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Foreword 
The world around us—every business and nearly every industry—is being transformed by technology. 

This disruption is driven in part by the intersection of three trends: a massive explosion of data, 

intelligence from machine learning and advanced analytics, and the economics and agility of cloud 

computing. 

Although databases power nearly every aspect of business today, they were not originally designed 

with this disruption in mind. Traditional databases were about recording and retrieving transactions 

such as orders and payments. They were designed to make reliable, secure, mission-critical 

transactional applications possible at small to medium scale, in on-premises datacenters. 

Databases built to get ahead of today’s disruptions do very fast analyses of live data in-memory as 

transactions are being recorded or queried. They support very low latency advanced analytics and 

machine learning, such as forecasting and predictive models, on the same data, so that applications 

can easily embed data-driven intelligence. In this manner, databases can be offered as a fully 

managed service in the cloud, making it easy to build and deploy intelligent Software as a Service 

(SaaS) apps. 

These databases also provide innovative security features built for a world in which a majority of 

data is accessible over the Internet. They support 24 × 7 high-availability, efficient management, and 

database administration across platforms. They therefore make possible mission-critical intelligent 

applications to be built and managed both in the cloud and on-premises. They are exciting harbingers 

of a new world of ambient intelligence. 

SQL Server 2016 was built for this new world and to help businesses get ahead of today’s disruptions. 

It supports hybrid transactional/analytical processing, advanced analytics and machine learning, 

mobile BI, data integration, always-encrypted query processing capabilities, and in-memory 

transactions with persistence. It integrates advanced analytics into the database, providing 

revolutionary capabilities to build intelligent, high-performance transactional applications. 

Imagine a core enterprise application built with a database such as SQL Server. What if you could 

embed intelligence such as advanced analytics algorithms plus data transformations within the 

database itself, making every transaction intelligent in real time? That’s now possible for the first time 

with R and machine learning built in to SQL Server 2016. By combining the performance of SQL Server 

in-memory Online Transaction Processing (OLTP) technology as well as in-memory columnstores with 

R and machine learning, applications can achieve extraordinary analytical performance in production, 

all while taking advantage of the throughput, parallelism, security, reliability, compliance certifications, 

and manageability of an industrial-strength database engine. 
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This ebook is the first to truly describe how you can create intelligent applications by using SQL Server 

and R. It is an exciting document that will empower developers to unleash the strength of data-driven 

intelligence in their organization. 

Joseph Sirosh 

Corporate Vice President 

Data Group, Microsoft 
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Introduction 
R is one of the most popular, powerful data analytics languages and environments in use by data 

scientists. Actionable business data is often stored in Relational Database Management Systems 

(RDBMS), and one of the most widely used RDBMS is Microsoft SQL Server. Much more than a 

database server, it’s a rich ecostructure with advanced analytic capabilities. Microsoft SQL Server R 

Services combines these environments, allowing direct interaction between the data on the RDBMS 

and the R language, all while preserving the security and safety the RDBMS contains. In this book, 

you’ll learn how Microsoft has combined these two environments, how a data scientist can use this 

new capability, and practical, hands-on examples of using SQL Server R Services to create real-world 

solutions. 

How this book is organized 

This book breaks down into three primary sections: an introduction to the SQL Server R Services and 

SQL Server in general, a description and explanation of how a data scientist works in this new 

environment (useful, given that many data scientists work in “silos,” and this new way of working 

brings them in to the business development process), and practical, hands-on examples of working 

through real-world solutions. The reader can either review the examples, or work through them with 

the chapters. 

Who this book is for 

The intended audience for this book is technical—specifically, the data scientist—and is assumed to 

be familiar with the R language and environment. We do, however, introduce data science and the R 

language briefly, with many resources for the reader to go learn those disciplines, as well, which puts 

this book within the reach of database administrators, developers, and other data professionals. 

Although we do not cover the totality of SQL Server in this book, references are provided and some 

concepts are explained in case you are not familiar with SQL Server, as is often the case with data 

scientists. 

Acknowledgements 

Brad Severtson, Fang Zhou, Gopi Kumar, Hang Zhang, and Xibin Gao contributed to the development 

and publication of the content in Chapters 3 and 4. 
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 Using this book 
In this book, you’ll learn how to install, configure, and use Microsoft’s SQL 

Server R Services in data science projects. We’re assuming that you have 

familiarity with data science and, most important, the R language. But if 

you don’t, we’ve added a section here to help you get started with this 

powerful data-analysis environment. 

For the data science or R professional 
“Data science” is a relatively new term, and it has a few definitions. For this book, we’ll use the name 

itself to define it. Thus a data science professional is a technical professional who uses a scientific 

approach (asks a question, creates a hypothesis—or more accurately a model—tests the hypothesis, 

and then communicates the results) in the data-analytics process, whether using structured or 

unstructured data, or perhaps both. 

We’re assuming that you have a background in general mathematics, some linear algebra, and, of 

course, an in-depth familiarity with statistics. We’re also assuming that you know the R language 

and its processing environment and are familiar with how to load various packages, and that you 

understand when to use R for a given data solution. But even if you don’t have those skills, read on; 

we have some resources that you can use. 

Even if you have a deep background in statistics and R, Microsoft’s SQL Server might be new to you. 

To learn how to work with it, take a look at the section “SQL Server and Transact-SQL” later in this 

chapter. In this book, we’ll assume that you have a working knowledge of how SQL Server operates, 

and how to read and write Transact-SQL—the dialect of the SQL language that Microsoft implements 

in SQL Server. 

In the two chapters that follow, we’ll show you what SQL Server R Services is all about and how you 

can install it. You’ll learn the client tools and the way to work with R Services, and we’ll follow that up 

with a walk-through using the data science process. 

One of the best ways to learn to work with a product is to deconstruct some practical examples in 

which it is used. In the rest of this book, we’ve put together representative, real-world use cases that 

demonstrate an end-to-end solution for a typical data science project. These are examples you’ll find 

in other data science tools, so you should be able to extrapolate the concepts of what you already 

know to how you can do the same thing in SQL Server using R Services—we think you’ll find it has 

some real advantages to using a standard R platform. 
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Solution example: customer churn 

One of the most canonical uses for prediction science is customer churn. Customer churn is defined as 

the number of lost customers divided by the number of new customers gained. As long as you’re 

gaining new customers faster than you’re losing them, that’s a good thing, right? Actually, it’s not—

for multiple reasons. The primary reason customer churn is a bad thing is that it costs far more to gain 

a customer, or regain a lost one, than it does to keep an existing customer. Over time, too much 

customer churn can slowly drain the profits from a company. Identifying customer churn and the 

factors that cause it are essential tasks for a company to stay profitable. 

Interestingly, customer churn extrapolates out to other uses, as well. For instance, in a hospital, you 

want customers to churn—to not come back. You want them to stay healthy after their hospital visit. 

In this example, we’ll show you how to calculate and locate customer churn by using R and SQL Server 

data. 

Solution example: predictive maintenance and the Internet of Things 

It is critical for businesses operating or utilizing equipment to keep those components running as 

effectively as possible because equipment downtime or failure can have a negative impact beyond 

just the cost of repair. Predictive maintenance is defined as a technique to forecast when an in-service 

machine will fail so that maintenance can be planned in advance. It includes more general techniques 

that involve understanding faults, failures, and timing of maintenance. It is widely used across a variety 

of industries, such as aerospace, energy, manufacturing, and transportation and logistics. 

New predictive maintenance techniques include time-varying features and are not as bound to 

model-driven processes. The emerging Internet of Things (IoT) technologies have opened up the door 

to a world of opportunities in this area, with more sensors being installed on devices and more data 

being collected about these devices. As a result, data-driven techniques now promise to unleash the 

potential of using data to understand when to perform maintenance. 

In this example, we'll show you different ways of formulating a predictive maintenance problem and 

then show you how to solve them by using R and SQL Server. 

Solution example: forecasting 

Forecasting is defined as the process of making future predictions by using historical data, including 

trends, seasonal patterns, exogenous factors, and any available future data. It is widely used in many 

applications and critical business decisions depend on having an accurate forecast. Meteorologists use 

it to generate weather predictions; CFOs use it to generate revenue forecasts; Wall Street analysts use 

it to predict stock prices; and inventory managers use it to forecast demand and supply of materials. 

Many businesses today use qualitative judgement–based forecasting methods and typically manage 

their forecasts in Microsoft Excel, or locally on an R workstation. Organizations face significant 

challenges with this approach because the amount and availability of relevant data has grown 

exponentially. Using SQL Server R Services, it is possible to create statistically reliable forecasts in an 

automated fashion giving organizations greater confidence and business responsiveness. 

In this section, we will introduce basic forecasting concepts and scenarios and then illustrate how to 

generate forecasts by using SQL Server R Services. 
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For those new to R and data science 

If you are new to R and you’re interested in learning more before you dive in to these examples, read 

on. You have a few things to learn, but it isn’t too difficult if you stick with it. As our favorite 

philosopher, Andy Griffith, would say, “Ain’t nothing good, easy.” Although that might not be 

grammatically correct, the sentiment is that you’re about to embark on a journey with a very powerful 

tool, and with great power comes great responsibility. It will take time and effort on your part to learn 

to use this tool correctly. 

R is used to process data, and has powerful statistical capabilities. In most cases, when you run a 

statistical formula on a set of numbers, you’ll get an answer—which isn’t always true of many 

languages. But when you process statistical data, you’re often left with an additional set of steps 

involving interpreting and then applying the answer to a decision. This means that not only are your 

coding skills at stake, your professional reputation is, as well. 

But, not to fear: there are many low-cost and even free options to bring you up to speed. If you’re a 

motivated self-learner, you’re in luck. 

Step one: the math 

There’s no getting away from math when you’re working with R. To fully make use of the R language, 

you’ll need three disciplines covered: general math, linear algebra, and first- to second-year level 

experience with statistics. 

General math 

Let’s begin with an understanding of basic math, which includes the following concepts: 

 Numbers Counting (natural), whole, real, integers, rational, imaginary, complex, binary, fractions 

and scientific 

 Operations Add, subtract, divide, multiply, conversions, working with fractions in those 

operations 

We are big fans of the Khan Academy. You can find a good course on general math at 

https://www.khanacademy.org/math. You also can go to http://www.webmath.com/index2.html and 

use Discovery Education for a general math course. And a quick web search using the term Basic 

Math Skills will turn up even more resources in your geographic area. Even if you’re sure about your 

skills, it can be fun and useful to bone up quickly on these basic skills. 

Linear Algebra 

Linear algebra covers vector spaces and linear mappings between them. You’ll need to focus 

especially on the matrices equations and also understand the following: 

 Vector spaces 

 Matrices 

 Linear transformations 

 Eigenvalues and eigenvectors 

 Least-squares fitting 

 Fourier transforms and other transform operations 

https://www.khanacademy.org/math
http://www.webmath.com/index2.html


4 CHAPTER 1  |  Using this book 

 

If you’re new to algebra, check out the aforementioned Khan Academy courses. After that, move on to 

Linear Algebra courses, which you can find at https://www.khanacademy.org/math/linear-algebra. 

You also can find a good course on linear algebra at the Massachusetts Institute of Technology’s 

Open Courseware at http://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-

2011/index.htm. And, of course, a quick web search using Learning Linear Algebra yields even more 

results. 

Statistics 

Descriptive and predictive statistics are essential tools for the data scientist, and you’ll need a solid 

grounding in these concepts to effectively use the R language for data processing. You’ll probably 

spend most of your time learning statistics, more so than any other skill in data science. Here are the 

primary concepts and specific processes you need to understand in statistics: 

 Descriptive statistical methods 

 Predictive statistical methods 

 Probability and combinatorics 

 A focus on inference and representation statistical methods 

 Time-series forecasting models 

 Regression models (linear systems and eigensystems, multivariate, and nonlinear regression, 

as well) 

Again, the Khan Academy has a wide range of breadth and depth courses on statistics. You can find its 

list at https://www.khanacademy.org/math/probability. Sat Trek (http://stattrek.com/) is another free 

tutorial site with a good introduction to statistics. Because statistics is a very mature science, a quick 

search yields multiple sources for learning from books, videos, and tutorials. 

Step two: SQL Server and Transact-SQL 

In the late 1960s and the early 1970s, working with data usually meant using ASCII or binary-encoded 

“flat” files with columns and rows. Programs such as COBOL would “link” these files together using 

various methods. If these links were broken, the files were no longer able to be combined, or joined. 

There were also issues around the size of the files, the speed (or lack thereof) with which you could 

reference and open them, and locking. 

To solve these issues, a relational calculus was implemented over an engine to insert, update, delete, 

and read data over a designated file format—thus, the Relational Database Management System 

(RDBMS) was born. Most RDBMS implementations used the Structured Query Language (SQL), a 

functional language, to query and alter data. This language and the RDBMS engines are among the 

most widely used data processing and storage mechanisms in use today, and so the data scientist is 

almost always asked to be familiar with using SQL. 

Microsoft’s SQL Server is an RDBMS, but it also serves as a larger platform for Business Intelligence 

(BI), data mining, reporting, an Extract, Transform, and Load (ETL) system, and much more—including 

the R language integration. It uses a dialect of the SQL language called Transact-SQL (T-SQL). To 

effectively use the R integration demonstrated in this book, you’ll need to understand how to use 

T-SQL, including the following: 

 Basic Create, Read, Update, and Delete (CRUD) operations 

 Database and database object creation: Data Definition Language (DDL) statements 

https://www.khanacademy.org/math/linear-algebra
http://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/index.htm
http://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/index.htm
https://www.khanacademy.org/math/probability
http://stattrek.com/
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 Multi-join operations 

 Recursive SELECT statements 

 Grouping, combining, and consolidating Data Manipulation Language (DML) statements 

 SQL Server architecture and general operation 

There is a litany of courses you can take for SQL in general, and T-SQL specifically. Here are a few: 

 Learn SQL is a great site to get started with general SQL: http://www.sqlcourse.com/ 

 Codeacademy is another great place to get started: https://www.codecademy.com/learn/learn-sql 

 To learn the basics of the T-SQL dialect, try this resource: http://www.tsql.info/ 

 Microsoft has a tutorial on getting started with T-SQL: https://msdn.microsoft.com/en-

us/library/ms365303.aspx 

Next, you’ll need to understand SQL Server’s architecture and features. For that, use the information in 

Books Online at https://msdn.microsoft.com/library/ms130214.aspx. 

Step three: the R programming language and environment 

R is a language and platform used to work with data, most often by using statistical methods. It’s very 

mature and is used by many data professionals around the world. It’s extended with a “package,” 

which is code that can reference using dot notation and function calls.  

If you know SQL, T-SQL, or a scripting language like Windows PowerShell, you’ll be familiar with the 

basic structure of an R program. It’s an interpreted language, and one of the interesting things about 

the way it works is in how it stores computational data. When you work with R, everything is stored in 

an ordered collection called a vector. This is both a strength and a weakness of the R system, one that 

Microsoft addresses with its enhancements to the R platform. 

To learn more about R, you have a very wide array (pun intended) of choices: 

 There’s a full course you can take on R at DataCamp: https://www.datacamp.com/ 

 The primary resource you can use for learning R on SQL Server is here: 

https://msdn.microsoft.com/library/mt674876.aspx 

 And you can find tutorials on R for SQL Server here: 

https://msdn.microsoft.com/library/mt591993.aspx 

You can also find out more about data science and working with R at my blog, which you can view at 

https://buckwoody.wordpress.com/. You’ll find a rich list of resources there to help you continue in 

your learning journey. If you want to go further and learn more about data science, check out 

https://buckwoody.wordpress.com/2015/09/16/the-amateur-data-science-body-of-knowledge/. 

Now, on to R with SQL Server… 

http://www.sqlcourse.com/
https://www.codecademy.com/learn/learn-sql
http://www.tsql.info/
https://msdn.microsoft.com/en-us/library/ms365303.aspx
https://msdn.microsoft.com/en-us/library/ms365303.aspx
https://msdn.microsoft.com/library/ms130214.aspx
https://www.datacamp.com/
https://msdn.microsoft.com/library/mt674876.aspx
https://msdn.microsoft.com/library/mt591993.aspx
https://buckwoody.wordpress.com/
https://buckwoody.wordpress.com/2015/09/16/the-amateur-data-science-body-of-knowledge/
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 Microsoft SQL 
Server R Services 
This chapter presents an overview of the SQL Server R Services, how 

it works, and where you can get it. We also show you how to make your 

solutions operational and where you can learn more about R on SQL 

Server. 

The advantages of R on SQL Server 
In a 2011 study,1 Erik Brynjolfsson of the Massachusetts Institute of Technology Sloan School of 

Management showed a link between firms that use Data-Driven Decision Making and higher 

performance. Organizations are moving ever closer to using more and more data interpretation in 

their operations. And much of that data lives in Relational Database Management Systems (RDMBS) 

like Microsoft SQL Server. 

R has long been a popular data-processing language. It has thousands of external packages, is 

relatively easy to read and understand, and has rich data-processing features. R is used in thousands 

of organizations around the world by data-analysis professionals. 

Note If you’re not familiar with R, check out the resources provided in Chapter 1. 

A statistical programmer versed in R often accesses data stored in a database by using a package that 

calls the Open Database Connectivity (ODBC) Application Programming Interface (API), which serves 

as a conduit to the RDBMS to retrieve data. R then receives that data as a data.frame object. The 

results from the database server are either pushed back across the network to the RDBMS, or the data 

professional saves the results locally in tabular or other form. Using this approach, all of the 

processing of the data happens locally, with the exception of the SQL statement used to gather the 

initial set of data. Data is rarely sent back to the RDBMS—it is most often a receive operation. 

The Structured Query Language (SQL) is another data-processing language designed specifically for 

working within an RDBMS. Its roots involve relational algebra and relational calculus, and it is used in 

                                                      
1 See http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1819486 

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1819486
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multiple database systems. Most vendors extend the basic SQL constructs to take advantage of the 

platform it runs on, and in the case of Microsoft SQL Server, this dialect is called Transact-SQL (T-SQL). 

T-SQL is used to query, update, and delete data, along with many other functions. 

In both R and T-SQL, the developer types commands in a step-wise fashion in an editor window or at 

a command-line interface (CLI). But the path of operations is different from that point on. R is an 

interpreted language, which means a set of binaries local to the command environment processes the 

operations and returns the result directly to the calling program. In SQL Server, the client is separate 

from the processing engine. The installation of SQL Server listens on a network interface, and the 

client software puts the commands on the network path in a particular protocol. The server receives 

this packet with the T-SQL statements only if the packet is “well formed.” The commands are run on 

the server, and the results, along with any messages the server sends (such as the number of rows) 

and any error messages, are returned to the client over the same protocol. The primary load in this 

approach is on the server rather than the workstation. Of course, the workstation might then further 

process the data—using Java, C#, or some other local language—but often the business logic is done 

at the server level, with its security, performance, and other advantages and controls. 

But SQL Server is much more than just a data store. It’s a rich ecostructure of services, tools, and an 

advanced language to deal with data of almost any shape and massive size. Many organizations store 

the vast amount of their actionable data within SQL Server by using custom and commercial software. 

It has more than 36 data types, and gives you the ability to define more. 

SQL Server also has fine-grained security features. When these are applied, the data professional can 

simply query the data, and only the allowed datasets are returned. This facilitates good separation of 

duties, which is highly important in large, complex systems for which one group of professionals 

might handle the security of data, and another handles the querying and processing of the data. 

SQL Server also has advanced performance features, such as a column-based index, which can provide 

extremely fast search and query functions over very large sets of data. 

Using R on SQL Server combines the power of the R language (and its many packages) and the 

advantages of the SQL Server platform by placing the computation over the data. This means that you 

aren’t moving the data to the R system, involving networking, memory on two systems, CPU power on 

each side, and other disadvantages—the code operates on the same system as the application data. 

Combining R and SQL Server means that the R environment gains not only the functions and features 

in the R language, but also the ecostructure, security, and performance of SQL Server, as well as 

increased scale. And using R directly on SQL Server means that the R code can save the results of the 

operation to a new or existing table for other queries to access and update. 

A brief overview of the SQL Server R Services 

architecture 
The native implementation of open-source R reads data into a data-frame structure, all of which is 

held in memory. This means that R is limited to working with data sizes that will fit into the RAM on 

the system that processes the data. Another limitation in R is within a few of the core packages that 

process certain algorithms, most notably dealing with linear regression math. These native calls can 

perform slowly. 

SQL Server R Services 

To address these limitations (and others), Microsoft R Server brings several major enhancements to 

the R platform—Microsoft R Server is what is used in SQL Server R Services. The first enhancement is 

the ScaleR library, which allows MRS to “chunk” data stored on permanent storage in either comma-
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separated-value files, databases, and many other data sources into manageable sets. These libraries 

also offer increased parallelization, which makes it possible for the R code to process data more 

efficiently. 

Microsoft R uses a binary storage format called an XDF, which handles data frames in a more efficient 

pattern, allowing advantages such as appending data to the end of a file, and other performance 

improvements. 

Another set of enhancements involves replacing some of the core calls to some of the math libraries 

in the open-source version of R, with much higher performance. Other enhancements involve 

extending the scaling features of R to distribute the workload across multiple servers. 

R Server is available on multiple platforms, from Windows to Linux, and has multiple editions. 

Microsoft also has combined the R Server code in its other platforms, including HDInsight (Hadoop) 

and with the release of SQL Server 2016. In this book, we’ll deal with the implementation in SQL Server 

2016, called SQL Server R Services. 

A SQL Server installation, called an instance, contains the binaries required to run the various RDBMS 

engine functions, Business Intelligence (BI) features, and other engines. The instance also instantiates 

entries into an internal Windows database construct called the Windows Registry, and a few SQL 

Server databases to configure and secure the RDBMS environment. The binaries run as Windows 

Services (equivalent to a Linux Daemon), regardless of whether someone is signed in to the server. 

These Windows Services listen on networking ports for proper calls from client software. 

In SQL Server 2016 and later, Microsoft combines the two environments by installing the Microsoft R 

Server binaries along with the SQL Server installation. Changes in the SQL Server base code allows 

the two environments to communicate securely in the same space and makes it possible for the two 

services to be upgraded without affecting each other, within certain parameters. This architecture 

means that you have the purest possible form of both servers, while allowing SQL Server the complete 

access to the R environment. 

To use R code in this architecture, you must configure the SQL Server instance to allow an external 

scripts setting (which can be secured) so that the T-SQL code can make calls to the R Server. Data is 

passed as a data.frame object to the R code directly from SQL Server, and SQL Server interprets the 

results from the R code as a tabular or other format, depending on the data returned. In this manner, 

the T-SQL and R code can interoperate on the same data, all while using the features and functions in 

each language. Because the call stays within the constructs of SQL Server, the security and 

performance of that environment is maintained. 

Preparing to use SQL Server R Services 

After the installation and configuration of SQL Server R Services, you can begin to use your R code in 

two ways: by executing the code interactively, or, more commonly, by saving your R code within the 

body of a script that executes on SQL Server, called a stored procedure. The stored procedure can 

contain T-SQL and R code, and each can pass variables and data to the other. Before you can run your 

code, you’ll need to install SQL Server R Services. 

Installing and configuring 

You can install R Services on an initial installation of a SQL Server 2016 instance. You also can add R 

Services later by using the installation source. The installation or addition process will install the R 

server and client libraries onto the SQL Server. 
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Note There are various considerations for installing R Services on SQL Server, and if you’re setting 
up a production system you should follow a complete installation planning process with your entire 
IT team. You can read the full installation instructions for R Services on SQL Server at 
https://msdn.microsoft.com/en-us/library/mt696069.aspx. 

For your research, and for any SQL Server developer, there’s a simplified installer for the free 
Developer Edition, which we describe in a moment. 

Server 

SQL Server comes in versions and editions. A version is a dated release of the software based on a 

complete set of features; it has a product name such as SQL Server 2016. SQL Server R Services is 

included with SQL Server Version 2016 and later. 

An edition of SQL Server is a version with an included set of capabilities. These range from Microsoft 

SQL Server Express (a free offering), which provides a limited amount of memory, capabilities, and 

database size, to several other Editions up to SQL Server Enterprise, which contains all capabilities in 

the platform and can use the maximum resources the system can provide. 

More info You can learn more about which editions support each capability at 
https://www.microsoft.com/cloud-platform/sql-server-pricing. 

In a production environment, your IT team should help you research and decide on the proper 

edition of SQL Server to install. If you are installing a copy for yourself or for a development 

environment, the SQL Server Developer Edition is often your best choice. It’s a free, single-user 

edition that contains all of the features and capabilities in SQL Server, and you can use it to work 

through all of the examples in this book. You can find the download for SQL Server Developer Edition 

at https://www.microsoft.com/cloud-platform/sql-server-editions-developers, and you can start the 

installation process on your workstation or in a virtual server. But there’s a new method of 

installing the Developer Edition that’s even simpler: to download and install the software, go to 

https://blogs.msdn.microsoft.com/bobsql/2016/07/13/the-sql-server-basic-installer-just-install-it-2/. 

If you have a previous installation of SQL Server 2016, you can add Microsoft R Server capabilities. 

During the installation, on the Installation tab, click New SQL Server Stand-Alone Installation Or Add 

Features To An Existing Installation. On the Feature Selection page, select the options Database 

Engine Services and R Services (In-Database). This will configure the database services used by R jobs 

and install all extensions that support external scripts and processes. 

Whether you’re installing for the first time or after a previous installation, there are a few steps you 

need to take to allow the server to run R code. You can either follow these steps yourself or get the 

assistance of the database administrator. 

Open the SQL Server Management Studio. Note that you can install SQL Server Management Studio 

directly from the installation media. Connect to the instance where you installed R Services (In-

Database), which is by default the “Default Instance,” and then type and run (Press the F5 key) the 

following commands to turn on R Services: 

exec sp_configure  'external scripts enabled', 1   
reconfigure  with  override   
Restart the SQL Server service for the SQL Server instance, using the Services applet in the Windows Control 
Panel, or by using SQL Server Configuration Manager. Once the service restarts, you can check to make sure 
the setting is enabled by running this command in SSMS: 
exec sp_configure  'external scripts enabled'   

https://msdn.microsoft.com/en-us/library/mt696069.aspx
https://www.microsoft.com/cloud-platform/sql-server-pricing
https://www.microsoft.com/cloud-platform/sql-server-editions-developers
https://blogs.msdn.microsoft.com/bobsql/2016/07/13/the-sql-server-basic-installer-just-install-it-2/
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Now you can run a simple R script within SQL Server Management Studio: 

exec sp_execute_external_script  @language =N'R',   
@script=N'OutputDataSet<-InputDataSet',     
@input_data_1 =N'select 1 as helloworld'   
with result sets (([helloworld] int not null));   
go   

Client 

When you install the R Services for SQL Server, the server contains the Microsoft R environment, 

including a client. However, you’ll most often use a local client environment to develop and use your R 

code, separate from the server. 

You can use a set of ScaleR functions to set the compute context to instruct the code to run on the 

SQL Server instance. This method makes it possible for the data professional to use the power of the 

SQL Server 2016 system to compute the data, with the added performance benefits of enhanced scale 

and putting the compute code directly over the data. 

To set the compute context, you’ll need the Microsoft R Client software installed on the 

developer or data scientist’s workstation. You can learn more about how to do that and 

more about the ScaleR functions at https://msdn.microsoft.com/microsoft-r/install-r-client-

windows?tduid=%2874674bbb9257612d8927ec3c206c5172%29%28256380%29%282459594%29%28

TnL5HPStwNw-VRuyHJhNp2D7.E7Jtg1Fiw%29%28%29&f=255&MSPPError=-2147217396. 

When you install the Microsoft R Client, whether remotely or on the server, several base packages are 

included by default (https://mran.microsoft.com/rro/installed/): 

 stats 

 graphics 

 grDevices 

 utils 

 datasets 

 methods 

 base 

Some packages (listed here) are included, but not loaded at startup. tools 

 compiler 

 parallel 

 splines 

 tcltk 

 grid 

To load these packages, use the following command: 

library("packagename") 

https://msdn.microsoft.com/microsoft-r/install-r-client-windows?tduid=%2874674bbb9257612d8927ec3c206c5172%29%28256380%29%282459594%29%28TnL5HPStwNw-VRuyHJhNp2D7.E7Jtg1Fiw%29%28%29&f=255&MSPPError=-2147217396
https://msdn.microsoft.com/microsoft-r/install-r-client-windows?tduid=%2874674bbb9257612d8927ec3c206c5172%29%28256380%29%282459594%29%28TnL5HPStwNw-VRuyHJhNp2D7.E7Jtg1Fiw%29%28%29&f=255&MSPPError=-2147217396
https://msdn.microsoft.com/microsoft-r/install-r-client-windows?tduid=%2874674bbb9257612d8927ec3c206c5172%29%28256380%29%282459594%29%28TnL5HPStwNw-VRuyHJhNp2D7.E7Jtg1Fiw%29%28%29&f=255&MSPPError=-2147217396
https://mran.microsoft.com/rro/installed/
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Another method is to develop your R code locally and then send it to the database administrator or 

developer to incorporate into a solution as a stored procedure—this is code that runs in the context 

of the SQL Server engine. We’ll explore this more in a moment. 

You have many client software options for writing and executing R code. Let’s take a quick look at 

how to set up each of these to perform the examples in this book. 

Microsoft R Client 

The Microsoft R Client contains a full R environment, similar to installing open-source R from CRAN. It 

also contains the Microsoft R ScaleR functions that not only increase performance for many R 

operations, but make it possible for you to set the compute context of the code to run on 

the Microsoft R Server or SQL Server R Services. You can read more about that function at 

https://msdn.microsoft.com/microsoft-r/scaler/rxcomputecontext. If you’re using a client such as 

RStudio or R Tools for Microsoft Visual Studio, you’ll want to install this software so that you can have 

your code execute on the server and return the results to your client workstation. 

If you want the SQL Server instance to process the R code directly within T-SQL, you have two choices. 

Your first option is to use “Dynamic SQL” statements, which means that the client software (such as 

SQL Server Management Studio or SQL Server Data Tools in Visual Studio or some other SQL Server 

client tool) simply sets the language for interpretation by using the sp_execute_external_script 

@language =N'R' internal stored procedure in SQL Server. The second, more common, option is to 

write a stored procedure in SQL Server that contains those calls to the R code, as you’ll see 

demonstrated later in this book. You can find a more complete explanation at 

https://msdn.microsoft.com/library/mt591996.aspx  

RStudio 

You can use the RStudio environment to connect to Microsoft R Server as well as to SQL Server and 

SQL Server with R Services. You’ll require the Microsoft R Client software (see the previous subsection) 

if you want to interact directly with SQL Server R Services or MRS. 

You also can create and edit R scripts locally and then send scripts to the SQL Server development 

team in your organization to include within the body of a T-SQL stored procedure. If you follow the 

latter route, you’ll need to assist that team in making the changes for using SQL Server for input data 

frames to your R code, obtaining the data you want from SQL Server, and other changes to make full 

use of the R environment in SQL Server. 

More info You can read more about this latter approach from the RStudio team by going to 
https://support.rstudio.com/hc/articles/214510788-Setting-up-R-to-connect-to-SQL-Server-. 

R Tools for Visual Studio 

Visual Studio is Microsoft’s development environment for almost any programming language. It 

contains a sophisticated Integrated Development Environment (IDE), team integration features using 

Git or Team Foundation Server (among others), and is highly extensible and configurable. There are 

paid and free editions, each with various capabilities. For this book and in many production 

environments, the free Community Edition is the right choice. 

Microsoft has created a set of tools called R Tools for Visual Studio (RTVS) with which you can work 

within the R environment, both locally and by using the Microsoft R Server and SQL Server R Services. 

https://msdn.microsoft.com/microsoft-r/scaler/rxcomputecontext
https://msdn.microsoft.com/library/mt591996.aspx
https://support.rstudio.com/hc/articles/214510788-Setting-up-R-to-connect-to-SQL-Server-
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RTVS also can configure your Visual Studio environment to have similar shortcuts to RStudio, if you 

are familiar with that environment. 

You can follow a simple step-by-step installation guide for the free Community Edition of Visual 

Studio with R Tools at https://www.visualstudio.com/features/rtvs-vs.aspx. And there’s a video you can 

watch for a class on using RTVS: https://channel9.msdn.com/Events/Build/2016/B884. 

More info You can learn more about Visual Studio at https://msdn.microsoft.com/library/ 
dd831853(v=vs.140).aspx. 

SQL Server Management Studio 

SQL Server Management Studio (SSMS), which you can install on the SQL Server or on a client 

machine, is a management and development environment for SQL Server. You can find the installation 

for SSMS at https://msdn.microsoft.com/library/mt238290.aspx 

SSMS works in a connected fashion, which means that you connect to an instance of SQL Server prior 

to running the code, sending T-SQL code, or interactively as you navigate the various objects in SQL 

Server represented graphically. You can create stored procedures using SSMS that contain R Code. 

For a walk-through of SSMS, visit https://msdn.microsoft.com/library/bb934498.aspx. 

More info To read more on this method of interaction with SSMS and R code, go to 
https://msdn.microsoft.com/library/mt591996.aspx. 

SQL Server Data Tools 

SQL Server Data Tools (SSDT) is another extension to Visual Studio. It works in a disconnected fashion 

to the SQL Server instance, which means that you can develop and test T-SQL code locally (it includes 

an Express Edition of SQL Server) and then deploy that solution to SQL Server after your testing is 

complete, or incorporate your code changes into a version control system such as Git or Team 

Foundation Server. 

You follow the same process for working in this manner as you would in SQL Server Management 

Studio, but you need to upgrade the SQL Server Express Edition to 2016 to obtain an R environment 

for local development. 

More info You can find out more about SSDT at http://msdn.microsoft.com/data/tools.aspx. 

Making your solution operational 

As mentioned earlier, you have two options for using R code with SQL Server R Services. The first 

option is to use your local client to create R scripts that will call out to SQL Server R Services and use 

the compute and data resources on that system to obtain data, run the R code, and return the results 

to the local workstation. The second option is to include the R code in SQL Server stored procedures, 

which are stored and run on the SQL Server. 

Using SQL Server R Services as a compute context 

The process you follow for using SQL Server R Services as your compute context is largely the same as 

your normal R development process. You will, however, need to install the Microsoft R Client software 

https://www.visualstudio.com/features/rtvs-vs.aspx
https://channel9.msdn.com/Events/Build/2016/B884
https://msdn.microsoft.com/library/dd831853(v=vs.140).aspx
https://msdn.microsoft.com/library/dd831853(v=vs.140).aspx
https://msdn.microsoft.com/library/mt238290.aspx
https://msdn.microsoft.com/library/bb934498.aspx
https://msdn.microsoft.com/library/mt591996.aspx
http://msdn.microsoft.com/data/tools.aspx
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so that you have the Microsoft R ScaleR functions that can send code to a Microsoft SQL Server with R 

Services system for execution and processing. 

You’ll then create a connection to the SQL Server R Services instance, and then you can use the ScaleR 

library to access it. Depending on the code you run, you might need to create a local location to store 

temporary data. You’ll see this in examples in this book and on the Microsoft documentation sites. 

The remote functions in the ScaleR library also give you the ability process T-SQL code remotely, and 

allows those calls to interact with the R code. Following are the primary functions you’ll use with SQL 

Server and a remote Microsoft R Client: 

 rxSqlServerTableExists Checks for the existence of a database table or object. 

 rxExecuteSQLDDL Execute a command to define, manipulate, or control SQL data objects, such as 

a table. This function does not return data. 

 RxSqlServerData This function defines a SQL Server data source object—this is the primary 

method to return data to your R code from SQL Server. 

After you have the data object, you can use it as a data source. The primary functions for that are 

listed here: 

 rxOpen Opens a data source for reading. 

 rxReadNext Reads data from a source. 

 rxWriteNext Writes data to the target. 

 rxClose After you run your code, use this function to close the data source and release the 

resources it has been using. 

To use the SQL Server R Services with the data, you create and manage the compute context. Here are 

the primary functions to do that: 

 RxComputeContext Create a compute context. 

 rxInSqlServer Generates a SQL Server compute context that lets ScaleR functions run on SQL 

Server R Services. 

 rxGetComputeContext Shows you the current compute context. 

 rxSetComputeContext Sets which compute context to use so that your code can switch between 

local and server operations, or even other MRS or SQL Server with R Services systems. 

To read the full documentation on each of these functions, which you’ll see used throughout this 

book, go to https://msdn.microsoft.com/library/mt732681.aspx. 

Let’s see an annotated R example of how this would work in a simple script. You’ll see more complex 

examples later in the book. This example connects to a SQL Server R Services instance, runs a T-SQL 

statement using that server, and then returns the data into a variable: 

# Create a variable for the SQL Server Connection String   
connStr <- "Driver=SQL Server;Server=ServerName;Database=DatabaseName;Uid=UserName;Pwd=Password" 
# Create a variable to store the data returned from the SQL Server, with the user’s name,  
# a variable for the parameters to pass to the SQL Server, 
# the values you can pass to the RxSQLServerdata constructor   
sqlShareDir <- paste("C:\\temp\\",Sys.getenv("USERNAME"),sep="")  
sqlWait <- TRUE  
sqlConsoleOutput <- FALSE 
# Now we’ll set the compute context for the data object, using all the variables 
# we just created. 
cc <- RxInSqlServer(connectionString = connStr, shareDir = sqlShareDir, wait = sqlWait, consoleOutput = 
sqlConsoleOutput) 
# Next we can set the compute context to point to SQL Server R Services, defined earlier. 

https://msdn.microsoft.com/library/mt732681.aspx
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rxSetComputeContext(cc) 
# We can then construct the T-SQL query. This one simply brings back three columns.  
sampleDataQuery <- "select Col1, Col2, Col3 from MyTableName" 
# Finally we run the query, using all of the objects set up in the script.  
# Note that we’re using a colClasses variable to convert the data types to something 
# R understands, since SQL Server has more datatypes than R, and we’re reading 500 rows 
# at a time. 
inDataSource <- RxSqlServerData(sqlQuery = sampleDataQuery, connectionString = connStr,   
colClasses = c(Col1 = "numeric", Col2 = "numeric", Col3 = "numeric"), rowsPerRead=500) 

You now can use the inDataSource object obtained from SQL Server R Services in your R code for 

further processing. 

Using stored procedures with R Code 

Another method that you can use to operationalize your solution is to take advantage of SQL Server 

stored procedures. Stored procedures in SQL Server are similar to code-block type procedures in 

other languages. You can either develop the stored procedures yourself or work with the data 

programming team to incorporate your R code into the business logic in the application that uses SQL 

Server stored procedures. 

Note If you’re new to SQL Server stored procedures, you can learn more about them at 
https://msdn.microsoft.com/en-us/library/ms187926.aspx?f=255&MSPPError=-2147217396. 

In general, your stored procedure will perform the following steps: 

1. Call the external script SQL Server stored procedure and set the language to R. 

2. Set a variable for the R code. 

3. Call input data from SQL Server by using T-SQL. 

4. Return data from the R code operation. 

Here’s an annotated example. Let’s assume that you have a table called “MyTable” with a single 

column of integers. You want to pass all of the data into an R script that simply returns the same data, 

but with a different column name: 

-- Call the external script execution – note, must be enabled already 
execute sp_execute_external_script     
-- Set the language to R 
      @language = N'R'   
-- Set a variable for the R code, in this case simply making output equal to input   
    , @script = N' OutputDataSet <- InputDataSet;'     
-- Set a variable for the T-SQL statement that will obtain the data 
    , @input_data_1 = N' SELECT * FROM MyTable;'     
-- Return the data – in this case, a set of integers with a column name 
    WITH RESULT SETS (([NewCollumnName] int NOT NULL)); 

There are many more complex operations that you can perform in this manner, which you can read 

about at https://msdn.microsoft.com/library/mt591996.aspx. 

In the scenarios that follow, you’ll see a mix of these methods to develop, deploy, and use your 

solution. First, let’s take a look at how you can use the data-science process to create an end-to-end 

solution. 

https://msdn.microsoft.com/en-us/library/ms187926.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/library/mt591996.aspx
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3 

 An end-to-end 
data science 
process example 
In this chapter, we take you on a systematic walk-through for performing 

data science and building intelligent applications using Microsoft SQL 

Server R Services. You’ll see a sequence of steps for developing and 

deploying predictive models using the R and Transact-SQL (T-SQL) 

environments. 

The data science process: an overview 
A data science process for building and deploying a predictive solution typically involves the following 

steps (see also Figure 3-1): 

1. Defining the business problem, identifying the technologies suitable for the solution, and 

establishing key performance indicators (KPIs) for measuring success of the solution. 

2. Planning and preparing the platform and environment on which the solution will be built (for 

example, SQL Server R services). 

3. Data ingestion from a source to the environment. (Data cleansing is often needed.) Considerations 

for data ingestion include the following: 

 Data: on-premises or cloud; database or files; small, medium, and big data 

 Pipeline: streaming or batch; low or high frequency 
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 Format: structured or unstructured; data validation and clean-up 

 Analytics: on-premises or cloud; database or data lake 

4. Exploratory data analysis, summarization, and visualization. Methods can include the following: 

 Data dimensions, types, statistical summary, missing values 

 Distribution, histogram, boxplot, relationships, and so on 

 Statistical significance (t-test), fit (chi-squared test), and so on 

5. Identifying the dependent (target) and independent variables (also referred to as predictors or 

features). Generating and/or selecting the features on which a predictive model will be created. 

6. Creating predictive models using statistical and/or machine learning algorithms. Evaluating such 

models for accuracy. If the accuracy is not appropriate for deploying the model, you can reiterate 

steps 4, 5, and 6. 

7. Saving and deploying the model into a predictive service for consumption. 

 

Figure 3-1: Lifecycle of a data science process.2 

SQL Server R Services provides a platform and environment for building and deploying predictive 

services. In this chapter, we cover steps 1 through 7 of the data science process. You can modify this 

walk-through to fit your own business scenarios, datasets, and predictive tasks. 

Note Much of the detail of this process is published online3,4 so that you can download the specific 
code if you like. 

                                                      
2 Data science process: https://azure.microsoft.com/documentation/articles/data-science-process-overview 
3 Data Science End-to-End Walkthrough for R Developers: https://msdn.microsoft.com/en-us/library/mt612857.aspx 
4 In-Database Advanced Analytics for SQL Developers: https://msdn.microsoft.com/library/mt683480.aspx 

https://azure.microsoft.com/documentation/articles/data-science-process-overview
https://msdn.microsoft.com/en-us/library/mt612857.aspx
https://msdn.microsoft.com/library/mt683480.aspx
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The data science process in SQL Server R Services: a 

walk-through for R and SQL developers 
In the first two chapters in this book, we introduced you to the power of R in SQL Server. We 

also covered the process for installing SQL Server R Services as well as a discussion of the client 

environment and the tools that you can use. In this chapter, we put those tools to use and show you 

a walk-through that R professionals and SQL developers can follow.2,3 Wherever an activity can be 

performed by using R scripts in an R development environment or by using T-SQL with tools such 

as SQL Server Management Studio (SSMS), both approaches are shown. You can download the R and 

SQL scripts we show you here from a public GitHub repository,5 where they are described in detail.2,3 

Data and the modeling task 

The first step of a data science process is to clearly understand the problem you’re trying to solve. In 

this example, we want to predict whether a taxi driver in New York City will be given a tip, based on 

features such as trip distance, pickup time, number of passengers, and so on. 

To accomplish that goal, we move on to the next steps in the data science process. We’ll set up our 

environment, tools, and the servers we need to create the model. Next we’ll vet and obtain a 

representative set of data to create the model. 

Data: New York City taxi trip and fare 

The data we’ll use is a representative sampling of the 2013 New York City taxi trip and fare dataset, 

which contains records of more than 173 million individual trips in 2013, including the fares and tip 

amounts paid for each trip. For more information about this data, go to http://chriswhong.com/open-

data/foil_nyc_taxi. 

To make the data easier and faster to work with for this example, we’ll sample it to get just one 

percent of the data. This data has been shared in a public blob storage container in Microsoft Azure, 

in .csv format (http://getgoing.blob.core.windows.net/public/nyctaxi1pct.csv). The source data is an 

uncompressed file, just a little less than 350 MB in size. This will make it a bit quicker for you to 

download and follow along with this example. 

It’s important to understand that although we have a ready-made set of data to work with, this isn’t 

often the case. According to recent polls,6 a majority of the data scientist’s time is spent on finding, 

curating, vetting, obtaining, and cleaning source data for a model. That’s where another advantage to 

working with SQL Server comes into play. The platform contains a very comprehensive, mature data 

sourcing and conditioning environment called SQL Server Integration Services (SSIS) that you can use 

to source and transform your data. This relieves a lot of the work that your R code previously had to 

do—although that’s still an option, of course. 

More info You can learn more about SQL Server Integration Services at 
https://msdn.microsoft.com/library/ms141026.aspx. 

                                                      
5 Public GitHub repository for walk-through scripts: https://github.com/Azure/Azure-MachineLearning-

DataScience/tree/master/Misc/RSQL 
6 “For Big-Data Scientists, ‘Janitor Work’ is Key Hurdle to Insights.” The New York Times. 

http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html. 

http://chriswhong.com/open-data/foil_nyc_taxi
http://chriswhong.com/open-data/foil_nyc_taxi
http://getgoing.blob.core.windows.net/public/nyctaxi1pct.csv
https://msdn.microsoft.com/library/ms141026.aspx
https://github.com/Azure/Azure-MachineLearning-DataScience/tree/master/Misc/RSQL
https://github.com/Azure/Azure-MachineLearning-DataScience/tree/master/Misc/RSQL
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
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Modeling task: predicting whether a trip was tipped 

The modeling task at hand is to predict whether a taxi trip was tipped (a binary, 1 or 0 outcome), 

based on features such as distance of the trip, the duration of the trip, number of passengers in the 

taxi for that trip, and other factors. Features are columns of data that have a potential relationship to 

another column, frequently referred to as the Label or Target—the answer that we are looking for. The 

dataset we have contains past information about the trips, the passengers, and other data (features), 

and it includes the tip (the label). 

Preparing the infrastructure, environment, and tools 

Now we’re ready to move on to the steps necessary for creating the infrastructure and environment 

for executing a data science process on SQL Server R Services. 

SQL Server 2016 with SQL Server R Services 

You must have access to an instance of SQL Server 2016 with SQL Server R Services installed7 (see 

Chapter 2). You must be using SQL Server 2016 CTP3 or later. Previous versions of SQL Server do not 

support integration with R, though you can use SQL databases as an Open Database Connectivity 

(ODBC) data source. You must have a valid sign-in on the SQL database server for creating tables, 

loading data, and querying. 

SSMS 

SSMS8 should be installed on your testing environment—if you set up the Developer Edition, you’ll 

probably run this code there, so you should install SSMS as described in Chapter 2. SSMS is an 

integrated environment for accessing, configuring, managing, administering, and developing all 

components of SQL Server. SSMS combines a broad group of graphical tools with a number of rich 

script editors to provide developers and administrators of all skill levels access to SQL Server. If SSMS 

is also installed on the client workstation, you can connect to SQL Server from the client machine 

using SSMS and run SQL scripts to perform database activities. 

R integrated development environment 

For development in R, you will need a suitable R integrated development environment (R-IDE) or 

command-line tool that can run R commands, such as Microsoft R-client (see Chapter 2), Rstudio,9 or 

R-Tools for Visual Studio (RTVS).10 Using these tools, you can connect to an instance of SQL Server 

(with a valid sign-in with appropriate privileges) and run R scripts. You also can use the one at 

C:\Program Files\Microsoft SQL Server\MSSQL13.MSSQLSERVER\R_SERVICES\bin\x64. 

In this directory, clicking the Rgui.exe icon will invoke the Microsoft R Server; you can use this as the 

environment for developing and running R code. 

Note Development and testing of the actual R code is often performed by using an R-IDE rather 
than SSMS. If the R code that you embed in a stored procedure has any problems, the information 
that is returned from the stored procedure might not be descriptive enough of the R steps for you 
to understand the root cause of the error. However, after the solution has been created, you can 
easily deploy it to SQL Server by using T-SQL stored procedures via SSMS. 

                                                      
7 Set up SQL Server R Services, https://msdn.microsoft.com/library/mt696069.aspx 
8 SSMS: https://msdn.microsoft.com/en-us/library/mt238290.aspx 
9 RStudio installation: https://www.rstudio.com/products/RStudio 
10 R tools for visual studio (RTVS): https://www.visualstudio.com/en-us/features/rtvs-vs.aspx 

https://msdn.microsoft.com/library/mt696069.aspx
https://msdn.microsoft.com/en-us/library/mt238290.aspx
https://www.rstudio.com/products/RStudio
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If you are using R-IDE on a client machine, your client will need to have an installation of the 
Microsoft R Server (https://www.microsoft.com/cloud-platform/r-server) as described in Chapter 2. 
The version of Microsoft R Server on your client will need to be compatible with the one installed 
on the SQL Server with R services. 

R libraries 

We need a few additional R libraries for this example. If you are using a client, you’ll install these 

packages both on the client and on the SQL Server: 

 R libraries on the client On the client, run the following to install the required libraries for this 

example: 

if (!('ggmap' %in% rownames(installed.packages()))){   
  install.packages('ggmap')   
}   
if (!('mapproj' %in% rownames(installed.packages()))){   
  install.packages('mapproj')   
}   
if (!('ROCR' %in% rownames(installed.packages()))){   
  install.packages('ROCR')   
}   
if (!('RODBC' %in% rownames(installed.packages()))){   
  install.packages('RODBC')   
}   

 R libraries on the SQL Server On the SQL Server instance, open the Rgui.exe tool as an 

administrator. If you have installed SQL Server R Services using the defaults, you can find RGui.exe 

at C:\Program Files\Microsoft SQL Server\MSSQL13.MSSQLSERVER\R_SERVICES\bin\x64. 

At an R prompt, run the following R commands: 

install.packages("ggmap", lib=grep("Program Files", .libPaths(), value=TRUE)[1]) 

install.packages("mapproj", lib=grep("Program Files", .libPaths(), value=TRUE)[1]) 

SQL server compute context 

Typically, when you are using R, all operations run in memory on your computer. However, in R 

Services (in-database) you can specify that R operations take place on the SQL Server instance, which 

might have much more memory and other compute resources. You can do this by defining and then 

using a compute context. The compute context is by default set to “local,” until you specify otherwise 

(for example, a SQL Server). When using T-SQL from within a SQL Server, the compute context is by 

default SQL Server. 

The script that follows shows how to set a SQL Server compute context and define data objects 

and data sources when using an R-IDE. For this, you will need to ensure that your R development 

environment is using the library that includes the RevoScaleR package, and then load the package. 

Note The exact path will depend on the version of R services that you are using. 

# Set the library path 
.libPaths(c(.libPaths(),"C:\\Program Files\\Microsoft SQL Server\\MSSQL13.MSSQLSERVER\\R_SERVICES 
\\library")) 
 
# Load RevoScaleR package 
library(RevoScaleR) 
 
# Define the connection string 
# This walkthrough requires SQL authentication 
connStr <- "Driver=SQL Server;Server=<SQL_instance_name>;Database=<database_name>;Uid=<user_name>; 
    Pwd=<user password>" 
 
# Set ComputeContext 
sqlShareDir <- paste("C:\\AllShare\\",Sys.getenv("USERNAME"),sep="") 

https://www.microsoft.com/cloud-platform/r-server
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sqlWait <- TRUE 
sqlConsoleOutput <- FALSE 
cc <- RxInSqlServer(connectionString = connStr, shareDir = sqlShareDir, 
                    wait = sqlWait, consoleOutput = sqlConsoleOutput) 
rxSetComputeContext(cc) 

Now, we have our infrastructure and environments set up; let’s move forward with the subsequent 

steps of the data science process. 

Scripts for creating tables, stored procedures, and functions 

There’s another tool, called Windows PowerShell, that you can use to set up your data science 

environment and automate the entire process. Windows Powershell is Microsoft’s scripting 

environment, like Perl but much more powerful and versatile—Windows Powershell also can work 

with any of the .NET libraries in the Microsoft ecostructure as well as just about anything that runs in 

the Microsoft Windows environment. You don’t need to install anything to make this work on your 

server: all modern versions of Windows come with Windows PowerShell installed by default. 

Note Although you don’t need to learn all about Windows PowerShell for this example, if you’d 
like to explore it further, go to https://technet.microsoft.com/library/bb978526.aspx. 

Downloading scripts and data 

For this example, we’ve provided Windows PowerShell and T-SQL scripts to download the data and 

perform the necessary SQL Server operations, create the necessary tables, and load the data into SQL 

Server.3,4,5 The Windows PowerShell script RunSQL_R_Walkthrough.ps1 uses other T-SQL scripts to 

create the database, tables, stored procedures, and functions—it even loads data into the data table. 

On the computer where you are doing development—typically a client workstation with R-IDE 

installed—open a Windows PowerShell command prompt as an administrator. If you have not run 

Windows PowerShell before on this instance, or you do not have permission to run scripts, you might 

encounter an error. If so, run the following command before running the script, to temporarily allow 

scripts without changing system defaults: 

Set-ExecutionPolicy Unrestricted -Scope Process -Force  

Run the command that follows (see Figure 3-2) to download the script files to a local directory. If you 

do not specify a different directory, by default folder c:\tempR is created and all files are saved there. 

If you want to save the files to a different directory, edit the values of the parameter DestDir to a 

folder on your computer. If you specify a folder name that does not exist, the Windows PowerShell 

script will create the folder for you. 

$source = 'https://raw.githubusercontent.com/Azure/Azure-MachineLearning-
DataScience/master/Misc/RSQL/Download_Scripts_R_Walkthrough.ps1' 
$ps1_dest = "$pwd\Download_Scripts_R_Walkthrough.ps1" 
$wc = New-Object System.Net.WebClient 
$wc.DownloadFile($source, $ps1_dest) 
.\Download_Scripts_R_Walkthrough.ps1 –DestDir 'C:\tempR' 

https://technet.microsoft.com/library/bb978526.aspx
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Figure 3-2: Windows PowerShell commands for downloading scripts and data for the end-to-end data science walk-
through. 

After you download and run this script and sign in to the SQL Server by using SSMS, you’ll see the 

database, tables, functions, and stored procedures that were created (Figure 3-3). These tables and 

functions are used in subsequent steps of the walk-through. 

 

Figure 3-3: A list of files downloaded after running the Windows PowerShell script. The files contain data to be 
loaded to the database (nytaxi1pct.csv), several SQL (.sql) script files, and an R-script (.R) file. 

Creating tables, stored procedures, and functions 

To set up the SQL Server data, run the Windows PowerShell script RunSQL_R_Walkthrough.ps1 

(highlighted in Figure 3-3). This script creates the tables, stored procedures, and functions that you 

need to prepare the model. Figure 3-4 shows the resulting RSQL_Walkthrough database. Unless 

specified in the command line as options, the script will prompt the user to input the database name, 

password, and path to the data file (nyctaxi1pct.csv) to be loaded. By default, we’re connecting to SQL 

Server using the Named Pipes protocol. 

The script performs these actions: 

 Checks whether the SQL Native Client and command-line utilities for SQL Server are installed 

 Connects to the specified instance of SQL Server and runs some T-SQL scripts that configure the 

database and create the tables for the model and data 

 Runs a SQL script to create several stored procedures 

 Loads the data you downloaded previously into the table nyctaxi_sample 

 Rewrites the arguments in the R script file to use the database name that you specify 
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Figure 3-4: Tables, stored procedures, and functions that are created in the database after running the 
Windows PowerShell script. 

The following tables, stored procedures, and functions are created in the database: 

Tables: 

 nyctaxi_sample Contains the main NYC Taxi dataset. A clustered columnstore index is added to 

the table to improve storage and query performance. The one-percent sample of the NYC Taxi 

dataset will be inserted into this table. 

 nyc_taxi_models Used to persist the trained models. 

Stored procedures: 

 PersistModel Called to save a trained model. The stored procedure takes a model that has been 

serialized in a varbinary data type and writes it to the specified table. 

 PredictTipBatchMode Calls the trained model to create predictions using the model. The stored 

procedure accepts a query as its input parameter and returns a column of numeric values 

containing the scores for the input rows. 

 PredictTipSingleMode Calls the trained model to create predictions using the model. This stored 

procedure accepts a new observation as input, with individual feature values passed as in-line 

parameters and returns a value that predicts the outcome for the new observation. 

Functions: 

 fnCalculateDistance Creates a scalar-valued function that calculates the direct distance 

between pickup and dropoff locations. 

 fnEngineerFeatures Creates a table-valued function that creates new data features for model 

training. 

An example of running the script with parameters is presented here: 

.\RunSQL_R_Walkthrough.ps1 -server SQLinstance.subnet.domain.com -dbname MyDB –u SqlUserName –p 
SqlUsersPassword -csvfilepath C:\tempR\nyctaxi1pct.csv 

The preceding example does the following: 

 Connects to the specified instance and database using the credentials of SqlUserName. 

 Gets data from the file C:\tempR\nyctaxi1pct.csv. 



23 CHAPTER 3  |  An end-to-end data science process example 

 

 Loads the data in nyctaxi1pct.csv into the table nyctaxi_sample, in the database MyDB on the SQL 

Server instance named SQLinstance. 

Note If the database objects already exist, they cannot be created again. If a table already exists, 
data will be appended, not overwritten. Therefore, be sure to drop any existing objects before 
running the scripts. 

Input data and SQLServerData object 

Now, let’s look at the input data and the data objects that we’ll use for building our models. 

In the example that follows, you can see the T-SQL script used to create the table (see Figure 3-5) for 

hosting the NYC Taxi data, called nyctaxi_sample. In the script, the binary classification target column 

(tipped, dependent variable with binary 0 or 1 values—our label) is highlighted. 

-- Create nyctaxi_sample table 
       CREATE TABLE [dbo].[nyctaxi_sample]( 
        [medallion] [varchar](50) NOT NULL, 
        [hack_license] [varchar](50) NOT NULL, 
        [vendor_id] [char](3) NULL, 
        [rate_code] [char](3) NULL, 
        [store_and_fwd_flag] [char](3) NULL, 
        [pickup_datetime] [datetime] NOT NULL, 
        [dropoff_datetime] [datetime] NULL, 
        [passenger_count] [int] NULL, 
        [trip_time_in_secs] [bigint] NULL, 
        [trip_distance] [float] NULL, 
        [pickup_longitude] [varchar](30) NULL, 
        [pickup_latitude] [varchar](30) NULL, 
        [dropoff_longitude] [varchar](30) NULL, 
        [dropoff_latitude] [varchar](30) NULL, 
        [payment_type] [char](3) NULL, 
        [fare_amount] [float] NULL, 
        [surcharge] [float] NULL, 
        [mta_tax] [float] NULL, 
        [tolls_amount] [float] NULL, 
        [total_amount] [float] NULL, 
        [tip_amount] [float] NULL, 
        [tipped] [int] NULL, 
        [tip_class] [int] NULL 
) ON [PRIMARY] 
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Figure 3-5: The data table, nyctaxi_sample, where the sampled NYC Taxi data from 
http://getgoing.blob.core.windows.net/public/nyctaxi1pct.csv can be loaded. 

Note In this table, pickup_longitude, pickup_latitude, dropoff_longitude, and dropoff_latitude 
are loaded as varchar(30) data types. We will convert these data types to float for performing 
computations with these variables. For example, we’ll use this in the query sampleDataQuery that 
defines the input data, inDataSource. 

Next, let’s look at the SQLServerData object. The SQLServerData data object combines a connection 

string with a data source definition. After the SQLServerData object has been created, you can use it as 

many times as you need, to get basic information about the data, to manipulate and transform the 

data, or for training a model with it. You can run the following scripts in an R-IDE to define a 

SQLServerData object by using a sample of the data from the nyctaxi_sample table: 

# Define a DataSource with a query (sample 1% of data and take 1000 observations 
# from that sample) 
 
sampleDataQuery <- " select top 1000 tipped, tip_amount, fare_amount, 
    passenger_count,trip_time_in_secs,trip_distance, 
    pickup_datetime, dropoff_datetime, 
    cast(pickup_longitude as float) as pickup_longitude, 
    cast(pickup_latitude as float) as pickup_latitude, 
    cast(dropoff_longitude as float) as dropoff_longitude, 
    cast(dropoff_latitude as float)  as dropoff_latitude, 
payment_type from nyctaxi_sample 
tablesample (1 percent) repeatable (98052) " 
 
ptypeColInfo <- list( 
  payment_type = list( 
    type = "factor", 
    levels = c("CSH", "CRD", "DIS", "NOC", "UNK"), 
    newLevels= c("CSH", "CRD", "DIS", "NOC", "UNK") 
  ) 
) 
 
inDataSource <- RxSqlServerData(sqlQuery = sampleDataQuery, connectionString = connStr,  
            colInfo = ptypeColInfo, 
            colClasses = c(pickup_longitude = "numeric", pickup_latitude = "numeric", 
                           dropoff_longitude = "numeric", dropoff_latitude = "numeric"), 
                rowsPerRead=500) 

http://getgoing.blob.core.windows.net/public/nyctaxi1pct.csv
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Exploratory analysis 
Developing a data science solution using our process includes data exploration and data visualization, 

prior to feature selection and building models. You need to understand the data prior to working with 

it. In the following steps, we’ll summarize the sampled NYC Taxi data, and generate plots by using R 

functions. 

Data summarization 

You can apply enhanced R functions in SQL Server R Services to summarize data from a SQL Server 

data source by using the provided ScaleR libraries. In the following steps, we’re using an R 

environment to run R scripts. 

 rxGetVarInfo Use this function to get information such as the range of values, the variable types 

in columns, and the number of levels in factors in variable columns. You should consider running 

this function after any kind of data input, feature transformation, or feature engineering. By doing 

so, you can ensure that all of the variables are of the expected data types and are within expected 

ranges. 

> rxGetVarInfo(data = inDataSource) 
 
Output: 
Var 1: tipped, Type: integer 
Var 2: tip_amount, Type: numeric 
Var 3: fare_amount, Type: numeric 
Var 4: passenger_count, Type: integer 
Var 5: trip_time_in_secs, Type: numeric, Storage: int64 
Var 6: trip_distance, Type: numeric 
Var 7: pickup_datetime, Type: character 
Var 8: dropoff_datetime, Type: character 
Var 9: pickup_longitude, Type: numeric 
Var 10: pickup_latitude, Type: numeric 
Var 11: dropoff_longitude, Type: numeric 
Var 12: dropoff_latitude, Type: numeric 
Var 13: payment_type, Type: factor, no factor levels available 

 rxSummary Use this function to get detailed statistics about individual variables, compute 

summaries by factor levels, and to save the summaries. In the following example, statistical 

summaries for fare_amount are shown by passenger_count. 

> rxSummary(~fare_amount:F(passenger_count,1,6), data = inDataSource) 
 
Output: 
Call: 
rxSummary(formula = ~fare_amount:F(passenger_count, 1, 6), data = inDataSource) 
 
Summary Statistics Results for: ~fare_amount:F(passenger_count, 1, 6) 
Data: inDataSource (RxSqlServerData Data Source) 
Number of valid observations: 1000  
 
 Name                                Mean   StdDev   Min Max ValidObs MissingObs 
 fare_amount:F_passenger_count_1_6_T 11.294 7.409316 2.5 52  1000     0          
 
Statistics by category (6 categories): 
 
 Category                                   F_passenger_count_1_6_T Means    StdDev   Min Max  ValidObs 
 fare_amount for F(passenger_count,1,6,T)=1 1                       11.26151 7.358224 2.5 52.0 717 
 fare_amount for F(passenger_count,1,6,T)=2 2                       11.40323 8.303608 4.0 52.0 124 
 fare_amount for F(passenger_count,1,6,T)=3 3                       11.45238 8.292525 4.0 41.5  42 
 fare_amount for F(passenger_count,1,6,T)=4 4                       11.58333 5.727257 6.5 28.0  18 
 fare_amount for F(passenger_count,1,6,T)=5 5                       10.90000 5.613093 4.0 28.0  45 

fare_amount for F(passenger_count,1,6,T)=6 6                       11.58333 7.289013 4.0 36.5  54 
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Data visualization 

The saying goes that a picture is worth a thousand words, and in the case of exploring large sets of 

data, it’s true. Looking at the layout of the data in graphical form is a key part of exploring it. 

Creating a histogram 

To create a histogram, you can use the SQL Server data source you defined earlier, together with the 

rxHistogram function provided by SQL Server R Services. The rxHistogram function is one of many 

functions in the RevoScaleR package that provides functionality similar to that in open-source R 

packages, but with the ability to run in a remote compute context and with input data objects that are 

different from R data frames (such as a SQLServerData object). Running the following script from your 

R-IDE will create the histogram illustrated Figure 3-6 in the plot window. 

# Plot fare amount on SQL Server and return the plot to RStudio   
> rxHistogram(~fare_amount, data = inDataSource, title = "Fare Amount Histogram") 

 

Figure 3-6: A histogram of fare amounts in the sampled NYC Taxi dataset that is loaded to the SQL Server. 

Creating a ggmap plot 

You also can generate a plot object by using the SQL Server instance as the compute context and 

then return the plot object to the R-IDE for rendering. It is important to note that for security reasons 

the SQL Server compute context typically does not have the ability to connect to the Internet and 

download the map representation. So, to create these plots, you’ll first generate the map 

representation in the R-IDE by calling an online map service, and then pass the map representation to 

the SQL context to overlay the points on the map that are stored as attributes (pickup latitudes and 

longitudes) in the nyctaxi_sample table. 

Note Many production database servers completely block Internet access. So, this is a pattern that 
you might find useful when developing your own applications. 

The following example has three steps that you can run in an R-IDE: 
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1. Define the function that creates the plot object. 

The custom R function, mapPlot, creates a scatter plot of taxi pickup locations on a ggmap object, 

as shown in the following (note that it requires the ggplot2 and ggmap packages, which you should 

have already installed and loaded): 

mapPlot <- function(inDataSource, googMap){ 
    library(ggmap) 
    library(mapproj) 
    ds <- rxImport(inDataSource) 
    p <- ggmap(googMap)+ 
    geom_point(aes(x = pickup_longitude, y =pickup_latitude ), data=ds, alpha =.5, 
color="darkred", size = 1.5) 
    return(list(myplot=p)) 
} 

The function mapPlot takes the following arguments and returns a ggmap plot object: 

 An existing data object, which you defined earlier by using RxSqlServerData. This object has 

pickup latitudes and longitudes that are used to generate points on the two-dimensional 

map. 

 The map representation—that is, the ggmap object—passed from the R-IDE. 

2. Create the map object, as follows: 

library(ggmap) 
library(mapproj) 
gc <- geocode("Times Square", source = "google") 
googMap <- get_googlemap(center = as.numeric(gc), zoom = 12, maptype = 'roadmap', color = 'color'); 

Note We make repeated calls to the libraries ggmap and mapproj because the previous function 
definition (mapPlot) ran in the server context and the libraries were never loaded locally in the 
R-IDE; now you are bringing the plotting operation back to the R-IDE, which might be on a client. 

The gc variable stores a set of coordinates for Times Square, NY. 

3. Run the plotting function and render the results in your R-IDE. To do this, wrap the plotting 

function in rxExec. 

myplots <- rxExec(mapPlot, inDataSource, googMap, timesToRun = 1) 
plot(myplots[[1]][["myplot"]]);   

The plot with the rendered data points is serialized back to the local R environment that you can view 

in the plot window of the R-IDE or in its graphic output. The rxExec function is included in the 

RevoScaleR package; it supports execution of arbitrary R functions in the remote compute context. 

The output plot, with the pickup locations on the map marked with red dots, is shown in Figure 3-7. 
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Figure 3-7: A plot showing pickup locations in ggmap. X-axis = longitude; Y-axis = latitude. 

Creating a new feature (feature engineering) 
You might not have all the features you need for your model, or they might be in multiple columns 

that need to be combined, or perhaps there are other data transformation tasks that you need for the 

proper columns to act as the features. Feature engineering is the process of generating transformed or 

new features from existing ones; it is an important step before you use the data for building models. 

For this task, rather than using the raw latitude and longitude values of the pickup and drop-off 

locations, you would like to derive the direct or linear distance in miles between the two locations. 

You can compute this by using the haversine formula. You can use two different methods for creating 

the feature: 

Using R functions 

The following R code defines a function, ComputeDist, that takes in two pairs of latitude and longitude 

values and then calculates the linear distance between them. 

env <- new.env() 
env$ComputeDist <- function(pickup_long, pickup_lat, dropoff_long, dropoff_lat){ 
  R <- 6371/1.609344 #radius in mile 
  delta_lat <- dropoff_lat - pickup_lat 
  delta_long <- dropoff_long - pickup_long 
  degrees_to_radians = pi/180.0 
  a1 <- sin(delta_lat/2*degrees_to_radians) 
  a2 <- as.numeric(a1)^2 
  a3 <- cos(pickup_lat*degrees_to_radians) 
  a4 <- cos(dropoff_lat*degrees_to_radians) 
  a5 <- sin(delta_long/2*degrees_to_radians) 
  a6 <- as.numeric(a5)^2 
  a <- a2+a3*a4*a6 
  c <- 2*atan2(sqrt(a),sqrt(1-a)) 
  d <- R*c 
  return (d) 
} 
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After you’ve defined the function, you can apply it to the data source to create the new feature, 

direct_distance. You can create the output feature data source, as follows: 

featuretable = paste0("NYCTaxiDirectDistFeatures") 
featureDataSource = RxSqlServerData(table = featuretable, 
colClasses = c(pickup_longitude = "numeric", 
pickup_latitude = "numeric", dropoff_longitude = "numeric", 
dropoff_latitude = "numeric", passenger_count  = "numeric", 
trip_distance  = "numeric", trip_time_in_secs  = "numeric", 
direct_distance  = "numeric"), connectionString = connStr) 

You can then apply this function to the input data by using the rxDataStep function, provided in the 

RevoScaleR package: 

# Create feature (direct distance) by calling rxDataStep() function, which calls 
# the env$ComputeDist function to process records and output it along with other 
# variables as features to the featureDataSource. This will be the feature set 
# for training machine learning models 
 
rxDataStep(inData = inDataSource, outFile = featureDataSource,  overwrite = TRUE, 
           varsToKeep=c("tipped", "fare_amount", "passenger_count", "trip_time_in_secs", 
                 "trip_distance", "pickup_datetime", "dropoff_datetime", 
                 "pickup_longitude", "pickup_latitude", "dropoff_longitude", 
                 "dropoff_latitude"), 
transforms = list(direct_distance = ComputeDist(pickup_longitude, pickup_latitude, dropoff_longitude, 
dropoff_latitude)), 
transformEnvir = env, rowsPerRead = 500, reportProgress = 3) 

Note The rxDataStep function can modify data in place. The arguments include a character vector 
of columns to pass through (varsToKeep), and a list that defines transformations. Any columns that 
are transformed are automatically output and therefore do not need to be included in the 
varsToKeep argument. Alternatively, you can specify that all columns in the source be included 
except the specified variables, using varsToDrop. 

The rxDataStep call in the preceding example will create a table called NYCTaxiDirectDistFeatures in 

the database. You can use this afterward for getting the input features for training models. 

Finally, you can use rxGetVarInfo to inspect the schema of the new data source: 

> rxGetVarInfo(data = featureDataSource) 
 
Output: 
 
Var 1: tipped, Type: integer 
Var 2: tip_amount, Type: numeric 
Var 3: fare_amount, Type: numeric 
Var 4: passenger_count, Type: numeric 
Var 5: trip_time_in_secs, Type: numeric 
Var 6: trip_distance, Type: numeric 
Var 7: pickup_datetime, Type: character 
Var 8: dropoff_datetime, Type: character 
Var 9: pickup_longitude, Type: numeric 
Var 10: pickup_latitude, Type: numeric 
Var 11: dropoff_longitude, Type: numeric 
Var 12: dropoff_latitude, Type: numeric 
Var 13: payment_type, Type: character 
Var 14: direct_distance, Type: numeric 

Using a SQL function 

The code for this SQL user-defined function was provided as part of the Windows PowerShell script 

that you ran to create and configure the database. If you ran the Windows PowerShell script setup, 

this function should already exist in your database: 
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-- Create function for calculating distance 
CREATE FUNCTION [dbo].[fnCalculateDistance] (@Lat1 float, @Long1 float, @Lat2 float, @Long2 float) 
-- User-defined function calculate the direct distance between two geographical  
-- coordinates. 
RETURNS float 
AS 
BEGIN 
  DECLARE @distance decimal(28, 10) 
  -- Convert to radians 
  SET @Lat1 = @Lat1 / 57.2958 
  SET @Long1 = @Long1 / 57.2958 
  SET @Lat2 = @Lat2 / 57.2958 
  SET @Long2 = @Long2 / 57.2958 
  -- Calculate distance 
  SET @distance = (SIN(@Lat1) * SIN(@Lat2)) + (COS(@Lat1) * COS(@Lat2) * COS(@Long2 - @Long1)) 
  --Convert to miles 
  IF @distance <> 0 
  BEGIN 
    SET @distance = 3958.75 * ATAN(SQRT(1 - POWER(@distance, 2)) / @distance); 
  END 
  RETURN @distance 
END 

You can run this function from any application that supports T-SQL. For example, using SSMS you can 

run the following statement to generate the new direct_distance feature: 

SELECT  
tipped, fare_amount, passenger_count,trip_time_in_secs,trip_distance, pickup_datetime, dropoff_datetime, 
dbo.fnCalculateDistance(cast(pickup_latitude as float), cast(pickup_longitude as float),  
cast(dropoff_latitude as float), cast(dropoff_longitude as float)) as direct_distance,   
pickup_latitude, pickup_longitude, dropoff_latitude, dropoff_longitude, cast(dropoff_longitude as float) as a 
FROM nyctaxi_sample 

You also can use the function fnCalculateDistance in a SQL statement from the R-IDE to 

generate the new feature in SQL Server compute context. In the code that follows, the query 

featureEngineeringQuery uses the function fnCalculateDistance to compute direct distance. The 

query is used to define the RxSqlServerData object featureDataSource, which is used as input data 

for a creating a binary classification model, as shown in the next step: 

# Do feature engineering through a SQL Query in R, and save the new feature in a  
# SQL Server data object, featureDataSource 
ptypeColInfo <- list( 
  payment_type = list( 
    type = "factor", 
    levels = c("CSH", "CRD", "DIS", "NOC", "UNK"), 
    newLevels= c("CSH", "CRD", "DIS", "NOC", "UNK") 
  ) 
) 
 
# Alternatively, use a user defined function in SQL to create features 
# Sometimes, feature engineering in SQL might be faster than R 
# You need to choose the most efficient way based on real situation 
# Here, featureEngineeringQuery is just a reference to the result from a SQL  
# query.  
# NOTE: 1% of sampled data is used to create the featureDataSource. This can be  
# increased to increase the amount of data for model construction. 
 
 
featureEngineeringQuery = "SELECT tipped, fare_amount, passenger_count, 
          trip_time_in_secs, trip_distance, pickup_datetime, 
      dropoff_datetime, 
      dbo.fnCalculateDistance( 
      cast(pickup_latitude as float), 
      cast(pickup_longitude as float), 
      cast(dropoff_latitude as float), 
      cast(dropoff_longitude as float)) as direct_distance, 
      pickup_latitude, pickup_longitude, dropoff_latitude, 
      dropoff_longitude, payment_type 
   FROM nyctaxi_sample 
      tablesample (1 percent) repeatable (98052)" 
 
featureDataSource = RxSqlServerData(sqlQuery = featureEngineeringQuery, 
colInfo = ptypeColInfo, colClasses = c(pickup_longitude = "numeric", 
pickup_latitude = "numeric", dropoff_longitude = "numeric", 
dropoff_latitude = "numeric", 
passenger_count  = "numeric", 
trip_distance  = "numeric", 
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trip_time_in_secs  = "numeric", 
direct_distance  = "numeric", 
fare_amount="numeric"), 
connectionString = connStr) 

Creating and saving models 
Now, we’re ready to build and save a logistic regression model using the rxLogit function from the 

RevoScaleR library. RevoScaleR also contains additional functions (such as rxBTrees for boosted trees 

and rxDForest for random forests) to create models for binary classification problems. 

Using an R environment 

The following code builds a logistic regression model using tipped (0/1) as the destination variable, 

and passenger_count, trip_distance, trip_time_in_secs, and direct_distance (an engineered 

feature) as predictor variables: 

logitObj <- rxLogit(tipped ~ passenger_count + trip_distance + trip_time_in_secs + direct_distance, data = 
featureDataSource) 

After you build the model, you can inspect it by using the summary function, as shown here: 

> summary(logitObj) 
 
Output:  
 
Logistic Regression Results for: tipped ~ passenger_count + trip_distance + trip_time_in_secs + 
direct_distance 
 
Data: featureDataSource (RxSqlServerData Data Source) 
 
Dependent variable(s): tipped 
 
Total independent variables: 5 
 
Number of valid observations: 17068 
 
Number of missing observations: 0 
-2*LogLikelihood: 23540.0602 (Residual deviance on 17063 degrees of freedom) 
 
Coefficients: 
Estimate Std. Error z value Pr(>|z|) 
(Intercept) -2.509e-03 3.223e-02 -0.078 0.93793 
passenger_count -5.753e-02 1.088e-02 -5.289 1.23e-07 *** 
trip_distance -3.896e-02 1.466e-02 -2.658 0.00786 ** 
trip_time_in_secs 2.115e-04 4.336e-05 4.878 1.07e-06 *** 
direct_distance 6.156e-02 2.076e-02 2.966 0.00302 ** 
--- 
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '. ' 0.1 ' ' 1 
Condition number of final variance-covariance matrix: 48.3933 
 
Number of iterations: 4 

You can serialize the trained model into a hexadecimal string and save it in the SQL Server for future 

use by other processes. Let’s take a look at the code:  

# Serialize a model 
modelbin <- serialize(logitObj, NULL) 
modelbinstr=paste(modelbin, collapse="") 
 
 
-- Create a stored procedure for saving model in the nyc_taxi_models table 
CREATE PROCEDURE [dbo].[PersistModel] 
@m nvarchar(max) 
AS 
BEGIN 
    -- SET NOCOUNT ON added to prevent extra result sets from 
    -- interfering with SELECT statements. 
    SET NOCOUNT ON; 
    insert into nyc_taxi_models (model) values (convert(varbinary(max),@m,2)) 
END 
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# Persist model by calling a stored procedure from SQL 
library(RODBC) 
conn <- odbcDriverConnect(connStr ) 
q <- paste("EXEC PersistModel @m='", modelbinstr,"'", sep="") 
sqlQuery (conn, q)   

Here’s what it does: 

 Creates a serialized object from the trained model. 

 Creates a stored procedure, PersistModel, that inserts a varbinary(max) string into the table 

nyc_taxi_models. 

 Calls the stored procedure with the serialized object to insert a row in the table named 

nyc_taxi_models in the SQL server. 

Using T-SQL 

Using T-SQL, you can create a stored procedure to build a model using the R Services in SQL Server. 

The stored procedure that follows defines the input data and creates a logistic regression model. All 

calls to the R runtime are done by using the system stored procedure, sp_execute_external_script. 

-- Create a stored procedure for training and saving model in nyc_taxi_models 
-- table. 
-- NOTE: Model is created from 1000 observations of 1% of sampled data in the 
-- nyctaxi_sample table. This can be increased to increase the amount of data 
-- for model construction. 
 
 
CREATE PROCEDURE [dbo].[TrainTipPredictionModel] 
 
 
AS 
BEGIN 
  DECLARE @inquery nvarchar(max) = N' 
    select top 1000 tipped, fare_amount, passenger_count,trip_time_in_secs,trip_distance,  
    pickup_datetime, dropoff_datetime,  
    dbo.fnCalculateDistance(cast(pickup_latitude as float),  
 cast(pickup_longitude as float),   
 cast(dropoff_latitude as float),  
 cast(dropoff_longitude as float) ) as direct_distance 
            from nyctaxi_sample 
            tablesample (1 percent) repeatable (98052)  
  -- Insert the trained model into a database table 
  INSERT INTO nyc_taxi_models 
  EXEC sp_execute_external_script @language = N'R', 
                                  @script = N' 
 
## Create model 
logitObj <- rxLogit(tipped ~ passenger_count + trip_distance + trip_time_in_secs + direct_distance, data = 
InputDataSet) 
summary(logitObj) 
 
## Serialize model and put it in data frame 
trained_model <- data.frame(model=as.raw(serialize(logitObj, NULL))); ', 
                                  @input_data_1 = @inquery, 
                                  @output_data_1_name = N'trained_model' ; 
 
END 

In the preceding code, the stored procedure TrainTipPredictionModel performs the following 

activities as a part of model training: 

 The SELECT query uses the custom scalar function fnCalculateDistance to calculate the direct 

distance between the pick-up and drop-off locations. The results of the query are stored in the 

default R input variable, InputDataset. 

 The R script calls the rxLogit function from the RevoScaleR package to create the logistic 

regression model. 

https://msdn.microsoft.com/en-us/library/mt604368.aspx
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 The trained model, saved in the R variable logitObj, is serialized and put in a data frame for 

output to the SQL Server. That output is inserted into the database table nyc_taxi_models so that 

you can use it for performing predictions. 

To create the R model using the stored procedure, simply run it via SSMS: 

EXEC TrainTipPredictionModel 

Note In the stored procedure TrainTipPredictionModel, the model is created from 1,000 
observations of 1 percent of sampled data in the nyctaxi_sample table so that it runs quickly as an 
initial exercise. This can be raised to increase the amount of data for model construction. Typically, 
you would keep about two-thirds to four-fifths of the data for training, and the remaining data for 
testing, which is called the “holdout data.” 

Model consumption: scoring data with a saved model 

Now that the model is built and saved in the SQL Server, you can load and use it to score datasets to 

predict whether a driver is likely to get a tip on a future trip. For predictions, we can use the rxPredict 

function from the RevoScaleR package to create a score, and, as always, you can save the scored data 

back to a table in SQL Server. You can write and save the prediction or scoring functions as stored 

procedures. The prediction stored procedure can then simply be used from R-IDE using R-scripts, or 

from SSMS using T-SQL to score more data. 

There are two different ways that you can call a model for scoring: 

 Batch scoring mode This lets you create multiple predictions based on input from a SELECT 

query. 

 Individual or single scoring mode This lets you create predictions one at a time, by passing a 

set of feature values for individual observations to the stored procedure, which returns a single 

prediction value as the result. 

We’ll use the batch scoring mode only. For individual scoring, refer to Deploying or 

Operationalization.1,2 

Using an R environment 

You can use the model object created earlier, logitObj, to score datasets, and save the scored results 

in SQL Server. For this, you need to define the data object to use for storing the scored results: 

# Create a SQL server data object to store scored results  
scoredOutput <- RxSqlServerData(   
  connectionString = connStr,   
  table = "taxiScoreOutput"   
)   

In this example, taxiScoreOutput is the table in which scored results are stored. Figure 3-8 show what 

the table looks like. 

 

Figure 3-8: The taxiScoreOutput table for saving scored results. Here the “Score” column indicates the scored 
output (probability of receiving a tip), the rest of the columns are features (based on which the scores are 
generated), or the feature (“tipped”). 
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Note The schema for this table is not defined when you create it by using rxSqlServerData; rather, 
it is obtained from the scoredOutput object output from rxPredict. To create the table that stores 
the predicted values, the SQL sign-in running the rxSqlServer data function must have table 
creation privileges in the database. If the sign-in cannot create tables, the statement will fail. 

Next, call the rxPredict function from the RevoScaleR package to score the input data, 

featureDataSource, and then insert the results into the taxiScoreOutput table: 

# Predict using rxPredict 
rxPredict(modelObject = logitObj, data = featureDataSource, outData = scoredOutput, 
                   predVarNames = "Score", type = "response", 
                   writeModelVars = TRUE, overwrite = TRUE) 

In another approach to consume the model, you can create a stored procedure (PredictTipBatchMode; 

see the code that follows) and use it for scoring from an R-IDE: 

-- Create prediction stored procedure 
CREATE PROCEDURE [dbo].[PredictTipBatchMode] @inquery nvarchar(max) 
AS 
BEGIN 
 
  DECLARE @lmodel2 varbinary(max) = (SELECT TOP 1 
    model 
  FROM nyc_taxi_models); 
  EXEC sp_execute_external_script @language = N'R', 
                                  @script = N' 
mod <- unserialize(as.raw(model)); 
print(summary(mod)) 
OutputDataSet<-rxPredict(modelObject = mod, data = InputDataSet, outData = NULL, 
          predVarNames = "Score", type = "response", writeModelVars = FALSE, 
  overwrite = TRUE); 
str(OutputDataSet) 
print(OutputDataSet)', 
                                  @input_data_1 = @inquery, 
                                  @params = N'@model varbinary(max)', 
                                  @model = @lmodel2 
  WITH RESULT SETS ((Score float)); 
 
END 

This stored procedure performs the following steps: 

1. The SELECT statement gets a serialized model from the database and stores the model in the R 

variable, mod, for further processing using R. 

2. The new cases to be scored are obtained from the T-SQL query specified in @inquery, the first 

parameter to the stored procedure. As the query data is read, the rows are saved in the default 

data frame, InputDataSet. This data frame is passed to the rxPredict function available from the 

RevoScaleR library, which generates the scores. 

3. rxPredict scores and returns results data to OutputDataSet, the default output data frame. The 

predicted values are floats representing the probability of a tip (of any amount) being given. 

You can run the R script that follows in an R-IDE to query input data and score it by using the batch 

scoring stored procedure, PredictTipBatchMode. First, you need to define the input query: 

# Define input data using a SQL query. Here we use the table, NYCTaxiDirectDistFeatures, 
# that was created earlier to store the engineered feature, direct_distance. 
 
input = "N' SELECT passenger_count, trip_time_in_secs, trip_distance, direct_distance 
            FROM NYCTaxiDirectDistFeatures '"  

Using the input data obtained from the query, you can run the following R script to obtain scored 

data in the scoredData data frame. 

# The query is sent to be executed with input data, scored data frame is returned 
q <- paste("EXEC PredictTipBatchMode @inquery = ", input, sep="") 
scoredData <- sqlQuery (conn, q) 
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Using T-SQL 

With the stored procedure PredictTipBatchMode, you can score data by using T-SQL. First, you need 

to define the query string to pass into the stored procedure. The stored procedure will execute this 

query, get the data to be scored, and pass the data into the rxPredict function in the stored 

procedure for generating the predictions. The following code shows how to define the query for input 

data and use the stored procedure for scoring: 

-- Specify input query   
DECLARE @query_string nvarchar(max)   
SET @query_string=' SELECT passenger_count, trip_time_in_secs, trip_distance, 
 direct_distance 
                FROM NYCTaxiDirectDistFeatures ' 
 
 
-- Call stored procedure for scoring 
EXEC [dbo].[PredictTipBatchMode] @inquery = @query_string;   

You also can insert the scored output into a table in the SQL Server (refer to the examples of how a 

serialized, trained model is inserted into the table nyc_taxi_models). 

Evaluating model accuracy 
Next, we need to ensure that the model we’ve chosen is delivering good results. For a binary 

classification problem, the accuracy of a model is frequently evaluated by using the receiver operator 

curve (ROC) and area under the receiver operator curve (AUC). You can use the rxRocCurve function 

from RevoScaleR to plot the ROC. You can run the plot in the SQL Server compute context and then 

return the plot to your R-IDE for rendering (see Figure 3-9). To do this from the R-IDE, run the 

following code: 

# plot ROC curve   
rxRocCurve( "tipped", "Score", scoredOutput)   

You also can use the rxImport function from RevoScaleR library to import scoredOutput to a data 

frame in your client R environment. You can then call functions in the ROCR library to generate the plot 

(see Figure 3-9) and obtain the AUC. 

# Import scoredOutput data into a data frame   
scoredOutputDF = rxImport(scoredOutput)   
 
 
# Plot ROC Curve using ROCR library   
library('ROCR')   
pred <- prediction(scoredOutputDF$Score, scoredOutputDF$tipped)   
perf <- performance( pred, "tpr", "fpr" ) 
plot( perf ) 
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Figure 3-9: ROC plot created by using rxRocCurve; the AUC is 0.56. 

In this case, the accuracy of the model is not very high (AUC is 0.56), so we probably want to consider 

exploring and adding other features when we create the model, or perhaps use more data for the 

training. As discussed in the data science process, some amount of iteration is often necessary before 

you get a deployable model. 

Summary 

In this chapter, we explained the data science process and explored how to use SQL Server R 

Services to perform its various steps. After determining the problem to solve, we moved on to data 

exploration, feature engineering, creating and training models, saving models, and scoring data from 

the model output. You learned how to use the R and T-SQL environments in this process—allowing 

the data scientist to integrate into the production data environment. 

In the next few chapters, you’ll see more examples, such as customer churn prediction, predictive 

maintenance, and forecasting—all following the data science process we’ve demonstrated here. 

ROC Curve for 'tipped'
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False Positive Rate (1 - Specificity)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
S

e
n

s
it
iv

it
y
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0



 

 

 

37 CHAPTER 4  |  Building a customer churn solution 

 

 

 

 

C H A P T E R  

 

 

4 

 Building a 
customer churn 
solution 
One of the most canonical uses for predictive analytics is to predict 

customer churn. Customer churn is defined as the number of lost 

customers divided by the number of new customers gained. But, as long 

as you’re gaining new customers faster than you’re losing them, that’s a 

good thing, right? No—for multiple reasons. 

In this chapter, we show you how to build a customer churn model for 

telecommunication companies. You will be able to take advantage of the 

same ideas and techniques and apply this to proactively managing 

customer churn for your business. 

Overview 
The primary reason why it is critical for companies to manage customer churn is that it costs far more 

to gain a new customer—or regain a lost one—than it does to keep an existing customer. Over time, 

too much customer churn can hurt the bottom line of a business. Identifying customer churn and the 

factors that causes it are essential tasks for a company to stay profitable. 

Interestingly, customer churn extrapolates out to other uses, as well. Consider the case for which you 

want to manage churn for students and reduce the number of dropouts from a course. 
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In today’s commercial environment, customers have many options for whatever they buy, and they 

can easily switch between service providers or vendors. This puts enormous pressure on organizations 

to retain their current customers. Nowhere is this more evident than in the mobile phone market. 

Improving customer attrition rates and enhancing a customer’s experience are valuable ways to 

reduce customer acquisition costs and maintain a high-quality service. Many industries, including 

mobile providers, use churn models to predict which customers are most likely to leave, and to 

understand which factors cause customers to stop using their service. 

Predicting customer churn is a mature exercise in data science, most notably in R. Customer 

transactional data is often stored in a Relational Database Management System (RDBMS) like 

Microsoft SQL Server. Many companies have already built applications for supporting their frontline 

staff. When the business need to imbue intelligence into these applications, it is important that staff 

members do not need to relearn a new application. In addition, database developers must 

operationalize a churn model and integrate its existing applications so that frontline staff can make 

smarter, better decisions. In Microsoft SQL Server 2016, you can now use R for training and 

operationalizing the churn model. This is difficult to implement using plain vanilla Transact-SQL 

(T-SQL), but now you can take advantage of the power of SQL Server and R to create intelligent 

applications. 

When using R with SQL Server, all computations take place in the database, avoiding unnecessary 

data movement. When the R code is deployed to production, SQL Server R Services provides the best 

of the R and SQL worlds. 

After the R script or model is ready for production use, the data scientist or a database developer can 

embed the code or model in a stored procedure, and developers can invoke that stored procedure 

from an application. The entire team stays in their familiar environments, and everyone can use the 

power of each system seamlessly. 

In this chapter, we use a mix of R and T-SQL to generate scores from a predictive model in production 

and then return plots generated by R to present them in an application such as SQL Server Reporting 

Services or Microsoft Power BI. 

Understanding the data 

We’ve stored the data and code for this chapter at https://github.com/weehyong/telcocutomerchurn. 

Download the file telcoedw.zip from the GitHub repository and unzip the file. Then, restore the SQL 

Server 2016 backup to a SQL 2016 instance. 

This solution uses data from two sources: Call Detail Records (CDR) log files and customer profile 

information. 

Telephone companies have hardware called call switches that collect CDR data, which in this case have 

been exported as files. For each call a mobile user makes, a CDR record is generated and captured by 

the call switch (see Figure 4-1). A CDR record typically contains the following information: calling 

number, called number, date and time, duration of the call, completion status, source number, unique 

identifier for the SIM card of the phone, and often other data. 

 

Figure 4-1: End-to-end flow, from placing a mobile call to CDR records. 

https://github.com/weehyong/telcocutomerchurn
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Figure 4-2 shows a sample of the data in CDR files. 

 

Figure 4-2: A sample of a CDR file. 

After the call switch produces the data, the CDR file is loaded into a SQL Server table using a data 

integration tool such as SQL Server Integration Services (SSIS). After the data is loaded into the 

database, we can combine it with other customer information as part of the data preparation process. 

Let’s take a look at the data in the sample telco database by using the following T-SQL. 

SELECT TOP 10 [age] 
      ,[annualincome] 
      ,[calldroprate] 
      ,[callfailurerate] 
      ,[callingnum] 
      ,[customerid] 
      ,[customersuspended] 
      ,[education] 
      ,[gender] 
      ,[homeowner] 
      ,[maritalstatus] 
      ,[monthlybilledamount] 
      ,[noadditionallines] 
      ,[numberofcomplaints] 
      ,[numberofmonthunpaid] 
      ,[numdayscontractequipmentplanexpiring] 
      ,[occupation] 
      ,[penaltytoswitch] 
      ,[state] 
      ,[totalminsusedinlastmonth] 
      ,[unpaidbalance] 
      ,[usesinternetservice] 
      ,[usesvoiceservice] 
      ,[percentagecalloutsidenetwork] 
      ,[totalcallduration] 
      ,[avgcallduration] 
      ,[year] 
      ,[month] 
      ,[churn] 
  FROM [telcoedw].[dbo].[edw_cdr] 

From these results, we’ve aggregated the mobile customer usage by month and included other 

customer profile information such as gender, whether the customer is a home owner, marital status, 

and other features, as depicted in Figure 4-3. 
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Figure 4-3: Data preparation for CDR and customer profile data 

From the preceding T-SQL statement, we also can get the column that provides information about 

whether the customer has churned. We’ll use this data for training the customer churn model in the 

next section. 

Note Getting the data into this shape is often the most difficult part of the data scientist’s role. In 
fact, getting that label column of “churn” can be nontrivial, because it does not always exist in the 
source data. In this example, we are including that to demonstrate the actual process of working 
with a customer churn model, but lots of effort goes into figuring out how to get a label column of 
“churn” for the data that is used for training. 

Building the customer churn model 

Let’s explore the features we’ll need to build the customer churn model. In this sample, we’ll use 

information about the customer and the customer call details. Figure 4 shows the features used to 

determine customer churn. 

 

Figure 4-4: Features used to determine whether the customer will be likely to churn. 
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Note Feature selection is another interesting and important area in data science. that is, knowing 
which elements in your data are the most predictive. You might not even have the relevant feature 
information in your data, and you might need to include other data (such as competitor 
information), or create new columns of data from existing ones to act as new features. To learn 
more information on feature design, go to https://azure.microsoft.com/documentation/articles/ 
machine-learning-feature-selection-and-engineering/. 

Now that we have the data prepared, let’s take a look at the steps that are used for training, 

evaluating, and using the model. Each of the stored procedures combines R and T-SQL. 

-- Training the customer churn model for telco 
exec train_customer_churn_model; 
 
-- Finding the model 
select * from cdr_models 
where model_name = 'rxDForest' 
 
-- Evaluating the model 
exec model_evaluate 
 
-- Predicting customers that will churn 
exec predict_customer_churn 'rxDForest'; 

In the next section, we’ll dive deeper into each of the stored procedures to gain a better 

understanding of how to build them. 

Step-by-step 

First, we’ll explore the sample database and then move on to building each stored procedure. To 

begin, restore the sample database, called telcoedw. 

Training the model 

Following is the procedure for training your model: 

1. You can use SQL Server Management Studio (SSMS) to manage the tables, and stored procedures 

in the customer churn solution. In SSMS, expand the node for Programmability | Stored 

Procedures, as shown in the following screenshot: 

 

Notice that there are several stored procedures for training, evaluating, and prediction. Each of 

these intelligent stored procedures harnesses the power of R to deliver advanced analytics to the 

application developers. 

https://azure.microsoft.com/documentation/articles/machine-learning-feature-selection-and-engineering/
https://azure.microsoft.com/documentation/articles/machine-learning-feature-selection-and-engineering/
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2. Let’s explore one of the stored procedure: dbo.train_customer_churn_model. To do this, right-

click it, and then, on the shortcut menu that opens, choose Modify, as shown here: 

 

Notice the T-SQL and R code that uses the ScaleR libraries for training a decision forest. We use 

the rxDForest() function in the following example to build a classification model for determining 

whether the customer will be likely to churn: 

USE [telcoedw] 
GO 
 
ALTER procedure [dbo].[train_customer_churn_model] 
as 
begin 
    execute sp_execute_external_script 
      @language = N'R' 
    , @script = N' 
        require("RevoScaleR"); 
 
        train_vars <- rxGetVarNames(edw_cdr_train_SMOTE) 
        train_vars <- train_vars[!train_vars  %in% c("churn")] 
 
        temp<-paste(c("churn",paste(train_vars, collapse="+") ),collapse="~") 
        formula<-as.formula(temp) 
 
        forest_model <- rxDForest(formula = formula, 
                            data = edw_cdr_train_SMOTE, 
                            nTree = 8, 
                            maxDepth = 32, 
                            mTry = 2, 
                            minBucket=1, 
                            replace = TRUE, 
                            importance = TRUE, 
                            seed=8, 
                            parms=list(loss=c(0,4,1,0))) 
        rxDForest_model <- data.frame(payload 

        =as.raw(serialize(forest_model, connection=NULL)));' 
    , @input_data_1 = N'select * from edw_cdr_train_SMOTE' 
    , @input_data_1_name = N'edw_cdr_train_SMOTE' 
    , @output_data_1_name = N'rxDForest_model' 
    with result sets ((model varbinary(max))); 
end; 

We’ve used the rxGetVarNames() function to get the features that will be used for training. In the R 

code, the following two lines define the label and features that will be used in training: 

churn ~ <feature 1> + <feature 2> … 
 
temp<-paste(c("churn",paste(train_vars, collapse="+") ),collapse="~") 
formula<-as.formula(temp) 

The data used for training is stored in the table edw_cdr_SMOTEtrain. 
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Note rxDForest() is a parallel external memory decision forest algorithm that is designed to work 
with very large datasets. It is based on the random forest work done by Leo Breiman and Adele 
Cutler, and the randomForest package of Andy Liaw and Matthew Weiner. You can read more about 
rxDForest() at http://www.rdocumentation.org/packages/RevoScaleR/functions/rxDForest and 
http://blog.revolutionanalytics.com/2014/01/a-first-look-at-rxdforest.html. 

When you execute the stored procedure, you will see that it returns the serialized model returned as 

the SQL Server data type varbinary(max), as demonstrated in Figure 4-5. 

 

Figure 4-5: Serialized customer churn model. 

You can store the serialized model into a SQL Server table, using it to make predictions. To do that, 

use this code: 

DECLARE @t table (churn_model varbinary(max)) 
INSERT @t (churn_model) 
EXEC train_customer_churn_model  
SELECT * FROM @t 
 
INSERT into cdr_models 
SELECT TOP 1 'rxDForest', churn_model FROM @t 

Evaluating the model 

After you build the model, you should evaluate it by using test data. To do this, we created a table 

called edw_cdr_test_pred that contains the test data. This table contains the actual label value and the 

predicted churn value. Let’s take a look at the data in the table. 

SELECT TOP 10 [customerid] 
      ,[churn] 
      ,[prediction] 
      ,cast([probability] as decimal(4,2)) as probability 
  FROM [telcoedw].[dbo].[edw_cdr_test_pred] 

This returns the results shown in Figure 4-6. 

 

Figure 4-6: Test data preparation. 

After you have prepared the test data, you can run the stored procedure evaluate_customer_churn_ 

model to evaluate the quality of the model. 

To see the details for the stored procedure, right-click Evaluate_Customer_Churn_Model, and then 

choose Modify, as illustrated in Figure 4-7. 

http://www.rdocumentation.org/packages/RevoScaleR/functions/rxDForest
http://blog.revolutionanalytics.com/2014/01/a-first-look-at-rxdforest.html
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Figure 4-7: Evaluating the customer churn model. 

USE [telcoedw] 
GO 
ALTER procedure [dbo].[evaluate_customer_churn_model] 
as 
begin 
    execute sp_execute_external_script 
      @language = N'R' 
    , @script = N' 
  evaluate_model <- function(data, observed, predicted) { 
  confusion <- table(data[[observed]], data[[predicted]]) 
  print(confusion) 
  tp <- confusion[2, 2] 
  fn <- confusion[2, 1] 
  fp <- confusion[1, 2] 
  tn <- confusion[1, 1] 
  accuracy <- (tp + tn) / (tp + fn + fp + tn) 
  precision <- tp / (tp + fp) 
  recall <- tp / (tp + fn) 
  fscore <- 2 * (precision * recall) / (precision + recall) 
  metrics <- c("Accuracy" = accuracy, 
               "Precision" = precision, 
               "Recall" = recall, 
               "F-Score" = fscore) 
  return(metrics)} 
 
metrics <- evaluate_model(data = edw_cdr_test_pred, 
                                  observed = "churn", 
                                  predicted = "prediction") 
print(metrics) 
metrics<-matrix(metrics,ncol=4) 
metrics<-as.data.frame(metrics); 
' 
    , @input_data_1 = N' 
    select * from edw_cdr_test_pred' 
    , @input_data_1_name = N'edw_cdr_test_pred' 
    , @output_data_1_name = N'metrics' 
    with result sets ( ("Accuracy" float, "Precision" float, "Recall" float, "F-Score" float) 
              ); 
end; 

After you execute the stored procedure, you can view the key metrics for the model by running exec 

evaluate_customer_churn_model. This returns the results displayed in Figure 4-8. 

 

Figure 4-8: Evaluating the model. 
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Predicting customers that will churn 

Next, let’s take a look at how we can create a stored procedure that you can use for scoring the data. 

To do this, right-click the stored procedure Predict_Customer_Churn, and then choose Modify, as 

demonstrated here: 

 

This shows the T-SQL and R code that is used for making the prediction: 

USE [telcoedw] 
GO 
 
ALTER procedure [dbo].[predict_customer_churn] (@model varchar(100)) 
as 
begin 
    declare @rx_model varbinary(max) = (select model from cdr_rx_models 
                              where model_name = @model); 
 
    -- Use the selected model for prediction 
    exec sp_execute_external_script  
          @language = N'R' 
        , @script = N' 
 
require("RevoScaleR"); 
cdr_model<-unserialize(rx_model); 
predictions <- rxPredict(modelObject = cdr_model, 
                     data = edw_cdr_new, 
             type="prob", 
                     overwrite = TRUE) 
print(head(predictions)) 
 
threshold <- 0.5 
predictions$X0_prob <- NULL 
predictions$churn_Pred <- NULL 
names(predictions) <- c("probability") 
 
predictions$prediction <- ifelse(predictions$probability > threshold, 1, 0) 
predictions$prediction<- factor(predictions$prediction, levels = c(1, 0)) 
 
edw_cdr_new_pred  <- cbind(edw_cdr_new[,c("customerid")],predictions) 
print(head(edw_cdr_new_pred )) 
edw_cdr_new_pred <-as.data.frame(edw_cdr_new_pred); 
' 
    , @input_data_1 = N'select * from edw_cdr_new' 
    , @input_data_1_name = N'edw_cdr_new' 
    , @output_data_1_name=N'edw_cdr_new_pred' 
    , @params = N'@rx_model varbinary(max)' 
    , @rx_model = @rx_model 
    with result sets (("customerid" int, "probability " float, "prediction" float)); 
end; 
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You can specify how the rxPredict() function is used to predict the customers that are likely to 

churn. The input data (containing new and existing customers) is stored in the table edw_cdr_new. You 

can run the stored procedure by using the following T-SQL code: 

-- Predicting customers that will churn 
exec predict_customer_churn 'rxDForest'; 

The stored procedure uses the trained model to predict the customers that are likely to churn, 

provides the score probability, and the customer ID, as illustrated in Figure 4-9. 

 

Figure 4-9: Running the stored procedure for predicting customer churn. 

Summary 

Many industries, including mobile providers, use churn models to predict which customers are most 

likely to leave, and to understand which factors cause customers to stop using their service. In many 

of these industries, the customer and transactional data are stored in a database. The ability to run the 

churn model where the data gravity is makes it possible for you to do data science without having to 

bring data outside of the database (e.g., to your client tool). This also give you the ability to use the 

powerful capabilities available in the database for speeding up aggregation, filtering, and joining data. 

In this chapter, you learned how to explore the telecommunication customer data stored in a 

database, built a customer churn model, and evaluated the model. You then learned how to 

operationalize the model by using T-SQL stored procedures. Using SQL Server R Services, you can 

easily blend both R and T-SQL code and make them available as stored procedures that you can 

invoke in your applications that work with T-SQL. 
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 Predictive 
maintenance and 
the Internet of 
Things 
With the emergence of devices connected to the web, or the “Internet of 

Things” and an increasing amount of data being collected about devices 

and machines, many companies are looking to take advantage of this data 

to improve production and maintenance efficiency. In this chapter, we 

discuss example use cases and different ways to formulate a predictive 

maintenance problem into a machine learning model. We then show you 

how to use Microsoft SQL Server R Services to fit these models to example 

data and predict failures before a problem occurs, walking through the 

data science process that was used to build the solution. 
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What is the Internet of Things? 
The Internet of Things (IoT) is no longer just an emerging trend but something that has already 

proven valuable for many businesses that are harnessing connected devices to drive new innovative 

scenarios. Consulting firm McKinsey & Company predicts that within the next 10 years, the potential 

economic impact of the IoT will be up to $11 trillion per year.1 But it isn’t just about the cheap 

hardware and pervasive connectivity; it’s about the possibilities when you combine analytics and the 

right data to solve a particular business need. 

The IoT is defined by four main aspects: 

 Things Physical assets such as machines, devices, or sensors. 

 Connectivity The “things” are connected directly to the Internet, to one another, and/or another 

device that is able to understand information from the “thing.” 

 Data The “things” are able to collect and communicate information, such as an asset’s state or 

environment. 

 Analytics Analytics on top of the data from the connected “things” make it possible for people 

or machines to take action. 

The IoT facilitates insight and agility, giving access to information in near real time. Companies that 

take advantage of the IoT also have potential to gain a competitive edge through identifying new 

business opportunities, such as the potential to redefine customer service. 

Use cases made possible through the IoT span across industries, from healthcare (monitoring device 

data making it possible to adjust dosage), distribution (tracking products and authentication to 

prevent fraud), to retail (creating personalized offers through connected devices and location 

information), and operations (proactively fix equipment before it fails). In this chapter, we concentrate 

on predictive maintenance using SQL Server R Services. 

Predictive maintenance in the era of the IoT 
Predicting when you should perform maintenance is not a new concept. In fact, many maintenance 

operations already have a planned maintenance schedule. Maintenance ensures the reliability of the 

machine in the future and prevents unwanted issues or disruptions. If you think about a car, for 

example, the manufacturer might suggest doing an oil change every 6 months or 5,000 miles. They 

are, in fact, predicting when you should do maintenance, yet it is a very simple model based solely on 

time and one indicator of usage. 

With the increasing amount of data being collected about devices, you can build more informative 

models about when maintenance should be performed—it’s not necessary to rely on a schedule 

alone. Using this new technology, you can improve production and maintenance efficiency. For 

instance, cars don’t need service every X miles; instead, you can perform the maintenance depending 

on the driving and environment conditions. This concept is called Condition-Based Monitoring (CBM), 

and it uses the condition of the asset to decide what maintenance needs to be done, acting on it 

based on indicators of decreasing performance or potential fault. 

                                                      
1 McKinsey Global Institute. “The Internet of Things: Mapping the Value beyond the hype,” aka.ms/cite10 

https://aka.ms/cite10
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Building on these ideas and using the data available about the assets of interest rather than solely 

identifying faults or failures after they occur or monitoring to understand current performance of the 

asset, using machine learning techniques, we can also forecast into the future to predict when a 

problem is likely to occur. This might be done through a data-driven model that learns from the 

historical relationship between the relevant data points such as the sensor readings from the assets 

and when problems have occurred in the past. An example of the benefits of applying predictive 

maintenance techniques within the aerospace industry is shown in Figure 5-1. 

 

Figure 5-1: The benefits of using predictive maintenance within aerospace industry.2 

Although predictive maintenance can be considered to be forecasting when to do maintenance in 

order to prevent an unwanted failure, it also encompasses many other related problems such as 

maintenance action recommendations, root-cause prediction, and fault detection, for example. In 

the section that follows, we describe example use cases across a variety of industries. 

Example predictive maintenance use cases 

Although it’s particularly popular within manufacturing, the concept of predictive maintenance is 

useful across many industries. The list that follows presents some examples of problems that can be 

solved by using the concepts that follow in this chapter:3 

 Aerospace 

 What is the likelihood of delay due to mechanical issues? 

 When is this aircraft component likely to fail next? 

                                                      
2 See the entire infographic at aka.ms/cite11. 
3 See more example use cases here: Fidan Boylu Uz, Cortana Intelligence Solution Template Playbook for predictive 

maintenance in aerospace and other businesses, aka.ms/cite2 

https://aka.ms/cite11
https://aka.ms/cite2
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 Utilities 

 When is a solar panel or wind turbine going to fail next? 

 Which circuit breakers in a system are likely to fail in the next month? 

 Is this ATM going to dispense the next five notes without failing? 

 Manufacturing 

 Will the component pass the next stage of testing on the factory floor or does it need to be 

reworked? 

 What is the root cause of the test failure? 

 Transportation and logistics 

 Should the brake rotors in a car be replaced or can it wait for another month? 

 What maintenance tasks should be performed on an elevator? 

These types of problems can often be formulated in many ways, and it is important to consider what 

formulation provides the most value. In addition, it might be that solving a related problem rather 

predicting failure or maintenance needs directly actually provides more value. Consider an oil tank 

that fills over time and very rarely is overfilled, which would result in a failure (i.e., a spill). In this case, 

forecasting the tank volume itself provides more value than predicting when a spill might occur, 

because knowing the future tank volume can both help prevent spills as well as improve other 

operations such as when to extract and move the liquid. 

Before beginning a predictive maintenance project 

Before you begin a predictive-maintenance project using a data-driven approach, there are several 

important requirements to consider:4 

 Is the question “sharp”? The question should be formulated in a way that can be answered 

with either a category (e.g., yes/no, reason A/B/C) or a number (seven days). “Is this circuit breaker 

likely to fail in the next month?” and “When is my solar panel going to experience a fault?” are 

examples of sharp questions. 

Note In addition, it is important to consider whether the problem is actually predictive in nature 
(e.g., machines that have degradation patterns) or whether it is an unpredictable phenomenon that 
results in maintenance requirements (e.g., human vandalism can be very difficult to predict). In 
any case, there should also be a clear path of action if the answer to the sharp question is known. 
For example, if the question reflects whether a failure will happen in the next seven days but 
maintenance needs to be scheduled a month in advance, the resulting model will not be as helpful 
to business operations. 

 Does the data measure what you care about? The data needs to have identifiers and 

information at the level that is being predicted. For example, if you’re trying to predict door-

related problems within a vehicle, information should be collected about the doors and the doors 

should be uniquely identifiable (versus having only information at the level of the vehicle). 

 Is the data accurate? The failures recorded in the historical data should be actual failures, not 

simply potential failures, and the data should reflect what actually happened. For example, if a 

“failure” is defined as when unplanned maintenance is required, but that unplanned maintenance 

is done based on monthly checks to the system, the data doesn’t accurately reflect the exact 

                                                      
4 Brandon Rohrer, “What can data science do for me?” aka.ms/cite1. 

https://aka.ms/cite11
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timing of failure; rather, it reflects just the month in which the failure occurred. Maintenance data 

should be collected in a structured manner when possible, such as categories of operations 

completed rather than free-form text, which might or might not include all of the necessary 

information and can differ across who supplied the information. 

 Is the data connected? The amount of missing data should be limited and the different data 

sources should be linkable, such as machine information and usage information. If the data 

sources cannot be joined together through identifiers, they will not provide as much (if any) value. 

Usually, it is not just the “IoT data” or machine usage information that is important, but also other 

information such as previous maintenance and repair history, and this must be linkable together. 

 Is there enough data? For predicting time left to failure, there should be failures or some proxy 

recorded. In fact, to predict failures, there should be many (e.g., hundreds or thousands) of 

examples of failure in the past. If there are very few failures, the outcome should be reconsidered 

(e.g., predicting a fault or something that often leads to a failure rather than the failure itself). 

The data science process using SQL Server R Services 

Let’s look at a sample predictive maintenance problem using SQL Server R Services.5 We’ll develop 

and deploy an end-to-end solution using publicly available data from NASA on simulated aircraft-

engine run-to-failure events,6 and then walk through the data science process used.7 

In the example that follows, the model is developed by running the code within an R integrated 

development environment (R-IDE) with the compute context generally set to SQL Server, such as 

RStudio or R Tools for Visual Studio (see Figure 5-2). The models are then operationalized through 

SQL stored procedures, which can be run within a SQL environment (such as Microsoft SQL 

Management Studio) or called by applications to make predictions. Windows PowerShell scripts 

are provided to invoke the steps end to end. 

 

Figure 5-2: Model development in R using remote execution context with parallelized compute. 

                                                      
5 This example builds on the SQL Server R Services template available through the Cortana Intelligence Gallery, aka.ms/cite3. 

You can find other example templates on this site, as well. 
6 Saxena, A. and Goebel, K. (2008). "PHM08 Challenge Data Set,” NASA Ames Prognostics Data Repository 

(http://ti.arc.nasa.gov/project/prognostic-data-repository), NASA Ames Research Center, Moffett Field, CA. 
7 Ehrlinger, J and Dogan B. “A linear method for non-linear work: Our data science process,” aka.ms/cite4. 

https://aka.ms/cite3
https://aka.ms/cite4
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The example code within this chapter makes heavy use of the ScaleR functions to handle large 

datasets that do not fit in memory; for example, running a regression model that can scale out with 

the dataset size. However, barring memory limitations, you could also apply the concepts outlined in 

a moment by using standard R libraries within SQL Server. 

More info You can find the code described in this chapter and additional code at 
http://aka.ms/cite3. The directory structure includes a folder for the raw data, a folder for 
the R development code, and a folder for the stored SQL procedures. 

An overview of the data science process taken in this chapter is outlined in Figure 5-3. 

 

Figure 5-3: The data science process. 

Although the process outlined in Figure 5-3 appears very linear because it is drawn as a series of 

steps, in practice it is very iterative, often requiring revisiting a previously completed step. For 

example, a model that doesn’t perform as well as needed might require revisiting the creation of the 

analytics dataset to include more informative features from which the model can learn. In the sections 

that follow, more detail is given about what is expected during each step of the process, especially for 

predictive maintenance problems, as illustrated through the NASA data. 

Define objective 

As predictive maintenance use case examples demonstrate, there are many ways to formulate the 

problem. In the example in this chapter, we formulate the problem in three ways:8 

 Remaining Useful Life (RUL) of an asset, which is solved by using regression techniques. 

 Whether an asset will fail within a certain time frame, such as whether it will fail in the next seven 

days, which is solved using binary classification techniques. 

 Whether an asset will fail within certain time windows, such as 0–7 days, 8–15 days, or longer than 

15 days, which is solved by using multiclass classification techniques. Although not shown here, 

you can also apply this method for root-cause analysis, where the cause is a categorical value and 

the model aims to predict whether the model will fail due to cause A, B, C, …, or not fail during a 

certain time window. 

An implicit assumption is made in the steps that follow that the engines have a progressive 

degradation pattern reflected in their sensor measurements. The machine learning model learns from 

the historical relationship between the sensor readings and the historical failures to predict when a 

failure will happen in the future. 

                                                      
8 See also the Azure Machine Learning template for predictive maintenance at aka.ms/cite5. 

http://aka.ms/cite3
https://aka.ms/cite5
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Identify data sources 

There are usually many data sources that contain the relevant information needed to build a 

predictive maintenance model. Although not all of these sources might be necessary, the more 

relevant information that we can find on the problem, the more likely the solution created will have 

value and predictive power. 

Data sources that should be considered include, but are not limited to the following: 

 Failure history When each machine or component within the machine failed in the past, 

preferably with categorical labels on the type of failure. 

 Repair history Previous maintenance records, components replaced, and maintenance activities 

performed. 

 Machine conditions Data regarding operational conditions, sensor readings, settings of the 

machine, collected over time. 

 Machine features Features of the machine as well as component-level information such as 

production date and technical specifications. 

 Operating conditions Environmental characteristics that might influence a machine’s 

performance, such as temperature, location. 

 Operator attributes Attributes of the operator of the machine, such as the driver of a car or the 

person running a piece of machinery. This can be a one-to-many relationship if, for example, 

many individuals are using one machine. 

In the example in this chapter, we use publicly available data from NASA with respect to run-to-failure 

events for aircraft-engines. There are three datasets in total in this example, and the data is provided 

in a format that is already separated into training, testing, and ground truth (more on this in a 

moment). 

Dataset Description 

Training data (“PM_Train”) This is historical run-to-failure data that includes settings of the 

engines and sensor readings over time until failure occurred. The 

data will be used to train the machine learning model. 

Testing data (“PM_Test”) The settings of the engines and sensor readings for machines in 

operation that had not yet failed. 

Ground truth data (“PM_Truth”) Ground truth of when the machines in the testing data actually 

failed. 

 

Note In practice, data won’t be already separated neatly into training and testing datasets like we 
have here—just like in the previous examples, the real work is often in finding, vetting, and 
conditioning the data to make it ready for modeling. 

The reason data is separated, and not all of the historical data is fed into the machine learning 
model, is that we want to create a model that is generalizable and evaluate how well the model is 
performing in a realistic manner. For example, creating a model that is able to perfectly predict in 
the past is not useful if it doesn’t generalize to predict failures in the future. One way to do this is 
to train based on data until a certain point in time (e.g., using data from the first part of the year 
January to September), and then validate how well the model is doing by evaluating it for historical 
data after that point in time (e.g., October to December of the year). Also separating by machine 
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identifier so that some machines are in the training dataset and a distinct set of machines is in the 
testing set is another good method. These can be combined together for the strictest validation.9 

Explore data 

The model is developed by using remote execution that employs an R-IDE such as R Tools for Visual 

Studio. We’ll develop the code locally but set the compute context—which defines the remote 

connection, where the processing is done—to the SQL Server to run there, using its higher compute 

and memory resources. 

Important Using remote execution allows for often faster computation, larger dataset capacity, 
fewer security concerns, and no data movement or copies are required. This mitigates the R 
memory and scalability issues. 

However, it also might be useful in certain contexts to move data to the local context, especially 
when doing quick, iterative tasks on small data. An example of this is shown in the evaluation 
section of this chapter. 

## Compute context ## 
connection_string <- "Driver=SQL Server; 
                      Server=[Insert Server]; 
                      Database=[Insert Database]; 
                      UID=[Insert user id]; 
                      PWD==[Insert password]" 
sql_share_directory <- paste(" c:\\AllShare\\", Sys.getenv("USERNAME"), sep = "") 
dir.create(sql_share_directory, recursive = TRUE, showWarnings = FALSE) 
sql <- RxInSqlServer(connectionString = connection_string, 
                     shareDir = sql_share_directory) 
local <- RxLocalSeq() 

After the compute context is defined, you can explore and visualize the data through the R IDE. You 

can find the code at http://aka.ms/cite3, and then upload the data to your own database or use the 

sample database along with this chapter; the rest of the code within this chapter assumes the three 

aforementioned raw datasets are already loaded in your database. When the data is loaded, you can 

begin exploring it and creating visualizations. In the code example that follows, some example data 

exploration visualizations are created, and Figure 5-4 shows an example view of what running this 

might look like with R Tools for Visual Studio: 

### Data exploration examples 
rxSummary( ~ ., train_data_table) 
rxHistogram(~s11,train_data_table) 
rxHistogram( ~ s11 | F(id), type = "p", data = train_data_table) 
rxLinePlot(s11~cycle|id,train_data_table) 

                                                      
9 See more detail at the source from footnote 3. 

http://aka.ms/cite3


55 CHAPTER 5  |  Predictive maintenance and the Internet of Things 

 

 

Figure 5-4: Data exploration using R Tools for Visual Studio. 

Create analytics dataset 

In this stage of the process, the raw data sources must be combined together and manipulated in 

such a way as to create the analytics dataset that will feed into the machine learning model. Both data 

labeling—where the target outcome of the machine learning model is created—as well as feature 

engineering—where extra columns of data are created that inform the machine learning model—are 

completed in this step.10 

In the dataset in this chapter, time is represented by the column “cycle”; however, this can be 

generalized to be a different measure of time, such as days, weeks, or months. 

Note In the example in this chapter, there is no aggregation that is done to the data before the 
data labeling and feature engineering is conducted; in other words, the analytics dataset has the 
same number of rows before and after these steps (although it has additional columns). In practice, 
there is often a layer of aggregation that is done before this. 

For example, a sensor could be recording measurements every second, but that level of detail is not 
informative and in fact would likely add too much noise to the model. In this case, you can 
aggregate the data first (such as average measures by hour) and then conduct feature engineering 
and data labeling. Similar to other steps of the process, this is often an iterative process to 
understand the level of aggregation that is necessary. 

Data labeling 

Because the problem is formulated in three different ways, three sets of labels are generated for the 

model to learn, as illustrated in Figure 5-5. In the training data, we know when the engine actually 

                                                      
10 For another example walkthrough of how you can use R for predictive maintenance and the process of how the analytics data 

set was created (in this case for manufacturing use case and root cause prediction), see the Jupyter R notebook example 

created by Fidan Boylu Uz at aka.ms/cite6. 

https://aka.ms/cite6
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failed due to the fact that the data is run-to-failure data, so the last time period for each engine in 

the training data represents the failure point. 

To model the remaining useful life of the engine, we can label the data by subtracting the time period 

from the maximum time period for each engine for each row of data. For example, let’s assume that 

engine id 1 runs for 192 cycles. We thus know that at cycle 1, it has 191 cycles left, and the column 

“RUL” which represents remaining useful life (the target outcome in this case) is labeled to be 191 for 

the row that represents the data at cycle 1. See Figure 5-6 for an example of what the dataset looks 

like after data labeling is complete. 

For the formulation of whether the engine is going to fail in the next X periods, the label of “1” is 

created for all data points from the failure point back X time periods; otherwise, it is labeled “0.” For 

the formulation of whether the engine is going to fail in the window [1, w0] cycles or to fail within 

the window [w0+1, w1] cycles, or it will not fail within w1 cycles, a label is created for each of the 

categories and applied to the rows according to how far back from the failure point the row is. 

 

Figure 5-5: Three formulations of data labeling. 
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Figure 5-6: A dataset after data labeling is complete (where the target outcome for the machine learning model is 
created), for three example formulations of the problem. 

Note These are simple ways to label the data to enable the building of a machine learning model. 
But these models might violate standard statistical assumptions, such as independence of 
observations, and you should evaluate them for robustness through techniques discussed in the 
evaluation section of this chapter. Additionally, you can use more advanced statistical and machine 
learning models. 

In the code example that follows, we create a function that will label the data as described above, and 

then apply that function to the training data: 

## Data labeling 
library(plyr) 
data_label <- function(data) { 
    data <- as.data.frame(data) 
    max_cycle <- plyr::ddply(data, "id", plyr::summarise, max = max(cycle)) 
    if (!is.null(truth)) { 
        max_cycle <- plyr::join(max_cycle, truth, by = "id") 
        max_cycle$max <- max_cycle$max + max_cycle$RUL 
        max_cycle$RUL <- NULL 
    } 
    data <- plyr::join(data, max_cycle, by = "id") 
    # Label for regression 
    data$RUL <- data$max - data$cycle 
    # Label for binary/multi-class classification 
    data$label1 <- ifelse(data$RUL <= 30, 1, 0) 
    # Label for multi-class classification 
    data$label2 <- ifelse(data$RUL <= 15, 2, data$label1) 
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    data$max <- NULL 
 
    return(data) 
} 
 
## Add data labels for train data 
tagged_table_name <- "train_Labels" 
truth_df <- NULL 
tagged_table_train = RxSqlServerData(table = tagged_table_name, 
                                             colClasses = train_columns, 
                                             connectionString = connection_string) 
inDataSource <- RxSqlServerData(table = train_table_name, 
                                connectionString = connection_string, 
                                colClasses = train_columns, 
                                rowsPerRead = 30000) 
rxDataStep(inData = inDataSource, 
           outFile = tagged_table_train, 
           overwrite = TRUE, 
           transformObjects = list(truth = truth_df), 
           transformFunc = data_label, 
           rowsPerRead = -1, 
           reportProgress = 3) 

After you run the data labeling code for the training data, there should be a new table called 

“train_Labels” in the database that contains three new columns: RUL, label1, and label2. 

You can verify the new table exists through the R-IDE by using a command such as 

rxSqlServerTableExists("train_Labels",connection_string) or by running a SQL query 

against the database, as demonstrated in Figure 5-7. 

 

Figure 5-7: View of database tables using Microsoft SQL Server Management Studio. 

Although the testing data will not be used to train the model, it also needs to be labeled in order to 

evaluate how well the model performs on data it has not yet seen. Follow the code at aka.ms/cite3 to 

also add labels to the testing data using the “ground truth” available in the third dataset. 

Note In practice, the data for these types of problems might not be “run-to-failure,” and the data 
labeling process would be different in that case, although the concepts would be similar. For 
example, the timing of failures might be recorded in a separate dataset rather than implied from 
the last point in time for each machine. In this case, the failure data would need to be joined with 
the machine usage information and then labels created by using the aforementioned concepts. 

https://aka.ms/cite3
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Feature engineering 

Feature engineering is the process of creating features (i.e., extra columns in the dataset) that are 

inputs that aim to provide better or additional predictive power to the learning algorithm. This is 

a very iterative process, that should be informed by domain knowledge. In the case of predictive 

maintenance, it is important to create features that capture the degradation pattern over time. As one 

example, for each labelled record of an asset, pick a rolling window of size w and then compute the 

rolling aggregate features such as averages and standard deviations for the periods before the 

labelling date and time of that record (see Figure 5-8). Other potential features include but are not 

limited to tumbling window aggregations, changes from initial or known safe value, velocity of 

change, and frequency count over a predefined threshold. 

Although R is used to create the features in this example, it is also possible to use SQL directly to 

create the additional features. Additionally, it might be useful to do basic aggregations in SQL and 

then use R for more advanced functionality. 

 

Figure 5-8: An example of features to be included in the model.11 

The following code snippet creates a function that generates features from the raw data: 

## Create features from the raw data by computing the rolling means. 
create_features <- function(data) { 
    create_rolling_stats <- function(data) { 
        data <- data[, sensor] 
        rolling_mean <- zoo::rollapply(data = data, 
                                   width = window, 
                                   FUN = mean, 
                                   align = "right", 
                                   partial = 1) 
        rolling_mean <- as.data.frame(rolling_mean) 

                                                      
11 Fidan Boylu Uz. “Data Science of Predictive Maintenance: A Modelling Guide Using Azure Notebooks.” Azure Webinar, 

7/5/2016. 
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        names(rolling_mean) <- gsub("s", "a", names(rolling_mean)) 
        rolling_sd <- zoo::rollapply(data = data, 
                                 width = window, 
                                 FUN = sd, 
                                 align = "right", 
                                 partial = 1) 
        rolling_sd <- as.data.frame(rolling_sd) 
        rolling_sd[is.na(rolling_sd)] <- 0 
        names(rolling_sd) <- gsub("s", "sd", names(rolling_sd)) 
        rolling_stats <- cbind(rolling_mean, rolling_sd) 
        return(rolling_stats) 
    } 
 
    data <- as.data.frame(data) 
    window <- ifelse(window < nrow(data), window, nrow(data)) 
    features <- plyr::ddply(data, "id", create_rolling_stats) 
    features$id <- NULL 
    data <- cbind(data, features) 
 
    if (!identical(data_type, "train")) { 
        max_cycle <- plyr::ddply(data, "id", plyr::summarise, cycle = max(cycle)) 
        data <- plyr::join(max_cycle, data, by = c("id", "cycle")) 
    } 
 
    return(data) 
} 

Note The function here is defined so that only the last cycle is saved for prediction. However, 
because of the feature engineering, the last cycle contains features that are informed by values in 
the past, such as the rolling average over the last five cycles. 

After this function is defined, it can be applied to the training and testing datasets, as shown here: 

## Create features for train dataset and save into SQL table 
window_size <- 5 
train_vars <- names(rxGetVarInfo(tagged_table_train)) 
sensor_vars <- train_vars[grep("s[[:digit:]]", train_vars)] 
rxSetComputeContext(sql) 
 
train_table <- RxSqlServerData(table = "train_Features", 
                               connectionString = connection_string, 
                               colClasses = train_columns) 
 
rxDataStep(inData = tagged_table_train, 
           outFile = train_table, 
           overwrite = TRUE, 
           transformObjects = list(window = window_size, 
                                   sensor = sensor_vars, 
                                   data_type = "train"), 
           transformFunc = create_features, 
           rowsPerRead = -1, 
           reportProgress = 3) 

The resulting training dataset “train_Features” should now have 71 columns and be ready to be fed 

into a machine learning model, as shown in Figure 5-9. 
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Figure 5-9: Database view after the “create analytics dataset” step is complete and both data labeling and feature 
engineering are done. 

Following is the SQL code shown in Figure 5-9 that is run within Microsoft SQL Server Management 

Studio: 

select top 10 * from train_Features; 
 
SELECT count(*), table_name 
FROM INFORMATION_SCHEMA.COLUMNS 
where TABLE_CATALOG='DataSciDBExamples' group by table_name 

You can follow along with the code at http://aka.ms/cite3 to apply the function to the testing data, 

and to complete feature normalization (putting the features on the same scale so that the model is 

not biased by scale). The training data is normalized and then the same transformation is applied to 

the testing data. 

Create machine learning model 

In this step of the process, several machine learning models are applied to the different labels that 

were created in the section “Data labeling” earlier. Different models are applied and investigated to 

understand how well they perform. The optimal model is then chosen based on the evaluation criteria, 

as discussed in the next section. In predictive-maintenance problems, although not shown in depth 

here, often cost-sensitive learning and sampling methodologies are applicable, due to the common 

imbalanced data problem that results from only a small percentage of the data constituting failures. 

In the code that follows, a simple feature selection method selects a subset of the features for 

modeling (removing those that are not very well correlated with the outcome). Then, several binary 

classification models are applied to predict the “label1” column, which represents whether the 

machine will fail in the next seven days. 

## Drop variables and make label a factor in train table 
rxSetComputeContext(sql) 
train_table_name <- "train_Features" 
train_table <- RxSqlServerData(table = train_table_name, 
                               connectionString = connection_string, 
                               colInfo = list(label1 = list(type = "factor", levels = c("0", "1")))) 
 
## Find top 35 variables most correlated with label1 
rxSetComputeContext(sql) 
train_vars <- rxGetVarNames(train_table) 
train_vars <- train_vars[!train_vars %in% c("RUL", "label2", "id", "cycle_orig")] 
formula <- as.formula(paste("~", paste(train_vars, collapse = "+"))) 
correlation <- rxCor(formula = formula, 
                     data = train_table, 
                     transforms = list(label1 = as.numeric(label1))) 
correlation <- correlation[, "label1"] 
correlation <- abs(correlation) 
correlation <- correlation[order(correlation, decreasing = TRUE)] 
correlation <- correlation[-1] 
correlation <- correlation[1:35] 

http://aka.ms/cite3
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formula <- as.formula(paste(paste("label1~"), 
                            paste(names(correlation), collapse = "+"))) 
 
## Decision forest modeling 
forest_model <- rxDForest(formula = formula, 
                          data = train_table, 
                          nTree = 8, 
                          maxDepth = 32, 
                          mTry = 35, 
                          seed = 5) 
## Boosted tree modeling 
boosted_model <- rxBTrees(formula = formula, 
                          data = train_table, 
                          learningRate = 0.2, 
                          minSplit = 10, 
                          minBucket = 10, 
                          nTree = 100, 
                          seed = 5, 
                          lossFunction = "bernoulli") 
## Logistic regression modeling 
logistic_model <- rxLogit(formula = formula, 
                          data = train_table) 
 
## Neural network regression modeling - example with local context 
library(nnet) 
rxSetComputeContext(local) 
train_df <- rxImport(inData = train_table) 
nodes <- 10 
weights <- nodes * (35 + 1) + nodes + 1 
nnet_model <- nnet(formula = formula, 
                   data = train_df, 
                   Wts = rep(0.1, weights), 
                   size = nodes, 
                   decay = 0.005, 
                   MaxNWts = weights) 

You can find code examples for regression and multiclass classification models at http://aka.ms/cite3. 

Evaluate, tune the model 

In the evaluation stage, the model is applied to a separate set of data (“testing data,” here) in order to 

understand how well it generalizes to new data and would apply in practice. In the data in this 

chapter, we need to add labels to the testing data using the “ground truth” dataset because the 

testing data is not run-to-failure data and thus does not have the failure time implied. After we add 

the labels to the testing data of when the failures really happened, we can evaluate the model by 

comparing the ground truth to the predicted failure time. 

When evaluating the regression model, important metrics include the mean absolute error, root mean 

squared error, relative absolute error, relative squared error, and coefficient of determination. These are 

standard metrics that have formal definitions.12 As an example, a model that has a coefficient of 

determination of 0.41 (the scale is from 0–1) can explain 41 percent of the variance in the remaining 

useful life. As another example, if the model had a mean absolute error of 7.1 and the RUL was 

measured in days, this would imply the model is on average 7.1 days off in predicting RUL. Deciding 

what the target metric should be for a “good” model is highly dependent on the business scenario. 

The following example code creates data labels for the testing data: 

## Add data labels for test data 
truth_df <- rxImport(truth_data_table) 
#add index to the original truth table 
truth_df$id <- 1:nrow(truth_df) 
tagged_table_name <- "test_Labels" 
tagged_table_test = RxSqlServerData(table = tagged_table_name, 
                                           colClasses = train_columns, 
                                           connectionString = connection_string) 
inDataSource <- RxSqlServerData(table = test_table_name, 
                                connectionString = connection_string, 
                                colClasses = train_columns, 
                                rowsPerRead = 30000) 

                                                      
12 See the posts by Shaheen Gauher and Said Bleik at aka.ms/cite7, aka.ms/cite8, and aka.ms/cite9. 

http://aka.ms/cite3
https://aka.ms/cite7
https://aka.ms/cite8
https://aka.ms/cite9
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rxDataStep(inData = inDataSource, 
           outFile = tagged_table_test, 
           overwrite = TRUE, 
           transformObjects = list(truth = truth_df), 
           transformFunc = data_label, 
           rowsPerRead = -1, 
           reportProgress = 3) 

For binary classification, in which the model is predicting whether the asset will fail in the next X days, 

standard metrics in use include accuracy, precision, recall, and f-score. It is important not to examine 

one metric in isolation, especially when the data is imbalanced. 

For example, if only 1 percent of the data shows failures, a model could be built with 99 percent 

accuracy by simply predicting everything the model sees as a nonfailure. However, this model would 

not be of any use. For a more detailed discussion of this topic as well as more advanced code that 

calculates not only these metrics but also baseline metrics against which one can compare (such 

as what the accuracy, recall, and precision would be based on the distribution of failures), see 

footnote 12. 

Note Although not shown here, it is very common to iterate through the previous steps (such as 
creating more features or revisiting the problem formulation) after evaluating the model and 
investigating how the model can be improved. 

Finally, after you create the functions for evaluation, the model is applied to the testing data and 

evaluated by using the ground truth dataset. 

The following code example predicts the RUL in the testing data by using a decision forest model and 

evaluating how well the model performs using the evaluate_model function defined for the regression 

model we saw earlier: 

## Import test into data frame for faster prediction and model evaluation 
test_table_name <- "test_Features" 
test_table <- RxSqlServerData(table = test_table_name, 
                              connectionString = connection_string) 
prediction_df <- rxImport(inData = test_table) 
rxSetComputeContext(local) 
forest_prediction <- rxPredict(modelObject = forest_model, 
                               data = prediction_df, 
                               predVarNames = "Forest_Prediction", 
                               overwrite = TRUE) 
 
forest_metrics <- evaluate_model(observed = prediction_df$RUL, 
                                 predicted = forest_prediction$Forest_Prediction) 

The full code at http://aka.ms/cite3 applies all of the models to the testing data and uses the 

evaluation functions to evaluate them, because in practice more than one model will usually be 

applied. The models are compared to determine the best one for the prediction. 

Deploy the model 

Figure 5-10 shows the overall work flow, which is fully automated by using a Windows PowerShell 

script, which you can find at http://aka.ms/cite12. The light-green blocks represent each step of the 

process. Each step interacts with SQL server, either by performing SQL table operations or invoking R 

through stored procedures. 

http://aka.ms/cite3
http://aka.ms/cite12
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Figure 5-10: Workflow automation.13 

Although the entire end-to-end process is automated in the code found at http://aka.ms/cite12—

from uploading the data to training the models to deploying the models—in production scenarios, 

you do not need to automate all of these steps. 

For example, you can follow the steps in the previous sections in training the models in a local R-IDE, 

and you might want to deploy the model by simply using a stored procedure. 

When you deploy the model, you do not need to “label” the data, because the truth of when the unit 

is going to fail is not known and is simply predicted using the model. However, the data processing 

done through the feature engineering step is still critical and necessary to use the trained model to 

get predictions. The stored procedure must do the feature engineering and then use the model to 

predict the outcome. 

For deploying-to-production-scoring scenarios, use the following steps: 

1. Create a raw dataset that needs predictions in a SQL table. 

The code associated with this chapter assumes this data is in a table called PM_Score in the SQL 

Server. For demonstration purposes, the data used for scoring is taken from testing a dataset with 

engine id as 2 and 3. 

2. Call the feature engineering SQL script. 

You should use DataProcessing\feature_engineering_scoring.sql as well as the results in the SQL 

table score_Features_Normalized, which then contains the data with new features and 

normalized. 

3. Call the model SQL script. 

a. Regression model: Regression\score_regression_model.sql 

b. Binary classification model: BinaryClassification\score_binaryclass_model.sql 

c. Multiclass classification model: MultiClassification\score_multiclass_model.sql 

The results contain the predictions; for example, SQL table Regression_score_[model_name], scoring 

result for regression model. 

                                                      
13 You can see more details at aka.ms/cite12. 

http://aka.ms/cite12
https://aka.ms/cite12
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As an example, here is the binary classification SQL stored procedure: 

SET ANSI_NULLS ON 
GO 
 
SET QUOTED_IDENTIFIER ON 
GO 
 
drop procedure if exists score_binaryclass_model; 
go 
 
CREATE PROCEDURE [score_binaryclass_model] @modelname varchar(20), 
                                           @connectionString varchar(300) 
 
AS 
BEGIN 
  DECLARE @inquery NVARCHAR(max) = N'SELECT * FROM score_Features_Normalized'; 
  declare @model varbinary(max) = (select model from [PM_Models] where model_name = @modelname); 
 
  EXEC sp_execute_external_script @language = N'R', 
                                  @script = N' 
############################################################################################## 
## Get score table data for prediction 
############################################################################################## 
prediction_df <- InputDataSet 
 
############################################################################################## 
## Binary classification prediction 
############################################################################################## 
model <- unserialize(model) 
prediction <- rxPredict(modelObject = model, 
                        data = prediction_df, 
                        type = "prob", 
                        overwrite = TRUE) 
threshold <- 0.5 
names(prediction) <- c("Probability") 
prediction$Prediction <- ifelse(prediction$Probability > threshold, 1, 0) 
 
############################################################################################## 
## Write score results to SQL 
############################################################################################## 
predictions <- cbind(prediction_df$id, prediction_df$cycle_orig, prediction) 
colnames(predictions)[1] <- "id" 
colnames(predictions)[2] <- "cycle" 
prediction_table <- RxSqlServerData(table = paste("Binaryclass_score", modelname, sep = "_"), 
                                    connectionString = connection_string) 
rxDataStep(inData = predictions, 
           outFile = prediction_table, 
           overwrite = TRUE)' 
, @input_data_1 = @inquery 
, @params = N'@model varbinary(max), @modelname varchar(20), @connection_string varchar(300)' 
, @model = @model 
, @modelname = @modelname 
, @connection_string = @connectionString 
 
END 
 
GO 

The full code for this scenario is at http://aka.ms/cite12. You can use these stored procedures from 

other code to get predictions whenever new data is available and you want a prediction. 

Summary 

In this chapter, we gave you an overview of predictive maintenance use cases, with examples of 

several different ways of formulating the business problem into a machine learning model. We 

covered the data science process of how to create the end-to-end solution using SQL R Services. We 

also took you on a step-by-step walk-through leading up to the deployment of the solution through 

SQL stored procedures. You can find the full code for both R and SQL for these scenarios at 

http://aka.ms/cite3. 

http://aka.ms/cite12
http://aka.ms/cite3
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 Forecasting 
"Forecasting is the art of saying what will happen,  

and then explaining why it didn't!" 

—Anonymous 

Forecasting is used widely in many applications and critical business 

decisions that depend on having as accurate a picture of the future as 

possible. Meteorologists use it to generate weather predictions, CFOs use 

it to generate revenue forecasts, Wall Street analysts use it to predict stock 

prices, and inventory managers use it to forecast demand and supply of 

materials. Many businesses use qualitative judgement–based forecasting 

methods and typically manage their forecasts in Microsoft Excel. 

Organizations face significant challenges with this approach as the amount 

and availability of relevant data has grown exponentially. Using Microsoft 

SQL Server R Services, it is possible to create statistically reliable forecasts 

in an automated fashion giving organizations greater confidence and 

business responsiveness. This chapter gives an overview of using SQL 

Server R Services for forecasting, including basic principles of forecasting, 

some common forecasting scenarios, and step-by-step instructions on 

creating statistical forecasts using Microsoft SQL Server 2016 and R. 

Introduction to forecasting 
Forecasting is the process of making predictions based on historical data. This data includes trends, 

seasonal patterns, exogenous factors, and any other available pertinent data. It’s essential to many 

important business decisions. Let’s take a look at some common forecast scenarios used in 

organizations today. 
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Financial forecasting 

Financial forecasting is the process of forecasting key financial metrics such as revenue, costs, and 

profit. Financial forecasting can also forecast key performance indicators (KPIs) of revenue, costs and 

profit, such as new customers or average selling price. The purpose of financial forecasting is to 

manage an organization’s financial performance versus its financial plan. Companies must monitor 

sales and costs to ensure that the organization is on track to deliver the financials required in the plan 

to fund ongoing operations such as manufacturing, investments in new products, and hiring. Financial 

forecasting is an essential function in the financial performance management process. 

Demand forecasting 

Demand forecasting is a critical step in the supply-chain management of an organization. The purpose 

of demand forecasting is to help inform how many units of a product (sometimes referred to as a 

SKU) will be in demand by its customers in the future so that the company can plan for the amount of 

raw materials it needs to purchase, by when, and where the manufacturing should occur. Demand 

forecasting is a critical element to ensure that the right amount is manufactured in order to minimize 

inventory costs and stock-outs. 

Demand forecasting is often unique to an industry sector. For example, forecasting demand in the 

energy industry involves estimating the amount of energy customers will likely use in the future. 

Demand forecasting in the manufacturing industry is focused on supply chain and manufacturing 

optimization. In the healthcare industry, it might involve forecasting the number of patients who will 

need healthcare services to plan on how many hospital beds to make available. 

Supply forecasting 

Supply forecasting is used to forecast the supply of inputs needed to create an output. It is often 

used in close conjunction with demand forecasting. For example, a municipal water organization will 

forecast not only the demand for water but also how much water will be available to supply that 

customer demand. A healthcare organization might forecast the supply of skilled healthcare 

professionals that will be available to meet the demand for future healthcare services. 

Forecasting accuracy 

A publicly held corporation must provide forward-looking guidance to its investors. The cost of 

inaccurate forecasts can be significant. A missed forecast can negatively affect the stock price and 

eliminate billions of dollars of market capitalization. Overoptimistic forecasting can result in 

manufacturing too many items that will need to be disposed of, which can negatively affect margins 

and profitability. A low forecast can result in stock-outs and missed revenue opportunities. 

Most organizations produce forecasts in Excel or, less frequently, with software packages that rely on 

basic statistical analysis. Manual Excel-based forecasting relies on substantial human judgement and 

error-prone manual consolidation and collaboration. This manual work also makes forecasting a time-

consuming process and renders it impractical to integrate new data streams as they become available. 

This prevents organizations from being agile, causing them to be less able to adapt to rapidly 

changing business environments. 

An intelligent and automated forecasting environment can help organizations manage increasing 

volumes of data, generate more accurate forecasts and increase the frequency of generating forecasts 

giving organizations greater agility to respond to dynamically changing business conditions. The 

benefit of such a solution is increased forecast accuracy, timeliness, and efficiency versus current 

approaches. 
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Forecasting tools 

There are several tools available today for forecasting. Following are three examples. 

Excel 

Excel is one of the most popular tools for forecasting. It is usually used for rules-based forecasting. For 

example, a rules-based forecast might begin with an assumed revenue growth rate, and spread the 

revenue over four quarters based on a rule (20 percent in Q1, 20 percent in Q2, 25 percent in Q3, and 

35 percent in Q4). 

Forecasting software 

There are several software packages available that perform statistical forecasting. These packages 

typically use time–series methods for forecasting. They also might include some end-user reporting. A 

couple of examples are ForecastPro and ForecastX. 

R 

The R statistical language provides significant flexibility in creating forecast models. R enjoys a large 

collection of packages that can make forecasting easier. One of the most popular of them is the 

forecast package for R by Rob Hyndman which includes several of the most popular time–series 

forecasting methods. 

Statistical models for forecasting 

Now that we’ve examined some of the use cases and tools for forecasting, let’s take a look at the 

various models that we can use for the process. 

Time–series analysis 

There are two important characteristics of time series data. The first is that data is ordered by…you 

guessed it: time. In many other datasets discussed in this book, the order of the rows is not necessarily 

important. However, for time–series data, order does matter and the order is defined by the column 

that stores the time sequence. 

Another important characteristic of time–series data is that intervals between time stamps are equally 

spaced. A dataset of annual sales that has weekly data for five months and then monthly data for the 

remaining seven months will cause problems for forecasting. 

Some types of time–series analysis can reveal two types of relationships: trend and seasonality. Other 

methods allow for decomposition of time series–data into three components: trend, seasonality, and 

residual noise. 

Let’s take a closer look at trend and seasonality to see what we can learn from them. 

Trend 

Time–series analysis can reveal if there is a long-term trend, either declining or increasing. A chart of 

the population of the United States over time would show a long-term increasing trend, whereas a 

chart of the percent of adults in that same population who smoke would show a decreasing trend 

over time. 
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Seasonality 

Time–series analysis can reveal if there are seasonal patterns in the data. For example, for certain 

consumer products, Black Friday sales might always spike, suggesting that this year’s Week 4 of 

November sales is correlated with last year’s and Week 4 November sales for the previous years. 

Table 6-1 illustrates the characteristics of several time–series datasets that reveal trend and seasonal 

patterns. 

Table 6-1: Examples of time series datasets illustrating trend and seasonal characteristics 

Trend  Seasonality Example 

   

 

The time–series data shows a 

long-term year-over-year 

increasing trend. 

Example: smart phone sales. 

 
 

 

 

The time–series data shows 

an evenly spaced seasonal 

pattern with no trend. 

Example: a company’s sales 

that spike every quarter. 

 
 

 

 

The time–series data shows 

both a long-term increasing 

trend and a regularly spaced 

seasonal pattern. 

Example: ice cream sales. 

   

 

The time–series data shows 

neither a clear trend nor a 

seasonal pattern. 

Note: time series methods 

are not suitable for this data 

set. 

Time–series forecasting 

Forecasting distinctly deals with predicting a number. The number to forecast can represent various 

measurements. Let’s take a look at some those measurements. 
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Amount in a currency 

Examples include revenue in US dollars, people costs in Euros, or the foreign exchange rate between 

two currencies. 

Percentages 

Examples include interest rates, product return rate, percent of warranty claims filed, and annual rate 

of unemployment. 

Units 

Examples include the number of new customers, number of smart phones, and gallons of water 

demanded. 

Forecasting almost always involves time–series data. Examples of this data include weekly actual sales 

of smartphones from 2013 to 2016, or daily exchange rates between the Euro and US dollar. In both 

cases the dataset has two columns: time and value. 

Finally, one more list—here are the three types of time–series models you’ll see most often: 

 Autoregressive Integrated Moving Average (ARIMA) 

 Seasonal decomposition of Time–Series by Loess (STL) 

 Exponential Smoothing (ETS) 

As with most statistical analysis, correlation is a necessary condition for modeling. With time–series 

analysis there is a special kind of correlation: the correlation of a specific time-stamped value with a 

previous time-stamped value. In other words, the algorithm seeks to understand if a given period’s 

values are correlated with a previous period’s values. For example, time–series analysis can determine 

if today’s sales are related to the sales from yesterday or the sales from two days ago. This correlation 

has a special name: autocorrelation. ARIMA models explicitly learn this autocorrelation, or 

autoregression. These models also learn the relationship between the current time point and previous 

unobserved error terms, also known as a moving average. 

ETS and STL decompose a time–series dataset into its constituent parts and makes it easier to forecast 

the constituent parts and reaggregate the parts into a total forecast. There are models that sum the 

parts (called additive models), models that multiply the parts (called multiplicative models), and 

several other variations. Figure 6-1 illustrates how a time–series dataset at the top has been 

decomposed into the three parts. After it is decomposed, the ETS and STL time–series analysis 

forecasts the trend and seasonal components. For the trend component, it is clear that the next 

forecasted point will be somewhat higher. For the seasonal component, it seems clear that the next 

period will be lower. When the time series model has forecast the next period values for the trend and 

seasonal components, the algorithm aggregates the forecasted points to get a new forecasted value. 
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Figure 6-1: Decomposition of additive time series showing four line charts stacked on top of each other. 

In Figure 6-1, the line chart at the top is the actual historical time–series data; the line chart below that 

shows the elements that represent the trend component of the actual line chart; the next chart shows 

the elements that represent the seasonal components of the actual line chart, and the fourth line chart 

shows the remaining random noise components. 

Forecasting by using SQL Server R Services 

Let’s take a look at a sample forecasting solution built by using SQL Server R Services.24 We ‘ll train 

and evaluate a forecasting model using a single time series from the publicly available M3 

competition dataset. Our sample forecasting solution comprises the following steps: 

1. Upload data to the SQL Server 

2. Split the data into training and testing 

3. Train and score time–series forecasting models 

4. Generate accuracy metrics 

Upload data to SQL Server 

First, we’ll get the N1725 time–series data from the publicly available M3 competition dataset 

(https://forecasters.org/resources/time-series-data/), which is available in the M3Month tab in the M3 

dataset, and upload that data to SQL Server using SQL Server Integration Services or a simple query 

from a text file. This dataset has 126 rows and two columns, time and value.  

Figure 6-2 shows a snapshot of the data. 

                                                      
24 This sample is similar to the Time–Series Forecasting experiment in the Cortana Intelligence Gallery; 

http://gallery.cortanaintelligence.com/Experiment/Time-Series-Forecasting-8 

https://forecasters.org/resources/time-series-data/
https://forecasters.org/resources/time-series-data/
http://forecasters.org/resources/time-series-data/
https://forecasters.org/resources/time-series-data/
http://gallery.cortanaintelligence.com/Experiment/Time-Series-Forecasting-8
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Figure 6-2: A screenshot showing 2 columns and the first 10 rows. Column 1 is the ordered time stamp (from 1–10) 
and column two are the first 10 actual historical values. 

We’ve created a database called demodb in SQL Server 2016. Next, we’ve uploaded the time–series 

dataset to the demodb database by using the Import Data function in SQL Server Management 

Studio (https://msdn.microsoft.com/library/ms140052.aspx). This data is stored in the 

TimeSeriesForecastingData table in demodb database, as shown in Figure 6-3. 

 

Figure 6-3: SQL Management Studio with the query and expected output after the the query has been run. 

Splitting data into training and testing 

After the data is in the SQL Server database, we are ready to build forecasting models using R. We 

decide to split the data into training and testing sets. Let’s pick the first 108 time points as the training 

set and forecast the future 18 time points. We will evaluate the accuracy of our forecasting models on 

these 18 points. The SQL query that follows encapsulates an R script that divides the data into these 

training and testing sets. We will extend this R script to train and score forecasting models in the next 

section. 

https://msdn.microsoft.com/library/ms140052.aspx
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execute sp_execute_external_script 
  @language = N'R' 
 , @script = N' 
#training dataset 
  dataset1 <- InputDataSet[InputDataSet$time <= 108,]  
   
  #testing dataset 
  dataset2 <- InputDataSet[InputDataSet$time > 108,] 
 ' 
 , @input_data_1 = N'select * from TimeSeriesForecastingData' 
 , @input_data_1_name = N'InputDataSet' 
 , @output_data_1_name=N'dataset1' 
 with result sets (("time" int,"value" float)); 

Training and scoring time–series forecasting models 

We will use the forecast25 package for R to train and score our time–series forecasting models. We’ll 

need to install the forecast package into our R library on the SQL Server instance. To do so, open the 

RGui console in administrator mode, and then, on the server, install the forecast package and its 

dependencies by using the following commands: 

lib.sql <- "C:/Program Files/Microsoft SQL Server/MSSQL13.MSSQLSERVER/R_SERVICES/library/" 
install.packages("forecast",lib=lib.sql)  
install.packages("quadprog",lib=lib.sql)  
install.packages("zoo",lib=lib.sql)  
install.packages("timeDate",lib=lib.sql)  
install.packages("tseries",lib=lib.sql)  
install.packages("fracdiff",lib=lib.sql)  
install.packages("Rcpp",lib=lib.sql)  
install.packages("colorspace",lib=lib.sql)  
install.packages("RcppArmadillo",lib=lib.sql) 

After the R packages are installed, you can now proceed to writing the model training and scoring the 

R script. Because the patterns in our data repeat after every 12 time points, we set the frequency 

parameter to 12 when constructing the time series object. We use the ETS function available in the 

forecast package. The ets() function call returns a trained ETS model. We’ll use this model in the 

forecast function to generate the forecast, as shown the following SQL query: 

execute sp_execute_external_script 
     @language = N'R' 
    , @script = N' 
        require("forecast"); 
 
        seasonality<-12 
 
        #training dataset 
        dataset1 <- InputDataSet[InputDataSet$time <= 108,]  
 
        #testing dataset 
        dataset2 <- InputDataSet[InputDataSet$time > 108,]  
 
        #Create time series object 
        labels <- as.numeric(dataset1$value)  
        timeseries <- ts(labels,frequency=seasonality)  
 
        #Train an ETS model 
model <- ets(timeseries)  
 
#Compute the forecasting horizon 
        model <- ets(timeseries)  
        numPeriodsToForecast <- ceiling(max(dataset2$time)) - ceiling(max(dataset1$time))  
        numPeriodsToForecast <- max(numPeriodsToForecast, 0)  
 
        #Use the trained ETS model to generate the forecats 
        forecastedData <- forecast(model, h=numPeriodsToForecast)  
        forecastedData <- data.frame(as.numeric(forecastedData$mean))  
        forecastDataDf <- data.frame(time=dataset2$time,forecast=forecastedData)  
 
        #Merge the observed data with the forecasts 
        output <- merge(x = InputDataSet, y = forecastDataDf, by = "time", all.x = TRUE)  
        colnames(output) <- c("time","value","forecast") 

                                                      
25 Hyndman R. J. 2016. forecast: Forecasting functions for time series and linear models. R package version 7.1; 

http://github.com/robjhyndman/forecast. 
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 ' 
    , @input_data_1 = N'select * from TimeSeriesForecastingData' 
    , @input_data_1_name = N'InputDataSet' 
    , @output_data_1_name=N'output' 
    with result sets (("time" int,"value" float,"forecast" float)); 

 

Figure 6-6: SQL Management Studio with the query and expected output after the query has been run. Now three 
columns are displayed: time, value, and forecast. 

Generate accuracy metrics 

After the forecasts are generated, we use Mean Absolute Percentage Error (MAPE) to compute the 

accuracy of our model. MAPE is defined as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝐴𝑖 − 𝐹𝑖| ∗ 100

𝐴𝑖
 

𝑛

𝑖=1

 

Where Ai is the actual value at time i, and Fi is the forecast at the same time i. We include the 

following R script to our existing SQL query to generate the MAPE metric. 

        output$ape <- NA 
        output$ape[which(!is.na(output$forecast))] <- abs((output[which(!is.na(output$forecast)),c("value")]) 
- 
(output[which(!is.na(output$forecast)),c("forecast")]))/(output[which(!is.na(output$forecast)),c("value")])*1
00; 
        mape <- data.frame(mean(output$ape, na.rm=TRUE)) 
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Summary 
In this chapter, we provided an overview of time–series forecasting using SQL R Services. In addition, 

we described some common forecasting scenarios in enterprises today, introduced some popular 

statistical methods for time series forecasting, and followed-up with detailed steps on how to 

generate forecasts using SQL R Services. 
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