Open a browser to the web app’s default page, and shortly you will see output in

the Windows PowerShell console, as shown in Figure 4-18.

97

2015-05 43 welcome, you are now connected to log-streaming service.
2015-05- PID[329248] Information Entered HomeController.

2015-05- PID[329248] Warning Something could be wrong here.
2015-05- 5 PID[329248] Error Something is definitely wrong here.
2015-05 PID[329248] Information Leaving HomeController.
2015-05-12T22:40: PID[329248] Verbose This is a debug only trace message.

FIGURE 4-18 Log streaming using Azure PowerShell cmdlets.

If you want to filter the output, you can apply the -Message parameter. For example, Figure 4-19
shows how to filter the output to show only Information messages.

2015-05-12 5:31 PID[329248] Information Entered HomeController.
2015-05-12722:45:31 PID[329248] Information Leaving HomeController.

FIGURE 4-19 Log streaming using Azure PowerShell cmdlets and filtered to show only Information messages.

See Also For more information on how to use Azure PowerShell to stream log files and how to use the CLI
tools to do the same, see http.//azure.microsoft.com/en-us/documentation/articles/web-sites-enable-
diagnostic-log/.

Remote debugging

Remote debugging enables you to debug your web app interactively while it is running in Azure. The
experience is identical to debugging your web app locally, allowing you to set breakpoints, step
through code, view variables in memory, and much more. Remote debugging is useful in scenarios in
which your web app is behaving differently in Azure than when you run it locally.

Tip You should never perform remote debugging on a production web app. When you debug an
application and set breakpoints using remote debugging, execution of the W3WP process in which
your app is running is halted until you resume or advance to the next breakpoint. Remote debugging
should be used in Dev/Test environments only.

To use remote debugging, you first need to enable it in your Azure web app environment. Starting
from the Server Explorer window in Visual Studio, right-click the web app and select View Settings.

Under the Web App Settings section, set Remote Debugging to On and click Save at the top of the
window, as shown in Figure 4-20.

98

http://azure.microsoft.com/en-us/documentation/articles/web-sites-enable-diagnostic-log/
http://azure.microsoft.com/en-us/documentation/articles/web-sites-enable-diagnostic-log/

Actions

e

W Stop Web Apy
4

Web App Settings
NET Framework Version | v45
Web Server Logging On

Detailed Error Messages On

Failed Request Tracing On “
Application Logging T =
(File System)

Remote Debugging On v

FIGURE 4-20 Enabling Remote Debugging feature from Visual Studio.

In Server Explorer, right-click the web app and select Attach Debugger. This step attaches the Visual
Studio debugger to the w3wp.exe process in Azure where your web app is running and launches the
web app in your browser.

Note The remote debugging feature is supported for versions of Visual Studio 2012 and newer. But it
is not supported for Express editions of Visual Studio. Enabling the remote debugging feature from
your Visual Studio environment will configure the feature automatically for the version of Visual Studio
you are using.

Set a breakpoint in the default action of the HomeController by pressing F9. Next, refresh the
browser. This will cause the breakpoint to be hit, as shown in Figure 4-21.

public class
{
public Index()
{
o Trace.TraceInformation("Entered {@}.", this.GetType().Name);
.TraceWarning(hing could g here.”);

ong here
.TraceError("S
.TraceInformation
Writeline("This
return View();

}

FIGURE 4-21 Visual Studio debugger stopped on a breakpoint during remote debugging.

You can debug the remote process using the Visual Studio debugging features you normally use for
debugging a local process. For example, you can use the Immediate window to view the HttpRequest
object for the current request by selecting DEBUG > Windows > Immediate from the main menu. In
the Immediate window, type this.Request and press Enter. This will display the contents of the
HttpRequest object, as shown in Figure 4-22. Additionally, you can view the Call Stack, Memory,
Variables, and other debugging windows you prefer to use.

99

Immediate Window
IsAuthenticated: false
Islocal: false
IsSecureConnection: false
LogonUserIdentity: {System.Security.Principal.WindowsIdentity}
Params: {ARRAffinity=43cdaeSef8aa2655213277c23cd4447097a834ae3ebt

pt-LanguageX3a+en-USX2cen%3bq¥3de. 5%0dX%0aCookieX3a+ARRAFFinityX3d43cs

CT=&INSTANCE_ID=5682914628INSTANCE_META_PATH=%2fLMX2F3SVCX2£5682914¢

ORIGINAL_URL=-X2f&HTTP_X_FORWARDED_FOR=72.190.73.184%3a7296}

Path: "/~

PathInfo: "~

PhysicalApplicationPath: "D:\\home\\site\\wwroot\\"
PhysicalPath: "D:\\home\\site\\wwwroot"
QueryString: {}

RawUrl: /"

ReadEntityBodyMode: Classic

4) - : »
Immediate Window

FIGURE 4-22 Immediate window in Visual Studio showing properties of the current request.

At any time, you can end your remote debugging session by clicking the stop icon in the Visual
Studio toolbar or selecting DEBUG > Stop Debugging from the main menu.

See Also To learn more about troubleshooting a web app using Visual Studio, see
http.//azure.microsoft.com/en-us/documentation/articles/web-sites-dotnet-troubleshoot-visual-studio/.

Diagnostics as a Service (DaaS)

Diagnostics as a Service (DaaS) is a feature of Azure Web Apps that delivers extremely powerful
diagnostics capabilities to you using just your browser. DaaS is an Azure site extension that you can
install from the Azure portal. After you have installed it, you can collect event logs, web server logs,
and even memory dumps from your web app environment. Daa$S then will perform deep analysis on
these data sources and produce rich reports through which you can navigate to find the data you need
to diagnose your issues.

Note If you have ever used the Debug Diagnostics Tool (DebugDiag) to troubleshoot issues on-
premises, then you will recognize the power and richness of data this service delivers.

DaaS is safe to use in production environments and is available for web apps in the Basic, Standard,
and Premium pricing tiers.

Install the Diagnostics as a Service site extension

Starting from the Web App blade for the web app on which you want to use DaaS, click Settings in the
toolbar at the top of the blade. In the Settings blade, click Extensions. In the Installed Web App
Extensions blade, click Add in the toolbar and select the Diagnostics as a Service extension. Click OK to
accept the legal terms and then OK to install the extension.

100

http://azure.microsoft.com/en-us/documentation/articles/web-sites-dotnet-troubleshoot-visual-studio/

DaaS requires that web server logging be enabled and configured to use the file system (not Azure
Storage) of your web app. To do this from the Azure portal, click Settings in the toolbar of the Web
App blade. In the Settings blade, click Diagnostic Logs. In the Logs blade, switch Web Server Logging
to On, as shown in Figure 4-23. Click Save in the toolbar to save the change.

Download logs

FTP/deployment user name

contosOinull]
FTP

ftpy/fwaws-prod-sn1-007.ftp.azurewebsite | I
FTPS

fpsif/waws-prod-sn1-007 fip.azurewebsil | | I

Application Logging (Filesystem)

On

Web server logging
off
Detailed ermor messages
On
Failed request tracing

On

FIGURE 4-23 Diagnostic Logs blade in the Azure portal.

Run DaaS

Starting from the Settings blade, click Extensions. In the Installed Web App Extensions blade, click
Diagnostics As A Service. In the Diagnostics As A Service blade, click Browse located in the toolbar.

Tip You can navigate directly to the DaaS site extension for your web app using the URL
https://[your web app name].scm.azurewebsites.net/DaaS/. If you are not already authenticated to
Azure, you will be prompted to sign in. Sign in using the credentials you use to sign in to the Azure
portal.

The DaaS$ landing page will load in your browser and look similar to Figure 4-24. From this page,
you can start a diagnostics session immediately by clicking the Diagnose Now button or schedule a
diagnostics session by clicking the Schedule Analysis button.

101

https://[your_web_app_name].scm.azurewebsites.net/DaaS/

Site Diagnostics -

Diagnase Now Schedule Analysis

FIGURE 4-24 Diagnostics as a Service site extension.

Click the Diagnose Now button. This will start a new diagnostics session that will start pulling
information from the event log and web server logs. It also will capture a memory dump of the
w3wp.exe process in which your web app is running. If your web app is using PHP, then it also will
collect information from the PHP host process.

Tip Azure web apps have an eventlog.xml file located on the file system at D:\home\LogFiles. This file
is generated automatically for you and contains application events that often are useful when
troubleshooting errors at run time.

After all the data is collected, DaaS will perform analysis of the data and generate a report for each
of the data sources. This process can take a few minutes to complete. You can check the status of the
session by expanding it to see what remains to be completed. An in-progress session will look similar
to Figure 4-25.

— I015-05-14 18:20:29 WaitingFerlnput 4

Event Viewer Logs

o/ L\
Memory Dusp) J
Hop Logs U/ [
PHE Procees Reooes "/ -

FIGURE 4-25 DaaS session in progress.

After the collection and analysis of all the data sources is finished, you will see the status changed to
Complete. To view the analysis reports, click the right arrow icon in the upper-right corner, as shown in
Figure 4-25.

View DaaS analysis reports

You can view an analysis report by clicking the document icon in the analysis column for the data
source in which you're interested. For example, to view the memory dump analysis, click the document

102

icon to show the link to the memory dump report. Similarly, to download and view any of the data that
was collected, click the document icon in the collection column. Figure 4-26 shows the memory dump
analysis and HTTP logs collection links.

Event Viewes Logs D D
Memery Dump []

wiwp_ 1972 17ce 2015-05-14 18-20.
Hutp Logs s]

n99196-201305141814 log

FIGURE 4-26 Analysis report links and data links from DaasS session.

The event log analysis report will report any events that were found in the eventlog.xml file, a
description of the event, and potentially a link to solution content. Figure 4-27 shows an example of an
event log report where an error event was found. Also, notice that a link to solution content on MSDN
has been identified as relevant to this particular error.

Event Log Processing Report

Fil d: Di\local\Temp\Logs o5, 150514

150514 1822292641 \eventiog.xml

Processing Summary: [

Field | Ruli: Content
Tithe Fallad to enable remote debugger
Type
Detected fEvents/Tvant] System/EventiD=1001 and System/Fravider/@Name="Visual Studia Aemate Debugger” and CventDataData]c
Condition sarvar’}]]
2o "":i‘;':hm Faiod to enable remate debugger. Pleass chodk link in Solutian Content UA field for more solution,

Solwtion Content s/ fredn, microgofl miun Nibrary/ melea 726, as
o Ao/ s, microsoft, com/un s ibrarel mal8 728 s

Faiied to enable remate debugger. The following events have been detectad:
Found 6 events

B L T

FIGURE 4-27 Event log processing report generated from DaaS.

The memory dump analysis report contains a massive amount of information, as it should, because
its data source is a memory dump of the w3wp.exe process in which your web app is running. If your
application is experiencing high memory usage, high CPU, or hanging as users send requests to it, this

report will give you information that can help you determine the root cause. The report is structured
into three sections, as follows:

e Analysis Summary Contains a summary of issues found during analysis, which can include
known errors or just information that could be affecting the performance of your application.
When possible, it also will provide recommendations for issues found.

e Analysis Details This is the bulk of the analysis report. It includes information such as the top
five threads consuming CPU time, HttpContext reports for incoming and outgoing HTTP
requests, .NET exception objects that are present in memory at the time the memory dump was
taken, a thread report showing the call stack of each thread, .NET CLR heap and memory
information including which .NET objects are consuming the most memory, and more.

103

e Analysis Rule Summary A table showing which rules were used to analyze the memory dump.
Common rules include performing a crash analysis, hang analysis, and memory analysis on the
memory dump file.

Figure 4-28 shows an example of an error reported from the Analysis Summary section of the
memory dump analysis report, the recommended remediation, and a link to a blog explaining why this

is considered an error.

Type Deserigikion Bexomenendation

10 Wibwp_1973_1 ex_J015-05-14_10-20-30-339_07bA.8mp debud || for appications running in production Debeg should never be set & troe
© evor o0t o rue for the rontime a0 has great performance impact. For more details on debug setting
E imasa emfar 1 this blog If gour agplation then
* Ditheme\sitelwwwrook) im_u b g I your application hes

1 webrg i

FIGURE 4-28 Error reported in the Analysis Summary section of memory dump analysis report generated from DaaS.

The http logs analysis report is generated by examining the web server logs (lIS logs) on your web
app’s file system. It uses LogParser behind the scenes to run some common queries against the web
server logs and compiles the results into a linkable report. This report is useful in many scenarios, such
as identifying which pages in your app are slowest, which pages are most visited, requests per hour,
and more. Figure 4-29 is an example of the beginning of an IIS log analysis report where each line links
to a table showing the results for that section of the report.

IS Log Analysis Report

Generated on file D:\local\Temp'Logs\contos0\15-05-14\RDO0OD3IATOIFE4
\HttplogsCollectar\150514_1820292641\150514_18222926411a99196-201506141814.log (05/14/2015 18:22:41)

MTop 30 HTTP 404 Errory
MTop 20 HTTP 403 Errors
MTop 20 HTTP 500 Ervoes
MTop 20 HTTP 501 Frroes.
Top 100 Lonmest Processing Requasts from. FPinpDOM User Agent

FIGURE 4-29 Http log analysis report generated from DaaS.

At the time of this writing, the DaaS site extension doesn’t provide a way for you to download all
the data and reports from your DaaS sessions. It also doesn’t provide a way for you to remove these
files from your web app’s file system. In the next section, you will learn about another site extension
you can use to download these files easily and remove them if you want.

See Also To learn more about the Diagnostics as a Service (DaaS) site extension, see
http.//azure.microsoft.com/blog/?p=157471.

104

http://azure.microsoft.com/blog/?p=157471

Site Admin Tools/Kudu

Site Admin Tools is a site extension that runs in the same environment in which your web app is
running. Some know this tool as Kudu, and in some documentation it is referred to as Site Control
Manager (SCM).

Using the Site Admin Tools site extension, you can explore the web app environment, access the file
system for your web app, explore running processes in your environment using a built-in process
explorer, and even install other site extensions.

See Also Kudu has been a part of the Azure Web App platform since the beginning. Initially, its primary
purpose was to provide support for Git deployments. But it also provides some powerful tools and visibility into
your web app environment, all from a browser. To learn more about Kudu's capabilities, see
https.//github.com/projectkudu/kudu/wiki.

Install the Site Admin Tools/Kudu

Starting from the Web App blade, click Settings in the toolbar at the top of the blade. In the Settings
blade, click Extensions. In the Installed Web App Extensions blade, click Add in the toolbar and select
the Site Admin Tools extension. Click OK to accept the legal terms and then OK to install the extension.

Note Technically it's not necessary to install the Kudu site extension. Every Azure web app includes
this site extension by default. But going through the steps to install it makes it appear as an installed
site extension for your web app that you later can use to access the tools from the Azure portal.

Run the Site Admin Tools

Starting from the Settings blade, click Extensions. In the Installed Web App Extensions blade, click Site
Admin Tools. In the toolbar of the Site Admin Tools blade, click Browse.

Tip You can navigate directly to Kudu using the URL
https://[your web app name].scm.azurewebsites.net/. If you're not authenticated to Azure, then you
will be prompted to sign in using the credentials you use to sign in to the Azure portal.

The Kudu landing page will load in your browser and look similar to Figure 4-30.

105

https://github.com/projectkudu/kudu/wiki
https://[your_web_app_name].scm.azurewebsites.net/

Environment

Build 45.40512.1539.0 (31911424d7)
Site up time 08:01:07.3869060

Site folder D:thome

Temp folder D:\localTempt

FIGURE 4-30 Site Admin Tools/Kudu site extension landing page.

Using the menu across the top, click Environment. The environment page will show you system
information, app settings, and connection strings, which include the app settings and connection
strings you have configured for your web app. It also includes environment and server variables that
are available to your web app.

Debug console

When you click on Debug Console, a menu option gives you a choice to open a CMD console or
PowerShell console window. Whichever you choose, the real power of the debug console is that it puts
the file system of your web app at your fingertips. You can issue commands directly in the console or
click through the file system using the Ul. To demonstrate, click Debug Console and then CMD. After
the console loads, you will see an explorer-like view of your file system at the top. The bottom part of
the page will show the console window. You can navigate the file system directly in the console
window or by using the Ul. Regardless of which approach you take, notice that the two stay in sync.
The Ul at the top of the page will look similar to Figure 4-31.

/+|4items§ A @ &

0 ar data

EY-] & LogFile

0 T site

EY-] & SiteExtensions

FIGURE 4-31 The home directory of the web app file system.

Earlier in this chapter, you learned that your application diagnostic and site diagnostic logs are
stored in the web app’s file system at d:\home\LogFiles, which you can see in Figure 4-31. You can click
this folder and see the folders where the various types of logs are stored. If you want to download the
entire LogFiles folder and subfolders, you can click the download icon left of the folder icon. Kudu will
zip the directory contents and start a download. If you're using Internet Explorer, you will see the
download notification at the bottom of the screen, as shown in Figure 4-32.

106

Do you want 1o open or save LogFiles.zip from contosd. sem.azurewebsites.net!

Open Save | w Cancel

FIGURE 4-32 Downloading the LogFiles folder using the Site Admin Tools site extension.

The site folder is where your web app files are published when you publish from Visual Studio. For
example, if your application is an ASP.NET MVC application, you will find your web.config, views
(.cshtml), scripts, font files, and more in the d:\home\site\wwwroot folder.

In the previous section, you learned about the DaaS site extension. One of the data sources from
which it collected data was the eventlog.xml file located in the d:\LogFiles folder. This is where DaaS
looked to collect the data for the event log analysis report.

DaasS stores most of its data in the folder d:\home\data\DaaS. Using the Ul or the console window,
navigate to this directory. The top of your page will look similar to Figure 4-33.

../DaaS= |Gitems A4 @ =

Name

EA- " bin

EY-] & Heartbeals
0 " Logs
EY-) M Reporis

L0 & Sessions

E - B PrivateSettings xml

FIGURE 4-33 Contents of d:\home\data\DaaS$ as shown using Kudu's debug console.

The various analysis reports you viewed in the previous section are in the Reports folder. So you can
click the download icon next to the Reports folder to download all your reports at once.

The Logs folder is where data that DaaS collected is stored. Recall that one of the data sources is
memory dump files that DaaS generates and analyzes to produce the memory dump analysis report.
Memory dump files can be large, and if you have a lot of these, they can consume a significant portion
of your web app’s file system quota. If you want to clean up these files after you have your analysis
reports, you can do so by drilling down into the Logs folder. Memory dump files (.dmp) are located
under a folder named MemoryDumpCollector, which will comprise part of the path to the file. Figure
4-34 shows an example of where one of the dump files for a DaaS memory dump analysis is stored.
Your path will be different but similar.

107

...1150515_00530215654 | 1items &# @ =

Name Madited Size

L7709 W whwp 1577 0058 20150515 _00-51-09-168_07Th4 drmp SM4Z5 T 5140 PM 274006 KB

yiumpCol lector’\ 150515_005

FIGURE 4-34 Memory dump file in a web app’s file system.

You also can upload individual files to your web app'’s file system or a zip file that contains multiple
files and subdirectories. When you upload a zip file, Kudu will unzip the contents and place them in the
folder to which you uploaded. To upload a file from your local drive, open Windows Explorer and just
drag and drop the file into the folder displayed in your browser to which you want the files uploaded.

Process explorer

Kudu includes a process explorer feature that you can use to view processes in your environment.
Using the menu across the top, click Process Explorer. The process explorer page will look similar to
Figure 4-35.

Process Explorer

Find Handle
name pid user_name total_cpu_time working_set private_memory thread_count properties
wiwp.exe [0 1408 conlos0 E1s IrIEOKE BH9S0 KB 49

4704 eoniosD <18 176 KB 2604 KB 2
CompuieWebJobs SDKQueue exe
. " 2004 coniosd 2s 13580KB 23,556 KB 11
i exe 6980 conlosd 15 S120KB 3596 KB

DaaSRunnes exe 5460 coninsd 58 16.512 KB

WD e 1972 contosO 4s 5T6 KB 49124 KB 25

FIGURE 4-35 Process explorer page in Site Admin Tools site extension.

The Properties button shown for each process will present detailed information about the process
and includes things such as modules, handles, threads, and environment variables the process is using.
Also, at the bottom of the properties page are buttons that you can use to kill a process or generate a
memory dump of the process.

108

Monitor web app endpoints externally using web tests

Web tests enable you to test the availability of web app endpoints from geo-distributed locations
around the world. This feature is available for web apps configured for Basic and higher pricing tiers.

There are two types of web tests you can create, as follows:

e URL ping test In this type of test, you specify a URL that you want to test, one or more
locations around the world from which you want the endpoint tested, and what the success
criteria are for the test. The success criteria can be a specific HTTP status code, such as HTTP 200
(OK), or they can be a content match in which the test is successful only if the content in the
response contains the content that you indicate it should.

e Multi-step test In a multi-step test, you upload a *.webtest file that you create using Visual
Studio. This is useful if you need to test multiple URLs of your web app. For example, for an
expense-reporting app you may need to test the ability to view an expense summary page and
detail page and the ability to add or remove expense items. The overall success of the test
depends on whether each step in the .webtest file was successful.

An alert can be configured for your web tests to send an email if a test fails. The email can be sent
to subscription admins or to a list of email addresses you specify in the alert. An alert has a sensitivity
property that is used to control how often an alert is triggered. The sensitivity settings for an alert are
as follows:

e Low The alertis triggered when a web test fails for all locations within a 15-minute period.

e Medium The alert is triggered when a web test fails for at least half of the locations in a 10-
minute period.

e High The alert is triggered anytime a web test fails.

Web tests are configured from the Web Tests blade in the Azure portal. You can get to the Web
Tests blade by clicking the Web Tests tile in the Web App blade.

If the Web Tests tile is not present on the Web App blade, then customize the blade and add it. This
is done by right-clicking anywhere in the Web App blade and selecting Customize. Next, scroll down to
the Monitoring section and click the + icon to add a new tile, as shown in Figure 4-36.

109

RUNNING

. contos0
WES APP

Monitoring \ + T v
FIGURE 4-36 Customizing the Web App blade in the Azure portal.
In the Tile Gallery, select the Web Tests tile and drag it onto the Web App blade under the

Monitoring section. Next, click the blue DONE button in the upper-left corner to save the
customizations. The Monitoring section of the Web App blade will look similar to Figure 4-37.

Essentials v Ay *“};i O

Monitoring

Creating web tests
helps you to ensure

high availability
around the world.

FIGURE 4-37 Web Tests tile added to the Monitoring section of the Web App blade.

See Also For more information on monitoring your web app and configuring alerts, see
http.//azure.microsoft.com/en-us/documentation/articles/web-sites-monitor/.

Create a URL ping web test

Click the Web Tests tile to create a test. In the Create Test blade, provide a name for the test, such as
“Default Test.” Click the TEST LOCATIONS box and select a couple of locations from which you want
the test invoked and click OK. Click Create to create the web test and return to the Web App blade.

The web test will start getting invoked on a periodic schedule. After a few seconds, click the Web
Tests tile to view the results of the tests. The Web Tests blade will look similar to Figure 4-38.

110

http://azure.microsoft.com/en-us/documentation/articles/web-sites-monitor/

All web tests response time {ms) ~

TOTAL SUCCESSFUL TESTS. TOTAL FAILED TESTS

Filtered on tests between 4:18 PM 5/13/2015 and 5:15 PM 5/13/2015

04:30 04:45 5P 0s:11
AVERAGE RESPONSE TIME SUCCESSFUL TESTS FAILED TESTS

5.05 3 0
All web tests
WEB TEST 20 MIN 1H 24H T2H
Default Test 100% 100% 100% 100%

FIGURE 4-38 Web Tests blade in the Azure portal.

You can click the green dots in the scattergraph to get details on a specific web test. If there are any
failures, they will be indicated as red dots.

At the bottom of the Web Tests blade, you can see the web tests that have been configured and the
percentage of success for the last 20-minute, 1-hour, 24-hour, and 72-hour periods. You can click the
web test to see the success ratios for each location from which the test is invoked and the response
times for each.

See Also It is a best practice to implement a health-check page in your web app that checks the availability of
other resources on which your web app depends. For example, if your web app uses a database, then verifying
the connection to the database in the health-check page would enable you to return an error response to the
endpoint monitoring service to indicate there is a problem. For more information on this monitoring pattern
and guidance on when and how to use it, see https.//msdn.microsoft.com/en-us/library/dn589789.aspx.

To demonstrate what a failed web test would look like, go back to the Web App blade and click
Stop in the toolbar at the top of the blade. This will stop your web app, which will cause the web test
to fail. Return to the Web Tests blade and click Refresh at the top of the blade. If you don't see a failed
test, wait a few seconds and refresh again until you see a failure. You will notice a red dot in the
scattergraph. Below the scattergraph, click Default Test under the All Web Tests section to see the
detailed results for that test. At the bottom of the blade, you can see which location failed, as shown in
Figure 4-39. You can click the location to see more details for that test location.

111

https://msdn.microsoft.com/en-us/library/dn589789.aspx

Default Test
L

15 {1 HOUR GRAIN) - C

0 ¥] (i}

Edit test Disable Delete Timerange Refresh

KVERAGE RESPONSE TIME SUCCESSFUL TESTS FAILED TESTS

294.. 18 1

Success ratio by location

NAME 20 MIN 1H 24H 72H
US 1 IL-Chicago 75% 75% 75% 75%
US : TX-5an Antonio 100% 100% 100% 100%

FIGURE 4-39 Web Tests blade showing success ratios by location.

See Also For more information on configuring web tests and how to set up a multi-step test, see
http.//azure.microsoft.com/en-us/documentation/articles/app-insights-monitor-web-app-availability/.

Monitoring

The Azure portal delivers a feature-rich user interface for monitoring your Azure resources. You can
scope your monitoring to an entire resource group or perform resource-specific monitoring on
individual resources such as a web app, database, or cache.

Monitor a resource group using the Azure portal

The Resource Group blade in the Azure portal is an ideal place to start exploring the monitoring
capabilities. To get to the resource group, click Browse in the navigation bar on the left of the page. In
the Browse blade, select Resource Groups. In the Resource Groups blade, select the resource group
your web app is in. The Resource Group blade will be divided into sections, each containing one or
more tiles. Scrolling down the blade, you will see the Monitoring and Billing sections that will look
similar to Figure 4-40.

112

http://azure.microsoft.com/en-us/documentation/articles/app-insights-monitor-web-app-availability/

Monitoring

Events Alert rules
CONTOSO CONTOSO
Active now o
Enabled o
—
Billing
Resource costs
CONTOS0
NAME TYPE ESTIMATED SFEND
contos0 Web hesting plan 57490
contos0 Website s0.88

FIGURE 4-40 Monitoring and Billing sections of the Resource Group blade.

Each of the tiles shown can be drilled into by clicking them. For example, to see the event details
that comprise the bar chart in the Events tile, click the Events tile. In the Events blade, you will be able
to see all the events from all of the resources in the resource group. You can click individual events
(operations) in the Events blade to drill down into a specific event. For example, an update website
operation would look similar to Figure 4-41.

Update website

CONTOS0

LEVEL Informational

STATUS Succeeded

TIME Tuesday, May 12, 2015 7:54:26 PM

CALLER

CORRELATIONID 197db95d-28f1-4bc5-9685-86f823b16bbb
ASSET LINK

EVENT LEVEL STATUS TIME
Update website ® Succeeded 16 hago
Update website ® Strted 16 hago

FIGURE 4-41 Update Website blade showing events specific to the operation.

Each event in the list shown can be explored further by clicking the event to open the Detail blade
for the event.

113

See Also The Azure portal is highly customizable and allows you to create views to monitor resources that
are important to you. You can customize the start board and individual blades by right-clicking the page and
selecting Customize. For example, the Resource Group blade can be customized to show additional content
tiles, resize the tiles, and rename, delete, add, and reorder sections. For examples of how you can customize the
Azure portal to monitor web apps, see http.//azure.microsoft.com/en-us/documentation/articles/insights-how-
to-customize-monitoring/. For additional information and demonstrations showing how to get the most out of
the Azure portal, see http.//blogs.msdn.com/b/briankel/archive/2014/04/10/building-your-dream-devops-
dashboard-with-the-new-azure-preview-portal.aspx.

Application Insights

Application Insights is a developer service that collects telemetry data from your application that you
can use to monitor your application’s availability, performance, reliability, exceptions, usage trends, and
more. The telemetry data from your application is stored and processed in Azure in nearly real time.

When you create a new web app using Visual Studio or the Azure portal, you automatically get an
Application Insights resource added to your resource group. The Application Insights resource includes
an instrumentation key that is used to identify telemetry data from your application and is the resource
you use to view and interact with the data using the Azure portal. If the project you create is an
ASP.NET Web Application, you get an opportunity during project creation to let Visual Studio add the
packages, code, and configuration to your project so you are ready to start using the service. Figure 4-
42 shows a portion of the New Project dialog where you can choose to let Visual Studio set this up for

you.
NET Framework 4.5 ~ | Sort by: | Default | @ = P
F{" oo A
@_] ASP.NET Web Application Visual C# Type: Visual C#

A project template for creating ASP.NET
applications. You can create ASP.NET Web
Forms, MVC, or Web API applications and

\ add many other features in ASP.NET.

! Add Application Insights to Project
Microsoft recommends adding
Application Insights telemetry to help you
understand and optimize application
performance.

I Azure Pass e
Use different account
\ Send telemetry to:

New Application Insights resource

Data will be sent to an Application
Insights ri named after this project
inar group named Default-
Applicationinsights-CentralUS

Click here to go online and find templates

Configure settings

FIGURE 4-42 Adding Application Insights to a new ASP.NET Web Application project in Visual Studio.

If you know you will be using Application Insights with your project, this is the recommended way
to add it to your project. But if you have an existing application to which you want to add Application
Insights, you easily can do so by using Visual Studio.

114

http://azure.microsoft.com/en-us/documentation/articles/insights-how-to-customize-monitoring/
http://azure.microsoft.com/en-us/documentation/articles/insights-how-to-customize-monitoring/
http://blogs.msdn.com/b/briankel/archive/2014/04/10/building-your-dream-devops-dashboard-with-the-new-azure-preview-portal.aspx
http://blogs.msdn.com/b/briankel/archive/2014/04/10/building-your-dream-devops-dashboard-with-the-new-azure-preview-portal.aspx

See Also There is a lot of documentation online for Application Insights. To learn more about the service, see
http.//azure.microsoft.com/en-us/documentation/services/application-insights/.

This section will walk you through the steps to add this feature to an existing application and then
show you how to start interacting with your application’s telemetry data using the Azure portal. Taking
this approach also will show you the code and configuration that is added to your project when you
choose to add Application Insights.

Add Application Insights to an existing ASP.NET MVC Web
Application

If you have an existing ASP.NET MVC Web Application to which you want to add Application Insights,
open it in Visual Studio.

Note If you want to create a new project, then from the Visual Studio menu, select FILE > New >
Project. In the New Project dialog, choose the ASP.NET Web Application template and deselect the
option to Add Application Insights To Project. Proceed through the rest of the new project wizard to
create your project.

From the Solution Explorer window, right-click the project and select Add Application Insights
Telemetry. In the Application Insights dialog, you have an opportunity to choose the Application
Insights resource to which you want your telemetry data sent or to create a new resource if one doesn’t
exist. Click the blue button labeled Add Application Insights To Project at the bottom of the dialog, as
shown in Figure 4-43.

9 /) 1SIght
Your application's performance, availability and usage information at your
< fingertips

Confirm you want to use this Azure subscription:

n rick@cloudalloc.com
Azure Pass

Use different account

Send telemetry to: Existing Application Insights resource
We've found an existing Application Insights Resource that matches your project

© name. Data will be sent to the existing Application Insights resource ‘fabrikam’ in
resource group ‘fabrikam’.

Configure settings

Click the button below, and then run your application to start seeing data in the Azure
Preview Portal. That’s it!

This will install the latest applicable Application Insights NuGet packages to your project.

Add Application Insights To Project @

FIGURE 4-43 Adding Application Insights to a project in Visual Studio.

115

http://azure.microsoft.com/en-us/documentation/services/application-insights/

The following changes are made to your project:

e NuGet Package References The Microsoft.Applicationinsights.* packages and necessary
dependencies are added. You will see these in the packages.config file of your project.

e Applicationinsights.config This file is added to your project and provides configuration used
by the NuGet packages that were added to the project. At the bottom of this file, you will see
the <InstrumentationKey>, which is used to identify your application’s telemetry data with the
Application Insights service.

e Web.Config changes The web.config file is updated so that ApplicationinsightsWebTracking is
added to the HTTP modules.

Right-click the project in Solution Explorer and select Publish. After the changes have been
published, browse to some of the pages in your web application a few times to generate some web
traffic. In the URL field of your browser, append some random text such as “foobar” to the end of the
URL to generate an error (HTTP 404).

In the Azure portal, open the Resource Group blade for your web app and click the Application
Insights resource in the Summary section, as shown in Figure 4-44.

Summary

[’] fabrikam

/

fabrikam 9 fabrikam

0 linked resources

FIGURE 4-44 Summary section of the Resource Group blade in the Azure portal.

The Application Insights blade provides a rich and interactive view of the telemetry data your web
app is generating. In the Application Health section of the blade, you will see graphs showing server
response times, the number of server requests, and the number of failed requests, which will look

similar to Figure 4-45.

116

AR T

= 124084

v b collect browser page load data.
RRCWIER PAGE LA

- A |25™

- I FARED BECUPSTE

FIGURE 4-45 Application Health section of the Application Insights blade in the Azure portal.

Notice the graph for Browser Page Load is grayed out with a message inviting you to learn how to
collect this data. You can click the message in the graph or click the Quick Start icon in the upper-right
corner of the Essentials section, as shown in Figure 4-45. In the Quick Start blade, locate the section
labeled Add Code To Monitor Web Pages and click the link labeled Get Code To Monitor My Web
Pages, as shown in Figure 4-46.

<I> Add code to monitor web pages

Insert this code before the closing </head> of each web page.

Get code to monitor my web pages. @

FIGURE 4-46 Link in Quick Start blade to get code to add to your web pages.

In the End-User Usage Analytics Code blade is JavaScript that includes your Application Insights
resource instrumentation key and code to collect end-user usage analytics and send them to your
Application Insights resource in Azure. Copy the <script> section to your Clipboard (Ctrl+C).

In Visual Studio, open _Layout.cshtml, which is located in the Views > Shared folder of your project.
Paste the script copied to your Clipboard just before the </head> element near the top of the file, as
shown in Figure 4-47.

117

<!DOCTYPE html>

_Layoutcshtmi* & X

=<html>
~<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>@ViewBag.Title - My ASP.NET Application</title>
@ .Render("~/Content/ b |
@ .Render("~/ oder
<script type-'text/javascript'>

var appInsights=window.appInsights||function(config){

function s(config){t[config]=function(){var izarguments;t.queue.push(fu
HEH

instrumentationKey: "454524b3-a122-4f51-8e9b-4519a8a8432b"

s

window. appInsights=appInsights;
appInsights.trackPageView();
</script>

</head>
= <body>

FIGURE 4-47 _Layout.cshtml with the Application Insights end-user analytics script added.

Save the changes (Ctrl+S). Right-click the project in Solution Explorer and select Publish to publish
the change to your web app in Azure. After the updates are published, the browser will launch.
Navigate some pages in your web app as you did before to generate some web traffic.

Return to the Application Insights blade in the Azure portal. The Browsers Page Load graph will start
showing data. If you don't see it right away, wait a few seconds and refresh the blade. When you see
the graph, click it to drill into the data using the Browsers blade. The Browsers blade will look similar to
Figure 4-48 and shows graphs and data for client-side metrics.

& Browser:
LA

Save
‘o

X

Restore.
defaults

Add chart Time range

Timeline

(CLIENT PROCESSING T...

74.44 o

777.18.

RECEIVING RESPONSE...

33333

PAGE LOAD NETWOR...

7
|08

‘ I SERVER RESPONSE TIME

319.79 m

ms

ms

No data for 'browser exceptions' in this time period.

PAGE VIEWS
113

FIGURE 4-48 The Application Insights Browsers blade in the Azure portal.

118

See Also Application Insights can be used to monitor the availability and responsiveness of any website. To
learn how, see http.//azure.microsoft.com/en-us/documentation/articles/app-insights-monitor-web-app-
availability/.

See Also Application Insights captures a large amount of telemetry data, and the Azure portal provides a way
for you to see the data at a high level to identify application trends and event totals. To learn how to search
and filter the data down to individual items for deeper analysis, see http.//azure.microsoft.com/en-
us/documentation/articles/app-insights-diagnostic-search/.

Summary

In this chapter, you gained essential information about application and site diagnostic logs including
how to configure them, how and where they are stored, and several techniques you can use to access
them. We discussed debugging techniques such as log streaming, remote debugging, and the
Diagnostics as a Service (DaaS) site extension. The Site Admin Tools (Kudu) and how you can use them
to explore the web app environment, file system, and processes hosting your web app were addressed
further. We wrapped up by taking a brief look at built-in monitoring capabilities of the Azure portal
and how you can use Application Insights to capture deep telemetry data to monitor and troubleshoot
your web app in nearly real time.

See Also To learn about other solutions available for monitoring cloud applications, see
http.//www.asp.net/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-
with-windows-azure/monitoring-and-telemetry.

119

http://azure.microsoft.com/en-us/documentation/articles/app-insights-monitor-web-app-availability/
http://azure.microsoft.com/en-us/documentation/articles/app-insights-monitor-web-app-availability/
http://azure.microsoft.com/en-us/documentation/articles/app-insights-diagnostic-search/
http://azure.microsoft.com/en-us/documentation/articles/app-insights-diagnostic-search/
http://www.asp.net/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/monitoring-and-telemetry
http://www.asp.net/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/monitoring-and-telemetry

About the author

Rick Rainey is an independent consultant and owner of CloudAlloc,
LLC. He specializes in helping customers migrate to and build new
applications to run on the Microsoft Azure Platform. He has over 25
years of experience designing, developing, and supporting
applications using Microsoft technologies.

Rick is a Microsoft Azure Insider and Advisor, Certified Trainer
(MCT), speaker, blogger, and Azure community enthusiast. He worked
for Microsoft in various developer-focused roles for 12 years with
emphasis on helping ISV's develop solutions for the Windows and
Azure platforms.

He is an active contributor in the Azure community. He speaks
often at community events, organized and presented at the Dallas
A\ . Global Azure Bootcamp, and helps support the broader Azure
community by answering questions on Stack Overflow. He also writes about Azure on his blog at
http://rickrainey.com and tweets Azure goodness on Twitter at @RickRaineyTx.

Rick resides with his family in Dallas, Texas. Outside of work he is an avid runner and an occasional
biker.

http://rickrainey.com/
https://twitter.com/rickraineytx

Free lebo

From technical overviews to drilldowns on special topics, get
free ebooks from Microsoft Press at:

www.microsoftvirtualacademy.com/ebooks

Download your free ebooks in PDF, EPUB, and/or Mobi for
Kindle formats.

Look for other great resources at Microsoft Virtual Academy,
where you can learn new skills and help advance your career
with free Microsoft training delivered by experts.

Microsoft Press

http://www.microsoftvirtualacademy.com/ebooks

Now that

you've
read the
book...

Tell us what you think!

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

2" Microsoft

http://aka.ms/tellpress

	Cover
	Microsoft Press Store
	Newsletters
	Microsoft Press Guided Tours app
	Title Page
	Copyright Page
	Acknowledgments
	Table of Contents
	Foreword
	Introduction
	Who should read this book
	Assumptions

	This book might not be for you if
	Organization of this book
	Conventions and features in this book
	System requirements
	Acknowledgments
	Errata, updates, & support
	Free ebooks from Microsoft Press
	Free training from Microsoft Virtual Academy
	We want to hear from you
	Stay in touch

	Chapter 1 Microsoft Azure Web Apps
	Introduction to Azure Resource Groups
	Introduction to App Service Plans
	Create an Azure Web App using the Azure portal
	Create a Web App and SQL Database
	Add an Azure Redis Cache to the Azure Resource Group

	Create an Azure Web App using Visual Studio
	Create a Web App by using Server Explorer
	Create a Web App by using the ASP.NET Web Application template
	Create a Web App using the Azure Resource Group template

	Connection strings and application settings
	Set connection strings and app settings in the environment
	Retrieve connection strings and app settings from the environment
	How connection strings and app settings are stored in the environment

	Add a deployment slot for an Azure Web App
	Scale to a Standard App Service Plan
	Add a deployment slot

	Set up continuous deployment with Visual Studio Online
	Introduction to Visual Studio Online
	Set up deployment from source control to a staging slot
	Add Visual Studio solution to source control
	Commit Visual Studio solution to source control

	Role Based Access Control
	Subscription-level roles
	Resource-level roles

	Summary

	Chapter 2 Azure WebJobs
	Introduction to Azure WebJobs
	Create an Azure WebJob
	Publish a web job from Visual Studio
	Invoke a web job manually
	View the WebJobs Dashboard

	Create a web job from the Azure portal
	Introduction to the Azure WebJobs SDK
	WebJobs SDK .NET libraries and dependencies
	Create a web job designed for use with Azure Storage Queues
	Examine the web job project and code
	Publish a web job to Azure
	Examine new features in the WebJobs Dashboard

	Summary

	Chapter 3 Scaling Azure Web Apps
	Scale Up
	Scale Out
	Dealing with the challenges of scaling out a web app

	Scaling web apps using Autoscale
	Autoscale based on CPU percentage
	Autoscale based on a recurring schedule
	Understanding Autoscale rules
	Turn off Autoscale

	Scale globally with Azure Traffic Manager
	Create a Traffic Manager profile
	Additional services for achieving massive scale

	Scaling WebJobs
	Summary

	Chapter 4 Monitoring and diagnostics
	Introduction to diagnostic logs
	Enable application and site diagnostic logs
	Store log files in the web app file system
	Store log files in Azure Storage

	Access and download diagnostic log files
	Access log files stored in the web app file system
	Access log files from Azure Storage

	Log streaming
	Log streaming using Visual Studio
	Log streaming using command-line tools

	Remote debugging
	Diagnostics as a Service (DaaS)
	Install the Diagnostics as a Service site extension
	Run DaaS
	View DaaS analysis reports

	Site Admin Tools/Kudu
	Install the Site Admin Tools/Kudu
	Run the Site Admin Tools

	Monitor web app endpoints externally using web tests
	Create a URL ping web test

	Monitoring
	Monitor a resource group using the Azure portal

	Application Insights
	Add Application Insights to an existing ASP.NET MVC Web Application

	Summary

	About the author
	Free ebooks
	Tell us what you think!

