

SQLCAT’s Guide to: Relational Engine

Microsoft SQLCAT Team

Summary: This ebook is a collection of the most popular technical notes, tools and blogs

authored by the SQLCAT team and posted to their blog over the course of several years.

It covers SQL technology from 2005 to 2012.

 Category: Guide & Reference

Applies to: SQL Server 2005 to 2012

Source: SQLCAT Blog

E-book publication date: September 2013

http://blogs.msdn.com/b/sqlcat/

Copyright © 2012 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means

without the written permission of the publisher.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-

US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events

depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,

logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any

express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will

be held liable for any damages caused or alleged to be caused either directly o

Contents
Section 1: Administration ... 5

DBCC Checks and Terabyte-Scale Databases .. 6

Scheduling Sub-Minute Log Shipping in SQL Server 2008 .. 12

Tuning Backup Compression Part 2 .. 15

Restart SQL Audit Policy and Job .. 25

SQL DMVStats Toolkit ... 26

Section 2: Database Design ... 27

SQL Server Partition Management Tool ... 47

Character data types versus number data types: are there any performance benefits? 28

The Many Benefits of Money…Data Type! ... 38

How many files should a database have? - Part 1: OLAP workloads .. 43

Section 3: Fast-track .. 47

Lessons Learned and Findings from a Large Fast-Track POC .. 49

Section 4: Performance ... 70

Top Tips for Maximizing the Performance & Scalability of Dynamics AX 2009 systems on SQL Server

2008 .. 71

Introduction: ... 102

Conclusions: .. 111

Top SQL Server 2005 Performance Issues for OLTP Applications ... 112

Table-Valued Functions and tempdb Contention ... 114

Resolving PAGELATCH Contention on Highly Concurrent INSERT Workloads 130

SQL Server Indexing: Using a Low-Selectivity BIT Column First Can Be the Best Strategy 85

Tuning the Performance of Backup Compression in SQL Server 2008 ... 71

Maximizing Throughput with TVPs ... 130

Bulk Loading Data into a Table with Concurrent Queries ... 140

Section 5: Real World Scenarios ... 146

Lessons Learned from Benchmarking a Tier 1 Core Banking ISV Solution - Temenos T24 147

Section 6: Replication ... 155

Initializing a Transactional Replication Subscriber from an Array-Based Snapshot 156

Upgrading Replication from SQL Server 2000 32-Bit to SQL Server 2008 64-Bit without re-initialization

 .. 167

Section 7: Service Broker .. 168

SQL Server Service Broker: Maintaining Identity Uniqueness Across Database Copies 169

Section 8: Troubleshooting ... 172

Diagnosing Transaction Log Performance Issues and Limits of the Log Manager 173

Eliminating Deadlocks Caused By Foreign Keys with Large Transactions ... 180

Resolving scheduler contention for concurrent BULK INSERT .. 187

Response Time Analysis using Extended Events ... 191

Memory Error Recovery in SQL Server 2012 .. 192

Section 9: SQL Top 10 ... 195

Top 10 Hidden Gems in SQL 2008 R2 .. 196

Top 10 SQL Server 2008 Features for the Database Administrator (DBA) ... 209

Top 10 SQL Server 2008 Features for ISV Applications ... 221

Top 10 Hidden Gems in SQL Server 2005 ... 196

Top 10 Best Practices for Building a Large Scale Relational Data Warehouse 230

Storage Top 10 Best Practices ... 196

Top 10 Best Practices for SQL Server Maintenance for SAP ... 234

Section 1: Administration

DBCC Checks and Terabyte-Scale Databases

1. Overview:

Historically, the SQL Server product team and the support organization have recommended that all maintenance

plans for Microsoft® SQL Server® include running DBCC CHECKDB on a regular basis to detect and correct potential

corruption in the database. In the case of mission-critical applications such as trading systems, medical records, and

banking operations, many customers have interpreted this recommendation as requiring even a daily DBCC check to

ensure that no errors are present before performing a backup operation.

However, since the SQL Server 6.5 days, in which a daily DBCC CHECKDB may have been a best practice, there have

been several trends - both challenges and opportunities -- that make it worth reconsidering the way that DBCC

should fit into SQL Server database maintenance plans, especially for large databases.

Challenges:

 Many mission-critical databases have grown to massive size. It is not unusual to find databases in the 5-20

terabyte range on SQL Server, in which a DBCC operation requires many hours to complete. This is usually

incompatible with a daily maintenance window, if feasible at all on a 24x7 system.

 Every new version of SQL Server has expanded the range of logical checks performed by DBCC so that it has

become more time-consuming to execute. For example, SQL Server 2005 introduced data purity checks to

validate that data present in columns adheres to valid ranges for the data type. SQL Server 2005 also

introduced checks that verify the integrity of indexed views.

Opportunities:

 Enterprise-class storage subsystems and the widespread use of RAID, especially in mission-critical settings,

have made the storage tier much less prone to physical corruption.

 SQL Server has introduced new mechanisms to detect the most frequent forms of physical corruption

independent of DBCC. For example, torn page detection was introduced in SQL Server 7.0, checksum

verification of physical pages was introduced in SQL Server 2005, and checksum protection of tempdb

pages was introduced in SQL Server 2008.

 We continue to invest in technologies to automatically detect and correct sources of corruption - such as the

introduction in SQL Server 2005 of an in-memory page scan to find checksum violations due to ECC failures

that might occur during manipulation of read-only pages.

As more customers are deploying databases at the scale of terabytes or tens of terabytes, frequent DBCC checks are

becoming less practical. But the many advances in both SQL Server and enterprise-class hardware offerings are

enabling customers to back-away from the "Daily DBCC" best practices of the SQL Server 6.5 era, while still

maintaining high confidence in the integrity of their data.

2. Suggestions for customers

DBCC CHECKDB remains an important tool for detecting and correcting logical consistency problems and physical

corruption in the database. However, for large-scale databases utilizing a high quality SAN or storage subsystem, the

specific recommendations this technical note presents can reduce the frequency of DBCC and certainly relax the prior

standard of running such checks on daily basis.

SQL Server 2005 introduced an important new mechanism to proactively detect physical corruption in database

pages: a database option that adds a checksum to each page as it is written to the I/O system and validates the

checksum as it is read. This database option is called PAGE_VERIFY = CHECKSUM, and utilizing it by default is a

powerful alternative to scheduling frequent runs of DBCC CHECKDB. For more information, see ALTER DATABASE

SET Options (Transact-SQL) in SQL Server Books Online: http://msdn.microsoft.com/en-us/library/bb522682.aspx.

 A. Recommendations for new databases (created in SQL Server 2005 or SQL Server 2008):

We encourage customers who have created their databases in SQL Server 2005 or SQL Server 2008 to rely on a

strategy of using this PAGE_VERIFY = CHECKSUM feature and reduce the scheduled use of DBCC to a minimum.

Below are some guidelines on how to accomplish this.

1) Use PAGE_VERIFY = CHECKSUM on all new databases created in SQL Server 2005 or later (this is the default setting

for new databases).

2) Perform daily incremental or differential backup.

By performing an incremental/differential BACKUP WITH CHECKSUM operation each day (or even a full backup if

feasible), you are guaranteed to read each page that has been added or modified since the prior backup. Because the

reads performed during backup will validate the page checksums, any corruption that has occurred due to I/O errors

http://msdn.microsoft.com/en-us/library/bb522682.aspx

will be detected, and can be corrected by using the current backup set to restore corrupt pages. (If the database is

using the bulk-logged or full recovery model, page-level restore can be used to minimize time for recovery.)

The steps above will ensure that most physical page corruption due to I/O errors will be detected on a daily basis and

can be promptly corrected. Because I/O errors have historically been the largest source of database corruption,

PAGE_VERIFY = CHECKSUM can significantly reduce the frequency of DBCC operations needed to maintain a high

level of confidence in the integrity of the physical database.

There are two other sources of corruption that can still arise even if PAGE_VERIFY = CHECKSUM is used, although they

are rare - and they are problems that only DBCC CHECKDB can discover proactively:

a) ‘Scribbler' induced errors - where in-memory pages are corrupted either by third-party code running inside the SQL

Server process or by drivers or other software with sufficient privileges executing in Windows® kernel mode.

SQL Server allows a variety of customer or third-party code to access the SQL Server address space, including

extended stored procedures (XPs), unsafe SQL CLR assemblies, EKM providers, and OLE DB drivers for linked servers.

Scribbler errors can arise as a result of bugs in these extensions, or from software such as malware protection tools or

I/O drivers running in the kernel.

b) Potential SQL Server bugs that create logical errors.

We are not aware of any bugs in the current version of SQL Server that lead to logical errors in database objects, but

the logical checks in DBCC can locate problems due to legacy errors or unknown errors in current versions of the

product. Logical errors can usually be repaired by rebuilding indexes or re-establishing foreign key constraints - they

are not typically fixed by restoring from a backup.

In addition, CHECKSUM cannot detect I/O problems if a page header itself is corrupt, but DBCC CHECKDB can.

These and other additional sources of errors, external to SQL Server, are reasons why customers should not eliminate

DBCC CHECKDB entirely from maintenance plans. But the fact that the majority of errors located by DBCC CHECKDB

result from I/O channel problems that are effectively caught using CHECKSUM allows customers to reduce the

frequency of complete DBCC CHECKDB executions.

 B. Recommendations for migrated databases:

If you are using a database that was created prior to SQL Server 2005, or if you are using a database that was created

with a more recent version but without using PAGE_VERIFY = CHECKSUM, you need to be aware that checksums are

added only as pages are added or modified. An initial run of DBCC CHECKDB using the PHYSICAL_ONLY option, after

enabling the PAGE_VERIFY = CHECKSUM option, will check the integrity of all legacy pages but will not add a

checksum.

Is there any risk that legacy pages from a migrated database can become corrupt and will not be detected by the

checksum mechanism? It turns out that there are rare circumstances in which data on storage media can become

corrupted in the absence of I/O ("bit rot") and not be detected by parity or RAID redundancy mechanisms, especially

on low-end storage systems. If this occurs on a page without a SQL Server checksum, it can lead to database

corruption that can only be detected by regular PHYSICAL_ONLY checks of DBCC CHECKDB.

So, in order to eliminate frequent DBCC CHECKDB runs for a database that was not originally created with

PAGE_VEIRFY = CHECKSUM, we recommend either:

 Rebuilding all clustered indexes and recreating any heaps. This will ensure that all data and index pages are

written once with CHECKSUM enabled.

 Or, less practically, creating a new database using PAGE_VEIRFY = CHECKSUM and migrating all objects to

the new database.

The alternative, in a legacy database for which not all pages have a CHECKSUM, is to run DBCC CHECKDB with the

PHYSICAL_ONLY option regularly prior to taking any full backup. If a problem is detected on a non-checksum page,

the prior backup set can be used to restore a correct image of that page.

3. Periodic DBCC Strategies

Even if daily DBCC checks need no longer be part of an enterprise-class maintenance strategy, periodic DBCC checks

remain an important tool. Frequency of DBCC checks should take into account whether scribbler errors are possible

due to third party extensions running in-process, the kinds of additional privileged software running on the server,

and the reliability and sophistication of the storage tier.

There are a variety of strategies to make DBCC compatible with shorter maintenance cycles and high availability

production environments. Among those that are popular for large-scale, mission-critical deployments are:

 Utilizing a SAN-based snapshot, mounted to another instance of SQL Server that runs DBCC independently

of the production system

 Performing DBCC on a per-filegroup basis, on a rotating schedule

 Using Resource Governor to adjust the degree of parallelism (MAXDOP) of the session running DBCC

operations, either to run highly parallelized during a short maintenance window, or single-threaded in the

background during non-critical production hours

 Using DBCC to perform the faster physical page validation checks (PHYSICAL_ONLY) more frequently than

the logical checks. Such tests will bypass time-consuming validation of foreign key references and

nonclustered indexes, but will ensure that all allocated pages are readable and will detect the majority of

problems that can arise from problems in the I/O channel.

Some of these, and other strategies for executing DBCC operations, can be found in the recent blogs by Paul Randal

and Bob Dorr, at:

http://www.sqlskills.com/blogs/paul/post/CHECKDB-From-Every-Angle-Consistency-Checking-Options-for-a-

VLDB.aspx

http://blogs.msdn.com/psssql/archive/2009/02/20/sql-server-is-checkdb-a-necessity.aspx

4. Conclusion

While the reliability of SQL Server has improved dramatically over the past decade, database integrity still depends on

the reliability of the storage tier and can be influenced by high-privileged, third-party code running in Windows

kernel mode or permitted inside the SQL Server address space. SQL Server has invested in significant technologies to

automatically detect and correct problems with data observed on-disk and in-memory, and this has reduced the need

for frequent complete database integrity checks using DBCC CHECKDB. Periodic scheduled DBCC operations remain a

best practice, but not at the near-daily frequency recommended in the past for mission-critical deployments. The

recommendations here for using CHECKSUM features, along with periodic DBCC CHECKDB strategies, can help

achieve a balance between a reasonable maintenance cycle and high confidence in database integrity.

http://www.sqlskills.com/blogs/paul/post/CHECKDB-From-Every-Angle-Consistency-Checking-Options-for-a-VLDB.aspx
http://www.sqlskills.com/blogs/paul/post/CHECKDB-From-Every-Angle-Consistency-Checking-Options-for-a-VLDB.aspx
http://blogs.msdn.com/psssql/archive/2009/02/20/sql-server-is-checkdb-a-necessity.aspx

Scheduling Sub-Minute Log Shipping in SQL Server 2008

Overview

Log shipping allows you to automatically take transaction log backups on a primary server, send them to one or more

secondary servers, and then restore the transaction log backups on each secondary server. Many Microsoft SQL Server

customers have asked for the ability to schedule the log shipping jobs with less than 1 minute frequency. In SQL

Server 2005, SQL Server Management Studio user interface allowed the frequency of the scheduled jobs to be 1

minute or more, which meant that the minimum latency of log shipping was as long as 3 minutes (1 minute each for

the backup, copy, and restore jobs). Many customers have asked for this latency to be less than 1 minute.

In this paper we introduce the new sub-minute log shipping capability in SQL Server 2008, and we discuss some

considerations you need to be aware of in scheduling frequent log shipping jobs.

Introducing Sub-Minute Log Shipping in SQL Server 2008

SQL Server 2008 enables log shipping jobs to be scheduled with frequency in seconds. In SQL Server 2008, SQL Server

Management Studio and the stored procedures sp_add_jobschedule and sp_add_schedule allow frequency settings in

seconds, minutes, and hours. The minimum frequency is 10 seconds.

http://technet.microsoft.com/en-us/library/ms187103.aspx
http://msdn.microsoft.com/en-us/library/ms366342(SQL.90).aspx
http://msdn.microsoft.com/en-us/library/ms187320(SQL.90).aspx

Figure 1: SQL Server 2008 Log Shipping user interface enables scheduling the jobs in hour, minute, or second

frequency

Considerations

There are some considerations you should be aware of when you set up too frequent log shipping jobs:

 The next execution of the job will not start until the previous execution has completed. Let’s assume you

have set the frequency interval of the log backup job to 10 seconds, but one execution of the log backup

takes 12 seconds to complete. The next backup job will start at the next scheduled time, which is 20 seconds

after the start of the previous backup job. One execution of the job is skipped in this case.

 Every time a log backup is completed, a message similar to the following is shown in the SQL Server

ERRORLOG:

2009-02-09 15:25:56.94 Backup Log was backed up. Database: Test_LS, creation date(time): 2009/02/09(14:27:24), first

LSN: 19:145:1, last LSN: 19:145:1, number of dump devices: 1, device information: (FILE=1, TYPE=DISK:

{'\\PRIMARY_DL380\LSBackup\Test_LS_20090209232551.trn'}). This is an informational message only. No user action is

required.

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/SchedulingSubMinuteLogShippinginSQLServe_D96A/SMLS_Fig1_2.jpg

If you take a log backup every 10 or 15 seconds, the SQL Server ERRORLOG flooded with such messages.

If you don’t want these messages flooding the SQL Server ERRORLOG, you can enable trace flag 3226. This trace flag

doesn’t alter the behavior of backup jobs; it just suppresses the backup completion messages, preventing them from

getting into the SQL Server ERRORLOG. Note that this trace flag suppresses all backup messages – database backup

as well as transaction log backup.

 Information about each backup is also recorded in the msdb database (the msdb.dbo.backupset,

msdb.dbo.backupmediaset, msdb.dbo.backupmediafamily, msdb.dbo.backupfile, and

msdb.dbo.backupfilegroup system tables). If you back up too frequently, you can expect these tables to

grow faster than usual. You should periodically check the size of these tables and delete or archive the old

information as necessary. To delete the old backup history, use the stored procedure

sp_delete_backuphistory.

 The backup compression feature in SQL Server 2008 provides significant space and time savings. Backup

compression results in smaller backups, and it helps improve the performance of all the operations

performed by log shipping by providing the following:

o Faster backup of the transaction log on the primary server.

o Faster copying of the transaction log backup file to the secondary over network.

o Faster restore of the log backup on the secondary.

However, the benefits of backup compression come with the cost of higher CPU utilization. If your log backup jobs

use compression and are scheduled too frequently, you may notice frequent spikes in CPU utilization on the primary.

Restoring from a compressed backup uses more CPU, and you could see frequent spikes in CPU utilization on the

secondary as well. For more information about backup compression, see Tuning the Performance of Backup

Compression in SQL Server 2008 and Tuning Backup Compression Part 2.

Conclusion

SQL Server 2008 provides the ability to schedule log shipping jobs as frequently as 10 seconds, which results in

reduced latency of log shipping. Reduced log shipping latency can result in reduced data loss in case of loss of

primary.

http://msdn.microsoft.com/en-us/library/ms188396.aspx
http://technet.microsoft.com/en-us/library/ms188328.aspx

Tuning Backup Compression Part 2

Overview

This is the second part of the article Tuning the Performance of Backup Compression in SQL Server 2008 In the first

part we described the benefits of backup compression, a methodology on how to tune backup compression for best

performance, and shared some best practices. In this second part, we describe some more considerations in tuning

backup compression, and how backup compression interacts with other important features in Microsoft SQL Server

2008. Specifically, we will discuss the following:

 Tuning BUFFERCOUNT and MAXTRANSFERSIZE

 Memory used by backup compression

 Backup compression and log shipping

 Backup compression and data compression

 Backup compression and transparent data encryption

Understanding the tuning techniques and the interoperability of backup compression with other features discussed in

this article can help you get the best out of the backup compression feature.

Tuning BUFFERCOUNT

As described in Part 1 of the article, default BUFFERCOUNT is determined by SQL Server based on the number of

database volumes and backup devices. If the database files are spread across several disk volumes and/or there are a

large number of backup devices, the default BUFFERCOUNT value may provide optimal backup performance, and you

may not need to tune BUFFERCOUNT further. As discussed in Part 1, you can use the trace flags 3605 and 3213 to find

out the default BUFFERCOUNT value used in your backup. However, if the database files are spread across too few

disk volumes and/or there are a small number of backup devices, the default BUFFERCOUNT value may not provide

optimal backup performance. Tuning BUFFERCOUNT explicitly may improve backup performance.

Figure 1: Backup time and CPU utilization with varying BUFFERCOUNT

http://sqlcat.com/technicalnotes/archive/2008/04/21/tuning-the-performance-of-backup-compression-in-sql-server-2008.aspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig1_2.jpg

As illustrated in Figure 1, increasing BUFFERCOUNT results in reduced backup time, at the cost of higher CPU

utilization. Your results may vary depending upon your database size, storage layout, and server capacity; however,

you will notice that the impact of increasing BUFFERCOUNT on backup performance tends to reduce as

BUFFERCOUNT is increased beyond a certain value. In our test, the curve tends to flatten out as we increase

BUFFERCOUNT beyond 50.

BUFFERCOUNT value impacts the amount of memory used for backup (discussed later in the section “Memory

Utilization by Backup”). Keep this in mind if you explicitly specify the BUFFERCOUNT value.

Tuning MAXTRANSFERSIZE

MAXTRANSFERSIZE refers to the size of the I/O operation issued to read data from the database files. The default

value of MAXTRANSFERSIZE is 1 MB. Performance of sequential I/O operations generally benefit from larger block

sizes, which is the reason the value is set to 1 MB by default. One drawback of larger I/O sizes is the potential impact

on performance of the smaller I/Os being issued concurrently by an OLTP workload. Because I/O queue structures are

shared, intermixing large I/O sizes with smaller concurrent I/O requests results in increased latency for both. In today’s

shared storage network environments, there is potential for these operations to also impact other hosts sharing the

same physical devices. Tuning this parameter is likely unnecessary in hardware configurations using dedicated

storage, and it may be necessary only if it is determined that the backup operations impact concurrent workloads. As

recommended in Part 1 of the article, tuning MAXTRANSFERSIZE should be considered as a secondary tuning option,

and it should only to be utilized when it is determined to be beneficial through testing. In the majority of

deployments, the default value will be acceptable.

Figure 2 illustrates observations of backup performance using various transfer sizes.

Figure 2: Backup time and throughput with varying MAXTRANSFERSIZE (BUFFERCOUNT = 50, 1 Backup

Device)

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig2_2.jpg

As illustrated in Figure 2, smaller MAXTRANSFERSIZE (64 KB) results in lower backup throughput and hence longer

backup time, and as you increase MAXTRANSFERSIZE, you observe reduced backup time and higher throughput.

However, the impact of increasing MAXTRANSFERSIZE on backup performance tends to reduce as

MAXTRANSFERSIZE is increased beyond a certain value. In our tests, we observed optimal backup performance when

MAXTRANSFERSIZE was between 128 KB and 512 KB. Your results may vary based on your I/O configuration

(throughput and latency of your I/O subsystem).

Similar to the BUFFERCOUNT setting, the value chosen for MAXTRANSFERSIZE will also impact the amount of

memory used for backup operation (discussed later).

Memory Utilization by Backup

As discussed in Part 1 of the article, memory used by backup buffers comes from virtual address space outside the

buffer pool. On 32-bit systems, there is a fixed amount of virtual address space set aside outside of the buffer pool

(default of 384 MB); increasing BUFFERCOUNT and MAXTRANSFERSIZE options to high values may fail because the

memory for backup operations is calculated and set aside at the beginning of the operation.

On 64-bit systems, the virtual address space for any process can be up to 8 TB which is far beyond the physical

memory supported on current 64-bit version of Windows. As a result, memory for allocations outside the buffer pool

does not have to be set aside at the time SQL Server is started and is potentially unlimited. Setting an appropriate

value for ‘max server memory’ using SP_CONFIGURE is recommended on 64-bit deployments of SQL Server to ensure

that enough physical memory will be available to support allocations outside the buffer pool for backup operations.

Trace flags 3605 and 3213 can be used to report the number of buffers used for backup operations to the SQL Server

ERRORLOG. The following example shows the information that is reported in the ERRORLOG when these trace flags

are enabled.

LogDate ProcessInfo Text

2009-01-16 12:42:13.700 spid53 Backup/Restore buffer configuration

parameters

2009-01-16 12:42:13.700 spid53 Memory limit: 32761MB

2009-01-16 12:42:13.700 spid53 BufferCount: 100

2009-01-16 12:42:13.700 spid53 MaxTransferSize: 2048 KB

2009-01-16 12:42:13.700 spid53 Min MaxTransferSize: 64 KB

2009-01-16 12:42:13.700 spid53 Total buffer space: 200 MB

2009-01-16 12:42:13.700 spid53 Tabular data device count: 1

2009-01-16 12:42:13.700 spid53 Fulltext data device count: 0

2009-01-16 12:42:13.700 spid53 Filestream device count: 0

2009-01-16 12:42:13.700 spid53 TXF device count: 0

2009-01-16 12:42:13.700 spid53 Filesystem i/o alignment: 512

2009-01-16 12:42:13.700 spid53 Media Buffer count: 100

2009-01-16 12:42:13.700 spid53 Media Buffer size: 2048KB

2009-01-16 12:42:13.700 spid53 Encode Buffer count: 100

2009-01-16 12:45:41.820 Backup Database backed up. Database: TESTPART,

creation date(time): 2008/11/06(12:31:03), pages dumped: 1295126, first LSN:

158:223:37, last LSN: 158:239:1, number of dump devices: 1, device

information: (FILE=1, TYPE=DISK: {'R:\Backup\TESTPART_Compressed.bak'}). This

is an informational message only. No user action is required.

For an uncompressed backup, the total memory used by the backup buffers can be computed as BUFFERCOUNT

multiplied by MAXTRANSFERSIZE. Compressed backup needs three sets of buffers – one set of buffers are used to

read from the database files, the second set of buffers are used to compress the data, and the third set of buffers are

used to write to the backup media. Therefore, a compressed backup will utilize three times as much memory as the

uncompressed backup.

You can observe the memory used by the backup task by monitoring the “Process:Private Bytes” counter for the

“sqlservr” process in the Reliability and Performance Monitor (also known as Perfmon). Figure 3 displays this Perfmon

counter for a compressed backup, with no other workload. As illustrated in Figure 3, you will see an increase in the

Private Bytes counter during the backup task. This increase is equal to (BUFFERCOUNT * MAXTRANSFERSIZE) for

uncompressed backups, and equal to (3 * BUFFERCOUNT * MAXTRANSFERSIZE) for compressed backups.

Figure 3: Memory used by a backup compression operation, as measured by Perfmon

Another observation from Figure 3 is that this memory is allocated at the beginning of the backup operation, and it is

released when the backup is complete.

Backup Compression and Log Shipping

Performance of log shipping will also benefit from compressed backups. Log shipping sends transaction log backups

from a primary server to a secondary server by copying log backup files to a network share to be applied to the

secondary server. When backup compression is used, transaction log backups are compressed. The reduction in file

size for log backups improves performance of all the operations performed by log shipping:

1. Backup the transaction log on the primary server.

2. Copy the transaction log backup file to the secondary server over the network.

3. Restore the log backup on the secondary server.

The transaction log backups during log shipping can be compressed in one of the following two ways:

 If you are using SQL Server Management Studio to setup log shipping, set the backup compression setting

by selecting Compress backup from the Set backup compression list, as shown in Figure 4. If you have set

backup compression as the default server level setting (sp_configure option backup compression default),

you can pick the “Use default server setting” option as well.

 If you are using the stored procedures to set up log shipping, set the parameter @backup_compression of

stored procedure sp_add_log_shipping_primary_database to 1. If you have set backup compression as the

default server level setting, you can set this parameter to 2.

http://technet.microsoft.com/en-us/library/ms187103.aspx
http://technet.microsoft.com/en-us/library/bb677250.aspx
http://technet.microsoft.com/en-us/library/ms182718.aspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig3_2.jpg

Figure 4: Compressing transaction log backups for log shipping

Figure 5 provides a data point from a customer deployment. The compressed log backup is significantly smaller and

faster.

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig4_4.jpg

Figure 5: Compression of transaction log backup for log shipping (default values for BUFFERCOUNT and

MAXTRANSFERSIZE, 1 backup device)

Backup Compression and Data Compression

Data compression is a feature of SQL Server 2008 that can save disk space by compressing data pages within the

database. A commonly asked question is “Are there additional benefits realized by the use of compressed backup

operations when data compression is used (both compression ratio and performance of the backup operation)?”

In this test, all tables and indexes were compressed in the database, and then the performance of backup

compression was measured. Separate tests were run with no compression, ROW compression applied to all

tables/indexes, and PAGE compression applied to all tables/indexes. Figure 6 compares the size of the compressed

backup, backup compression ratio, and backup time for databases that contain NONE, ROW, and PAGE compressed

tables and indexes.

http://technet.microsoft.com/en-us/library/cc280449.aspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig5_2.jpg

Figure 6: Backup compression with data compression (BUFFERCOUNT = 50, MAXTRANSFERSIZE = default, 4

backup devices)

Some observations from the results of Figure 6:

 Backup compression can result in additional disk space savings even on databases that contain ROW or

PAGE compressed tables or indexes. The size of the compressed backup and the backup compression ratio

depend upon the characteristics of the data in the database, and they can vary from the results shown in

these examples.

 Backup operations on databases that use ROW or PAGE compression will likely result in shorter backup

times, because the smaller database size translates into less I/O.

 CPU consumption during the backup operation for databases that use ROW or PAGE compression may be

higher as a result of less I/O, which results in more CPU time for compression operations.

Backup Compression and Transparent Data Encryption

Transparent data encryption (TDE) is another very useful feature in SQL Server 2008. TDE provides encryption of data

in a database at the storage level without requiring any application changes. A common question related to this is

“How does backup compression perform against an encrypted database?”

In the example below, backup compression was performed against a database with TDE enabled. Figure 7 compares

the size of the backup, CPU consumption, and backup time for compressed and uncompressed backups on the TDE-

enabled database.

http://technet.microsoft.com/en-us/library/bb934049.aspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig6_4.jpg

Figure 7: Backup compression with TDE (BUFFERCOUNT = default, MAXTRANSFERSIZE = default, 1 backup

device)

We made the following observations when we performed compressed backup against TDE-enabled databases:

 On a TDE-enabled database, backup compression doesn’t help reduce the size of the backup. The backup

compression ratio is nearly 1.0, independent of the data in the database. This is due to the fact that

encrypted data does not lend itself well to backup compression.

 CPU utilization for the compressed backup is higher than the uncompressed backup, even though the

backup size is not much different. This is because CPU resources are wasted in the compressed backup

operation, because it attempts to compress the data, even though the data is not very compressible.

 On a TDE-enabled database, it takes longer to perform a compressed backup than it takes to perform an

uncompressed backup. This is due to the fact that I/O operations are not reduced, because the data does

not compress well. However, there is time spent attempting to compress the incoming data.

For these reasons, we do not recommend the use of backup compression on a TDE-enabled database.

Conclusion

Backup compression is one of the most popular features in SQL Server 2008 Enterprise. Most SQL Server deployments

will benefit from this feature; it can reduce both the time taken to perform the backup operation and the disk space

required to store database backups. Understanding the tuning techniques and considerations described in Part 1 of

the article as well as the interoperability of backup compression with other features discussed in this article can help

you get the best out of the backup compression feature.

Appendix A: Test Hardware and Software

All tests (except those in Figure 4 and Figure 6) were performed on the following hardware and software environment.

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig7_2.jpg

Server

HP DL380G5 with:

 2 socket quad core

 Intel Xeon CPU E5345 @2.33 GHz

 16 GB RAM

Storage

EMC Symmetrix DMX-4 2500

 Data volumes

o 4 data volumes from a disk group with

 32 disk drives, 300 GB each @15K RPM

 RAID 1+0

 Backup volume

o 1 backup volume from a disk group (separate from data volumes) with

 32 disk drives, 300 GB each @15K RPM

 RAID 1+0

 ~2 HBAs (4 Gb Fiber Channel)

Software

 The 64-bit edition of Windows Server 2008 Enterprise

 The 64-bit edition of SQL Server 2008 Enterprise

Restart SQL Audit Policy and Job

As noted within the Reaching Compliance: SQL Server 2008 Compliance Guide (you can also check the sqlauditcentral

codeplex project), an easier way to view and manage all of the audit logs within your SQL Server environment is to

place all of the audit logs in one central location. As per the guide, you can then use a SSIS package to import in all of

these logs files into a separate SQL database where you can then generate reports to view all of the audits within your

entire SQl Server environment.

The problem that we recently discovered is that if SQLAudit loses connectivity to the folder it places the audit files,

provided that you did not tell SQL Server to shutdown if it cannot write an audit:

 The audit’s is_state_enabled column in sys.server_audits will remain 1, meaning true, but the audit status in

sys.dm_server_audit_status will be “RUNTIME_FAILED” and no events will be written to the audit log.

 Even when connectivity to the folder has returned, the audit will remain in the “RUNTIME_FAILED” state -

meaning it still tries to write to the log but will always fail as it is using an old and now invalid handle, or

reference, to the audit log from before the connectivity loss. Currently the only way to get the audit to create

a new valid handle for the audit log is to stop and restart the audit – which will create a new audit file.

There is a bug assigned to this issue and will be resolved in the future. But for us whom are working with SQL Audit

right now, to work around this problem, please go to the sqlauditNetworkConnectivity Codeplex project where you

can download the full Centralized Audit Framework project. Within this project is the Restart SQL Audit Policy and

Job folder. This folder contains three pieces of source code:

 Server Audit Status (Started).xml - Import this on-schedule policy into your server's Policy-Based

Management as it will determine if the audit is enabled and able to write to the file system.

 Create Audit Job.sql - This is a SQL Server Audit job that will execute the noted policy; you will need to

schedule this yourself

 Create Audit Alert.sql - This is a SQL Server Audit job that will create an audit alert.

Together these three source components will (whenever manually executed or scheduled) determine if all of the

audits on your server are able to write to the folder. If they are not, they will send out an alert as well as stop and

restart the audit job re-initializing it so that way the audits will start writing again.

http://www.microsoft.com/downloads/details.aspx?FamilyId=6E1021DD-65B9-41C2-8385-438028F5ACC2&displaylang=en
http://sqlcat.codeplex.com/Wiki/View.aspx?title=sqlauditcentral&referringTitle=Home
http://sqlcat.codeplex.com/Wiki/View.aspx?title=sqlauditNetworkConnectivity

SQL DMVStats Toolkit

http://www.codeplex.com/sqldmvstats

A SQL Server 2005 Dynamic Management View Performance Data Warehouse

Introduction

Microsoft SQL Server 2005 provides Dynamic Management Views (DMVs) to expose valuable information that you

can use for performance analysis. DMVstats 1.0 is an application that can collect, analyze and report on SQL Server

2005 DMV performance data. DMVstats does not support Microsoft SQL Server 2000 and earlier versions.

Main Components

The three main components of DMVstats are:

• DMV data collection

• DMV data warehouse repository

• Analysis and reporting.

Data collection is managed by SQL Agent jobs. The DMVstats data warehouse is called DMVstatsDB. Analysis and

reporting is provided by means of Reporting Services reports.

For more details, refer to the file attachment DMVStats.doc.

http://www.codeplex.com/sqldmvstats

Section 2: Database Design

Character data types versus number data types: are there

any performance benefits?

Introduction

Working on a recent project, I observed that some developers choosing between character and
number data types favored character data types. However, in my experience, this is not always
the best choice. In the example I discuss here, number data types turned out to the better
option. This paper describes a recent case in which we redesigned the data warehouse of a
telecommunications company. As part of the design process, we ran a series of tests to
compare performance of the two data types.

One of the tables had to store phone numbers in international format: + 1 234 5678910, where +1 was
the country code and 234 was the area code. In this case, using the character data type simplifies
development - you can use either of the following formats for storing the country code: the ‘+’ or the
leading ‘00’.But for comforts in our life we always have to pay. Is this also true in this case? There are
considerations other than ease of development. Wouldn’t storage size, compressibility, and improved
query performance outweigh the evident development simplicity?

What do we need to store really?

Before I discuss the tests we used to determine the benefits of using either numeric or
character data, I would like to talk about a best practice that helps solve many problems in
designing databases, and in deciding which data type to use.

This best practice is simple: talk to the business, and find out what they really need. In our
project there were many possible strategies to store phone numbers efficiently. For example,
we could split the number into separate columns for country code, city code, and number. Each
strategy had pros and cons.

However, we were able to identify the best and simplest decision after business users explained
that they always use one of two methods. They either look up the entire phone number in the
format ‘1 234 5678910’, without any leading zeros and without any non-numeric characters, or
they search a set of numbers with leading digits, like all phone numbers starting with
‘123456%’.

Note: If end users want to be able to choose either format (’001 234 5678910’ or ‘+1 234
5678910’), you can leave it up to the application to extend the display of the number with the
leading ‘00’ or ‘+’.

After we agreed on the phone number format, we performed tests to compare character-based and
numeric formats. We chose to test varchar for the character-based storage and bigint for the numeric.
We could also have chosen to use the int data type, but in many cases international phone numbers
exceed the limits of digits that an int can store. Note that prior to compression considerations, a bigint
uses 8 bytes, and a varchar uses as many bytes as there are digits. For this company, the number of
digits in a call data record (CDR) usually averages 70-80% of the data in a row. Row sizes are generally
between 200,000 and 600,000 bytes.

Test preparation

Fact and dimension table

The customer scenario uses CDRs, which is the representation of the information that is stored
by telecom hardware for every call made. A CDR contains call details such as duration and
number dialed.

The CDR information ususally looks like this.

In the data warehouse, CDRs can be stored in a star schema; a fact table can store numbers, durations,
and so on, and dimesion tables can store attributes of the phone, subscriber, and so on.For testing we
used the following schema: two fact tables for comparison: one with a bigint column (FactInt) and
another with a varchar column representing the phone number (FactChar), as well as a few dimention
tables.

1. Fact table with bigint column:

CREATE TABLE [dbo].[FactInt](

 [RecordTypeOrPartial] [tinyint] NULL,

[IMEI] [bigint] NULL, -- Phone HW ID

[IMSI] [bigint] NULL,

[ChargingDateTime] [datetime] NOT NULL,

[ChargeableDuration] [smallint] NULL,

[CellID] [varbinary](2) NULL,

… some other columns

[OriginalCalledNumber] [bigint] NULL, -- dialed number

[OriginalCalledNumberType] [varbinary](20) NULL,

[SSRequest] [tinyint] NULL,

[MSISDN] [bigint] NOT NULL, -- subscriber phone number

[MSCID] [bigint] NULL,

[FileID] [int] NOT NULL)GO

2. Fact table with varchar column:

CREATE TABLE [dbo].[FactChar](

[RecordTypeOrPartial] [tinyint] NULL,

[IMEI] [varchar](16) NULL,

[IMSI] [varchar](16) NULL,

[ChargingDateTime] [datetime] NOT NULL,

[ChargeableDuration] [smallint] NULL,

[CellID] [varbinary](2) NULL,

…some other columns [OriginalCalledNumber] [varchar](40) NULL, -- dialed

number

[OriginalCalledNumberType] [varbinary](20) NULL,

[SSRequest] [tinyint] NULL,

 [MSISDN] [varchar](20) NOT NULL,

[MSCID] [varchar](20)] NULL,

[FileID] [int] NOT NULL)

 Note: We could have used varchar (20) to store phone numbers [OriginalCalledNumber], which would in our

comparison correspond to the number of digits bigint can hold. We used varchar (40) because this is what the

customer actually used, and in this paper I prefer to be closer to a real case sceanrio. 3. Dimension table with
attributes on where the subscriber number is registered (phone number is stored as varchar (20)):

CREATE TABLE [dbo].[DimDefinitionAChar](

[MSISDN] [varchar](20) NOT NULL,

[ARegionID] [varchar](20) NULL,

[AFilialID] [varchar](20) NULL,

[ACountryID] [varchar](20) NULL,

CONSTRAINT [PK_MSISDN_Char] PRIMARY KEY CLUSTERED

(

 [MSISDN] ASC

)

The tables FactChar and FactInt were partitioned with six partitions for each 10,000,000 rows. The
generated dimension tables have 1,000 to 10,000 rows.

Queries

After we built the tables, we defined a set of queries to run. We identified three queries, representing
the most frequent or the most long-running queries in the customer’s workload, to see whether the
data type choice influenced performance. The first query looked for a single phone number within a
specified time frame, the second looked for a range of numbers, and the third used a LIKE operator to
find the number or numbers.

We used the LIKE operator to look up phone numbers with some leading digits, where the
phone number is stored as a bigint. For example, users may need to check how many prepaid
phones, sold by a specified shop, made calls (and therefore were activated). Those phones may
have sequential numbers where only the last digit or two differ. The LIKE operator determines
character string matches; however, if any one of the arguments is not of character string data
type, the SQL Server Database Engine converts it to the character string data type, if possible.

Here are the queries:

1. Query type 1: Single phone number lookup in a specific time frame:

SELECT [IMEI]

,[ChargingDateTime] -- time the call was made

,[ChargeableDuration] -- call duration

,[OriginalCalledNumber] -- dialed number

,a.[MSISDN] -- subscriber phone number

,a.[AFilialID]

,a.[ACountryID]

,m.[MSCID]

,m.[MSCRegionID]

,m.[MCSCountryID]

,[FileID]

FROM .[dbo].[FactInt]

INNER JOIN DimDefinitionA as a ON a.[MSISDN]= FactInt.[MSISDN]

INNER JOIN DimTableMSC as m ON m.[MSCID]= FactInt.[MSCID]

WHERE [ChargingDateTime] >'2010-01-01 00:00' and [ChargingDateTime]< '2010-

01-02 00:00'

AND FactInt.MSISDN = 1234567899995324 -- subscriber phone number

2. Query type 2: Big report query where the range of phone numbers is looked up:

SELECT [IMEI] ,[ChargingDateTime] ,[ChargeableDuration]

,[OriginalCalledNumber] ,Fact.[MSISDN] ,a.[AFilialID]

,a.[ACountryID]

 ,Fact.[MSCID] ,m.[MSCRegionID] ,m.[MCSCountryID]

,[FileID]

FROM [dbo].[FactInt]

INNER JOIN DimDefinitionA as A ON A.[MSISDN]= FactInt.[MSISDN]

INNER JOIN DimDefinitionPosition as P ON P.[CellID]= FactInt.[CellID]

INNER JOIN DimTableMSC as M ON M.[MSCID]= FactInt.[MSCID]WHERE

[ChargingDateTime] >'2010-01-01 00:00'and [ChargingDateTime]< '2010-01-02

00:00'AND FactInt.MSISDN > 1234567899995324 and FactInt.MSISDN <

1234567899995924AND FactInt.[MSCID] > 790300000705 and FactInt.[MSCID] <

790300000800

3. Query type 3: A lookup in which the LIKE operator is used:

SELECT [IMEI] ,[ChargingDateTime] ,[ChargeableDuration]

,[OriginalCalledNumber]

,FactInt.[MSISDN]

,a.[AFilialID]

,a.[ACountryID]

,FactInt.[MSCID]

,m.[MSCRegionID]

,m.[MCSCountryID]

,[FileID]

FROM [dbo].[FactInt]

INNER JOIN DimDefinitionA as A ON A.[MSISDN]= FactInt.[MSISDN] INNER JOIN

DimDefinitionPosition as P ON P.[CellID]= FactInt.[CellID]

INNER JOIN DimTableMSC as M ON M.[MSCID]= FactInt.[MSCID]

WHERE [ChargingDateTime] >'2010-01-01 00:00' and [ChargingDateTime]< '2010-

01-02 00:00'

AND FactInt.MSISDN Like '12345678999953%'

AND FactInt.[MSCID] Like '7903000007%'

 Because we needed to know the real query performance at the beginning of each query execution, we
compared queries with and without cache cleanup.D

DBCC FREESYSTEMCACHE ('ALL');

DBCC DROPCLEANBUFFERS;

DBCC FREEPROCCACHE Go

Test

 After all preparation was finished, we performed the following tests for each type of query:

1) Test 1. Query fact tables and dimension table, compression not enabled , cache is cleaned up (cold)

2) Test 2. Query fact tables and dimension table, compression not enabled, cache is warm

3) Test 3. Query fact tables and dimension table, fact table compressed, cache is cold

4) Test 4. Query fact tables and dimension table, fact table compressed, cache is warm Here are the
numbers the tests runs generated.

 Example of results from Tests 1 and 2

Cold Cache Warm Cache

Query 1 (FactChar, ms) Query1 (FactInt, ms) Query 1 (FactChar, ms) Query1 (FactInt, ms)

17631 6737 1144 418

21684 6548 1142 364

22179 6476 1158 351

17136 6646 1296 347

18198 6503 1135 383

Returned: 994 rows

Cold Cache Warm Cache

Query 2 (FactChar, ms) Query 2 (FactInt, ms) Query 2 (FactInt, ms) Query 2 (FactInt, ms)

86341 26510 6754 1343

86086 26394 5697 1431

85866 26560 5802 1456

84778 26676 5514 1551

85595 26279 5638 1259

 Returned: 56179 rows

Cold Cache Warm Cache

Query 3 (FactChar, ms) Query 3 (FactInt, ms) Query 3 (FactChar, ms) Query 2 (FactInt, ms)

98691 27850 1177 1063

98692 26984 1124 1087

99105 27127 1640 1017

98474 26989 1300 1011

Returned: 9991 rows

You can see that:

- Queries against the bigint table with a cold cache ran between about 54% and about 67% faster
than the queries against tables where data was stored as a character data type.- These queries also
showed significant performance gain for tables with bigint in comparison to varchar data type when run
against a warm cache. Queries against the FactInt table ran about 24% to about 70 % faster than queries
against the FactChar table.

Next, we enabled compression on the tables to see its effect on query performance.

Example of results from Tests 3 and 4

Cold Cache Warm Cache

Query 1 (FactChar, ms) Query 1 (FactInt, ms) Query 1 (FactChar, ms) Query 1 (FactInt, ms)

13538 5453 1121 423

13206 5164 1171 420

13153 5155 1185 470

13568 5598 1233 487

13561 5668 1179 397

Cold Cache Warm Cache

Query 2 (FactChar, ms) Query 2 (FactInt, ms) Query 2 (FactChar, ms) Query 2 (FactInt, ms)

20058 13195 2232 1548

20318 13327 2228 1766

19802 13546 1967 1657

19835 13276 1904 1714

19789 13326 2081 1617

Cold Cache Warm Cache

Query 3 (FactChar, ms) Query 3 (FactInt, ms) Query 3 (FactChar, ms) Query 3 (FactInt, ms)

24922 13924 1271 1138

33755 13692 1287 1262

32091 13883 1448 1071

31190 13879 1286 1137

31083 13659 1389 1138

The results indicated that after compression was enabled on the tables, performance of the
queries on the tables FactInt and FactChar was almost identical.

Compression did improve the performance for both queries, compared to the same test against the
noncompressed data. What was interesting was that average execution time dropped slightly. However,
the queries still took a relatively long time to execute. The only real difference appeared when the cache
was cold: queries against the FactInt table ran about 32% to 58% faster than queries against the
FactChar table.

Finally, we observed a significant space savings when bigint was used. The following table compares the
amount of space you need to store data using both a character type data format and a numeric data
format.

Name Rows Compressed? Data index_size

FactChar 60000000 no 9634,281 MB 2192,016 MB

FactChar 60000000 yes 4735,781 MB 2175,133 MB

FactInt 60000000 no 7324,219 MB 1597,125 MB

FactInt 60000000 yes 4077,320 MB 1585,586 MB

Conclusion

 When you design complex database solutions, you may be tempted to choose character-based data
types and save development time and efforts. However, this may not be the best choice for your

scenario. Talking to the business may help you identify the best data type and format for your customer,
based on the way the data is queried and the effects of different settings on performance. As our tests
indicate, apparent simplicity may cost you query performance and storage space. Choosing numeric
data types over character-based data types may offer performance gains, which could improve overall
system throughput.

The Many Benefits of Money…Data Type!

Background

Our initial reason for looking at the money data type can be found within the Precision Considerations for Analysis

Services Users white paper. In this white paper, we provide extensive examples of the types of precision issues when

your SQL relational data source and your Microsoft® SQL Server® Analysis Services cube have different non-

matching data types (e.g., if you query one way you get the value 304253.3251, but run the query in another way and

you get the value 304253.325100001).

To avoid these types of problems, you need to ensure that your SQL relational data source and Analysis Services

measure groups have matching data types. By default, when you create an Analysis Services measure on a money

data type, Microsoft Visual Studio® Business Intelligence Development Studio will set the data type reference to

double. To avoid precision loss and have faster performance, you should change the data type to currency within the

Source Properties as noted in the screen shot below.

http://www.microsoft.com/downloads/details.aspx?familyid=bae8beec-9892-4ecd-a9db-292254895f9c
http://www.microsoft.com/downloads/details.aspx?familyid=bae8beec-9892-4ecd-a9db-292254895f9c
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TheManyBenefitsofMoneyDataType_9F7C/image_2.png

Show Me The Money! ...Data Type for Faster Processing Performance

Working on customer implementations, we found some interesting performance numbers concerning the money

data type. For example, when Analysis Services was set to the currency data type (from double) to match the SQL

Server money data type, there was a 13% improvement in processing speed (rows/sec). To get faster performance

within SQL Server Integration Services (SSIS) to load 1.18 TB in under thirty minutes, as noted in SSIS 2008 - world

record ETL performance, it was observed that changing the four decimal(9,2) columns with a size of 5 bytes in the

TPC-H LINEITEM table to money (8 bytes) improved bulk inserting speed by 20%. Note that within SSIS, the

equivalent of the money data type is DT_CY, which currently does not support fast parse. Hence, getting money out

of text files may incur additional cost.

Note that these tests were performed on 64-bit systems. Relative performance may be different in the 32-bit editions of

SQL Server because of differences in the way it performs 64-bit integer (or money) operations.

Money vs. Decimal vs. Float Decision Flowchart

Below is a high-level decision flowchart to help you decide which data type you should use. Note that this is a

generalization that may not be applicable to all situations. For a more in-depth understanding, you can always refer to

Donald Knuth’s The Art of Computer Programming – Volume 1.

http://blogs.msdn.com/sqlcat/archive/2008/02/29/ssis-2008-world-record-etl-performance.aspx
http://blogs.msdn.com/sqlcat/archive/2008/02/29/ssis-2008-world-record-etl-performance.aspx
http://sunburn.stanford.edu/~knuth/taocp.html

As well, remember that different data types have different client API mappings. Some more in-depth references to this

include SQL Server Data Types and ADO.NET and A Money type for the CLR.

Money (Data Type) Internals

The reason for the performance improvement is because of SQL Server’s Tabular Data Stream (TDS) protocol, which

has the key design principle to transfer data in compact binary form and as close as possible to the internal storage

format of SQL Server. Empirically, this was observed during the SSIS 2008 - world record ETL performance test using

Kernrate; the protocol dropped significantly when the data type was switched to money from decimal. This makes the

transfer of data as efficient as possible. A complex data type needs additional parsing and CPU cycles to handle than a

fixed-width type.

Let’s compare the different data types that are typically used with money (data types).

http://msdn.microsoft.com/en-us/library/ms172136.aspx
http://www.codeproject.com/KB/recipes/MoneyTypeForCLR.aspx
http://blogs.msdn.com/sqlcat/archive/2008/02/29/ssis-2008-world-record-etl-performance.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=d6e95259-8d9d-4c22-89c4-fad382eddcd1&DisplayLang=en
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TheManyBenefitsofMoneyDataType_9F7C/image_10.png

Breakdown

money

decimal

float

Simple/complex data type:

Simple data types align more

directly to native processor types.

Complex data types require CPU to

review type metadata and to

perform branching.

Simple

Complex

Simple

Fixed/variable length writers:

Because a variable-length data type

may incur a memcpy when moving,

causing additional CPU overhead,

use a fixed 8-byte or 4-byte integer

assignment if possible.

Fixed

Variable

Fixed

Storage format: Incurs less

overhead if the data type is

composed of native literals (e.g.,

int, uint, long, ulong) instead of

approximate data types (e.g., float).

8-byte integer

Scaled integer (one sign

byte plus one to four

ulong depending on

precision)

8-byte integer

Comments: This row lists other

issues of concern.

None

TDS wire format is always

packed, so extra

overhead is required to

pack and unpack this

data type.

Approximate data are

types more expensive to

compare/convert than

native literals; there may

be precision issues on

conversion.

The key here is that the money data type is a simple fixed-length integer-based value type with a fixed decimal point.

Composed of an 8-byte signed integer (note that small money is a single 4-byte integer) with the 4-byte CPU

alignment, it is more efficient to process than its decimal and floating point counterparts. The other side of the coin

is that floating points (but not decimal) can be more quickly calculated in the floating point unit of your CPU than

money. However, bear in mind the precision issues of float as noted above.

Saving (Space for) Your Money!

In the context of SQL Server data compression, the money and small money data types tend to compress well when

the absolute value is low (e.g., values between -0.0128 and 0.0127 compress to 1 byte, while values between -3.2768

and 3.2767 compress to 2 bytes). It is the absolute value that matters for compression, not the number of significant

digits; both 1,000,000 and 1,234,567.8901 will take 5 bytes compressed. On the other hand, decimal will compress

better when there are fewer significant digits. For example, both 1,000,000 and .0001 will compress to 2 bytes, but

1,234,567.8901 will take several more bytes because it has more significant digits.

$ummary

There will be many scenarios where you preferred option will still be to use data types such as decimal and float. But

before skipping over this detail, take a look at your data and see if you can change your schema to the money data

type. After all, a 13% improvement in Analysis Services processing speed and 20% improvement in SSIS processing

isn’t chump change.

…and that’s our $0.02.

How many files should a database have? - Part 1: OLAP

workloads

The subject - how many files a database should have - is a question that comes up often. The answer is
of course: it depends. But, what does it depend on?

Background information

If a filegroup in SQL Server contains more than one file, SQL Server will “stripe” allocations
across the files by using a proportional fill algorithm. If the files in the group have the same size
(which we recommend), the allocation is essentially a round-robin. The “stripe size” of this
round-robin is by default one extent - 64KB. Hence, the first allocated extent goes to the first
file in a filegroup, the second extent to the second and so on. This striping mechanism can be
quite useful, because you can spread your I/O over several LUNs by allocating a data file to
each. You should strive to have all files in a filegroup be of equal size. Using Files and Filegroups
on TechNet rovides more background on filegroup and allocation.

Each file in the database has its own PFS, GAM and SGAM pages. These special “administration pages”
track the free space and allocation in the in the file. Every new allocation in the file will have to access a
PFS page and in some cases also the GAM/SGAM pages. (For more background on this see "Inside SQL
Server 2005: The Storage Engine” by Kalen Delaney).

In this Tech Note, we look at files from an OLAP / Data Warehouse workload perspective. Because OLAP
and OLTP workloads differ greatly, different recommendation for file allocation apply.

Too few files in a filegroup

If a filegroup receives a lot of insert activity, the pressure on the PFS and GAM/SGAM page
access becomes significant. At some point, this becomes a bottleneck, effectively slowing down
the insert throughput. In a data warehouse load, the contention is typically on PFS pages.

If PFS contention is present in a workload, it will show up as waiting for PAGELATCH_UP in
sys.dm_os_wait_stats. You can use sys.dm_os_waiting_tasks to see which pages you are waiting for.
You will see something like the following:

http://msdn2.microsoft.com/en-us/library/ms187087.aspx
http://sqlcat.com/blogs/technicalnotes/PFS Contention.gif

The format of the resource_description column is: DBID:FILEID:PAGEID. You can use the
resource_description to look up the page in sys.dm_os_buffer_descriptors to see if your wait is
on a PFS page.

If you discover that you have many waits for PFS pages, you probably need to add more files to the
affected filegroup. Because each file has its own administration pages – the presence of more files
reduce contention on PFS pages.

Too many files in a filegroup

Increasing the number of files is useful if you use the files to “stripe” across LUNs or if you run
into the PFS bottleneck as described above.

However, there is a disadvantage in having too many files. Remember that SQL Server will stripe the
extents over the files in stripe sizes of 64KB. Assume that you have great deal of insert activity on a
single filegroup that contains many files. Since SQL Server distributes the extents across the files, your
average I/O request will typically have a size of 64KB. If you instead had fewer files in the filegroup, SQL
Server could “bundle” the allocations and hence, drive larger block sizes. Most I/O systems deliver a
better throughput if you can drive large block sizes.

Testing with TPC-H LINEITEM data shows the following pattern when loading the database
using minimally logged operations:

Files in filegroup Avg I/O block size (KB)

1 256

2 196

4 132

8 64

16 64

32 64

The above numbers are for a single bulk stream to the file.

SQL Server is quite good at bundling I/O operations together in large blocks – a process known
as scatter/gather. In our test, we tried to increase the concurrency of the bulk load to utilize
this functionality. With 64 bulk streams, we were able to drive block sizes up to 196 KB, even
with 32 files in a single filegroup. But still, with 1 file in each of multiple filegroups, we were
getting a faster, 256 KB block sized I/O.

So, while adding more files can benefit performance by eliminating PFS contention, it can make the I/O
pattern less efficient. You can measure the size of the block requests using the perfmon counter: Logical
Disk: Avg Disk Bytes / Write to gauge how efficient your block size is.

Having many filegroups in a database adds an administrative burden: you now have to balance
the space usage in the database between the filegroups. Therefore, you probably do not want
to go overboard in optimizing your I/O block sizes by adding filegroups with few files and
allocating your tables across them. In our TPC-H load test we only saw a 5% increase in disk
throughput from optimizing block sizes and the benefit was only realized above several
hundred MB / Sec insert speeds.

Another factor to consider, from an administrative perspective, is database startup recovery. File
recovery after server restart or after a SET ONLINE operation on the database are done sequentially. If
you have many files (hundreds) in your database, this recovery process can take a long time because
each file is opened sequentially.

The –E startup flag

The SQL Server startup flag –E forces SQL Server to allocate 4 extents at a time to each file,
essentially quadrupling the stripe size. In heavy insert scenarios, this drives larger block sizes to
the disk. Also, your pages allocation will be more sequential with the same data file, allowing
better sequential I/O for range and table scan operations (which are common in OLAP
workloads).

This startup flag provides most, but not all, of the above mentioned benefits to I/O system – without the
overhead of managing multiple filegroups. Be aware that this flag is supported only in 64-bit
environments. You can find information about the –E startup flag in File allocation extension in SQL
Server 2000 (64-bit) and SQL Server 2005 (KB329526).

So, how many database files should I have in my OLAP system?

To allocate the optimal number of files you must understand your database workload. The
amount of insert activity is the determining factor. You also must balance the following factors:

 PFS contention

 need for SQL based striping

 I/O pattern – block sizes
 File recovery times

PFS contention and SQL-based striping drives you towards allocating more files. Optimizing I/O requests
and file recovery leans towards fewer files. If your work load is very insert heavily, you generally want
more files, but in a controlled manner. We have seen benefits of having up to half the amount of files as
you have cores – and even more in the case of tempdb. If your data load is more read intensive, having
fewer files may benefit you, since PFS contention is not a problem in this case and your I/O will arrive in
larger bundles.

In extreme cases, when inserting hundreds of MB / Sec, you can benefit from partitioning your
table into filegroups, each with low number of files to bundle I/O requests together and create

http://support.microsoft.com/kb/329526
http://support.microsoft.com/kb/329526

larger block sizes with sequential disk access. But, by doing this you assign performance priority
over ease of administration.

So the answer to the question, “How many files should my data warehouse have?” is: as few as possible,
without running into PFS contention and without sacrificing striping ability.

SQL Server Partition Management Tool

SQL Server Partition Management Tool is available at http://www.codeplex.com/SQLPartitionMgmt with source code.

This tool provides a set of commands (at the Command Line or via Powershell) to create a staging table on-demand

(including all appropriate indexes and constraints) based on a specific partitioned table and particular partition of

interest. By calling this executable, with parameters, from maintenance scripts or SSIS packages, DBAs can avoid

having to ‘hard code’ table and index definition scripts for staging tables. The tool eliminates the challenge of

keeping such scripts in synch with changes to partition tables’ columns or indexes. It also provides a fast, single-

command shortcut for the operation of quickly deleting all data from a partition.

This tool supports SQL Server 2008, but is also fully compatible with SQL Server 2005. An earlier verison of the tool

(for SQL Server 2005) is also available on codeplex under the same project.

The latest version supports new features in SQL Server 2008 such as filtered indexes, new data
types, and partition-aligned indexed views.

http://www.codeplex.com/SQLPartitionMgmt

Section 3: Fast-track

Lessons Learned and Findings from a Large Fast-Track

POC

Executive Summary
To aid Contoso’s goal in establishing an enterprise data warehouse (EDW) with the objective of creating
a single version of the truth, Microsoft has participated in a proof of concept (POC) to demonstrate the
performance, scalability, and value of the Microsoft SQL Server application platform. The Microsoft
team used our Fast Track Data Warehouse solution based on HP hardware and SQL Server 2008 R2
RDBMS. This involved conversion work from the current Oracle production system to the test SQL Server
system. In summary, we built a Fast Track configuration that scaled according to the demands put on it
by the requirements. We were able to deliver excellent performance numbers for both pre and post
optimization serial runs. Additionally the performance numbers for volumized data scaled according to
the growth in size of data. We did additional testing on different approaches for loading the data, that is,
BULK INSERT vs. the bcp utility. We also loaded data into databases with tables using nonclustered and
clustered primary keys and were able to show the workload performance numbers for both. The
compression scenario delivered impressive compression ratios and indicated areas where it could be
used for query performance optimization. The calculated compression ratio before compression was a
near estimate of the actual table compression size. The customer’s data compressed better than the
estimate predicted. The backup scenario proved that the speed and backup compression will be key
wins for manageability of the data warehouse. When testing updates in place, we optimized the
performance numbers by setting the fill factor appropriately to avoid page splits. Early feedback
indicated that this was much faster than Oracle and other competing vendors, and an order of
magnitude faster than the current production system. Finally we were able to conclude that the
performance of the Fast Track configuration was better than current production by many orders of
magnitude across all the testing options. Given the opportunity to deliver the enterprise data
warehouse, the Microsoft Fast Track Data Warehouse can deliver workload performance far surpassing
expectations with the latest G7 hardware. We believe we can deliver the best performance through our
expertise in optimization and migrating code from different database platforms.

Introduction
Contoso, one of the biggest banks in Malaysia, called for a POC among Oracle (Teradata), IBM (DB2 on
zSeries), Greenplum, and Microsoft. They developed a very elaborate and complete POC scope that can
be broken into five tracks: 1. Track A is a simulation of the current environment. To create Track A,
load two months of information from an Oracle database. Migrate objects and data to SQL Server but do
not do any optimizations. That way, get a baseline of a direct migration by running serially specific
queries and stored procedures (six fixed queries, four stored procedures, and 20 or so ad hoc
queries)2. Track B. Apply optimizations to database and queries to Track A. Run the six queries and
four stored procedures in parallel while updating the customer master table. Also, switch in a new
partition and ensure that there are no issues with currently running queries or dirty data.3. Track C.
Start with Track B, and then multiply all the dimension tables by three and the fact details table to seven
years (that is, an additional 82 months). Record load times. 4. Track D. Modify queries from Track B to
get the new bigger data set.

Hardware Configuration

Configuration: HP DL785 G5 with 8 socket quad core: 32 AMD Opteron 8376 HE, 2300 MHz and 256 GB
ram. (NOTE: Even though this system is not in the list of the published HP Fast Track configurations, it
followed the rules of fast track to achieve a well-balanced system between cores and LUNs.)I/O: Five HP
Smart Array P411 controllers and 10 D2700 enclosures direct attached (DAS). Each enclosure had 25
disks x 146 GB each 10k rpm SAS 6G dual port. We used four controllers for FT with 32 RAID 1 LUNs of 2
disks each. The fifth controller, which was used for backup and other storage, had three RAID 5 LUNs of
8 disks each. Operating system: Windows Server 2008 R2 Enterprise with hotfixes KB 2155311, 977977,
976700, and 982383. These are all I/O related fixes for Windows Server2008 R2 and multi core
systems.DBMS: SQL Server 2008 R2 Enterprise plus Cumulative Update package 3. We used –E and -
T1118 trace flags. Trace flag 1118 forces uniform extent allocations instead of mixed page allocations. It
is commonly used to assist in tempdb scalability by avoiding SGAM and other allocation contention
points. We allocated a maximum of 250 GB RAM to SQL Server. Database configuration we used one
filegroup for the Fast Track database with 32 data files of equal size, one in each LUN because we had 32
cores. We used the same configuration for tempdb. For the transaction log, we had four extra RAID 1
LUNS of two disks, one in each enclosure.

Track A – Nonclustered Indexes as Primary Keys
Notes

 This test ensured adherence to the loading of data in waves. The PK indexes are nonclustered, in

keeping with Contoso’s wishes. Primary key duplicates are ignored by the process and not inserted

into the tables. There are other bad-data errors. These are logged in the error log files. The data
errors were left in the load files and stripped on load to show the worst-case scenario.Here is an
example of the command we used to load data in from the command batch.bcp
TrackA.dbo.[<Table>] in <Table>.txt -c -F2 -r \n -m 999999 -t"|" -b

100000 -U %USERNAME% -S %SERRVERNAME% -P %PASSWORD% -e

<Table>.txt_Errors.log -h "TABLOCK"

Loaded Row Count

Table Name
Actual Loaded Row

Count

ACCT_HT 5,592,356

ACCT_XREF 22,898,855

CARD_CREDIT_LINE_HT 1,217,097

CERT_DEPOSIT_HT 1,146,640

CODE_HT 39,796

COLLAT_ACCT_REL_HT 2,744,101

COLLAT_CONS_HT 71

COLLAT_CUST_REL_HT 3,955,228

COLLAT_FIN_HT 847,391

COLLAT_GUAR_HT 491,094

COLLAT_MACH_HT 7,059

COLLAT_MVEH_HT 1,246,607

COLLAT_OASST_HT 3,660

COLLAT_OVEH_HT 174

COLLAT_PROP_HT 205,294

COLLATERAL_HT 2,789,530

COMMERCIAL_LOAN_HT 225,983

CONSUMER_INST_LN_HT 1,254,016

CREDIT_PROVISIONS_HT 1,645,043

CUST_ACCT_REL_HT 7,642,494

CUST_CUST_REL_HT 1,073,973

CUST_HT 7,165,192

CUST_NON_PERS_HT 392,467

CUST_PERS_HT 6,773,268

CUST_XREF 12,311,195

PRD_DIMENSION 4,017

PRODUCT 1,497

RETAIL_CHECKING_HT 165,041

RETAIL_CREDIT_LN_HT 8,048

RETAIL_SAVING_HT 1,583,574

TRAN_DETAIL 19,107,244

Comments

The total load time was 6,393 seconds. This was due to the fact that all the indexes were kept and the
data was not pre-cleaned to remove corrupt rows and duplicate primary key data.

Track A - Clustered Indexes as Primary Keys – FAST LOAD
Notes

 The primary key indexes were changed to clustered indexes, and primary key data and bad data

were removed from the files to ensure clean fast loads. The nonclustered indexes were built on the
data after it was loaded in a parallel batch.Here is an example of the command we used to load data in
from the command batch.bcp TrackA.dbo.[<Table>] in <Table>.txt -c -F2 -r \n -m
999999 -t"|" -b 100000 -U %USERNAME% -S %SERRVERNAME% -P %PASSWORD% -e

<Table>.txt_Errors.log -h "TABLOCK"

Comments
The total load time (to build the entire database) was 2,485 seconds. This time is made up of 2,166
seconds for the data load and 319 seconds for the creation of all the nonclustered indexes. This was
much faster than the 6,393 seconds it took to load the data using nonclustered indexes as primary keys.
The 2,166 seconds can be further reduced if the declarative referential integrity (DRI) constraints are
removed. This was not tested because Contoso had a requirement to keep the DRI constraints in the
database.

Track A - Best Practices
- Normally you should not have constraints on the DW tables. Foreign keys and logical integrity of
the data to be loaded should be handled at the ETL layer to minimize data load performance issues. In

our case, we could not avoid the constraints due to the POC requirements. - SQL Server
Integration Services can provide a better means of cleaning the data and taking care of slowly changing
dimensions. - You need to determine what you want to focus on: load performance for historical
data or query performance. Sometimes you cannot optimize for both at the same time. In our case, we
optimized for query performance.- Consider loading data into partitioned tables for incremental
loads.- Use the BCP utility to load data in and specify the TABLOCK and ORDER hints. Ensure that
the order of the data is the same as it is in the clustered index.

Query and Stored Procedure - Execution Summary

Results Before and After Optimization
This table shows the numbers before and after optimization for the execution of procedures and
queries. All executions were performed serially. That means the following:

1. Track A database was used for the before-optimization number, that is, where nonclustered
indexes used for primary keys. The queries and stored procedures were migrated from Oracle
and not optimized.

2. Track B database was used for the after-optimization number. The queries and stored
procedures were optimized for the after-optimization numbers.

Item Execution time in current

Oracle production

Execution time (before

optimization)

Hr:Min:Sec

Execution time (after

optimization)

Hr:Min:Sec

Q1 – Coreplan 00:16:00 00:02:00 00:00:02

Q2 – FINS_CASHDEP 00:05:00 00:03:02 00:00:02

Q3 – FINS_FDPLACE 00:03:00 00:00:02 00:00:00 (1 ms)

Q4 – MUTIARA_CPS 34:07:00 00:02:14 00:01:18

Q5 – PIDM_APP1 > 48 hours 00:00:04 00:00:02

Q6 – PIDM_APP2 > 48 hours 00:00:17 00:00:14

Stored Proc 1 -

CTSM_ME_PROD_PARTITION
00:23:00 00:01:06 00:00:35

Stored Proc 2 -

MUTIARA_MAIN_JUL10
02:51:00 00:11:39 00:06:40

Stored Proc 3 -

DCS_MERGED_IND_SP
03:20:00

Runs for over 3 hours -

terminated

00:03:00 - 00:05:00 (3-5

mins)

Stored Proc 4 - Kpi_Run_On_Age 00:27:00 01:15:41 00:02:00 - 00:04:00

Optimizations Performed – High Level Summary
 Rewrite CASE and WHERE statements as joins. Clean key join column to remove leading and

trailing spaces. Add nonclustered indexes. Create statistics. Build derived columns for

substring joins. Convert Oracle-like function calls from SQL Server Migration Assistant (SSMA) to
native function calls, such as:

ssma_oracle.to_char_date(sysdatetime(), 'DD-MON-YYYY HH:MI:SS AM')to

CONVERT(varchar(32), sysdatetime(), 109)

Results for Seven Years Data Serial Query Execution
Description Min:Sec

Q1 – Coreplan 00:30

Q2 – FINS_CASHDEP 39:36

Q3 – FINS_FDPLACE 0:02

Q4 – MUTIARA_CPS 10:1

Q5 – PIDM_APP1 0:05

Q6 – PIDM_APP2 10:50

 The results seem proportional to the data volume and the fact that the queries were run in parallel. A
data set expanded three times by account base and seven years by time will have an impact on the
number of rows to be scanned as well.

Description Hr:Min:Sec

Stored Procedure 1 - CTSM_ME_PROD_PARTITION 0:12:24

Stored Procedure 2 - MUTIARA_MAIN_JUL10 0:09:24

Stored Procedure 3 - DCS_MERGED_IND_SP 1:00:35

Stored Procedure 4 - Kpi_Run_On_Age 0:09:25

 The volumization of data seems proportional to the query run time in some instances. Heavy processing
via function calls in search conditions and the SELECT clause of the queries within procedures
lengthened the run time of procedures. NOTE: The Fins_Cashdep query has a time window of five days
on Tran_Detail but the substring function applied on TXD_ACCT_NO column of TRAN_DETAIL will cause
the table to be scanned. Generally, we have seen when that when functions such as CONVERT,
SUBSTRING, CAST, LTRIM, and RTRIM are used, the plan becomes serial and performance can be
affected negatively. For more information about queries and stored procedures execution plans and
optimizations, see Appendix B.

Volume Growth and Scalability
Notes

The purpose of Track C is to measure the load time for volumized data. The data volume was increased
in keeping with volumization rules set by Contoso.

Load Process

The diagram shows the load sequence of bulk copying of the files using the BCP

utility. After the BCP
files are loaded, the data is

switched. The file
load is synchronized using a flag-file method.

Results

STEP Table name TIME(ms) TIME(min)

STEP1

Parallel

ACCT_HT.LOG 1,913,961 32

CUST_HT.LOG 1,701,456 28

CUST_NON_PERS_HT.LOG 45,365 1

CUST_PERS_HT.LOG 772,750 13

Subtotal STEP1 1,913,961 32

STEP2 CUST_ACCT_REL_HT 2,807,191 47

Subtotal STEP2 2,807,191 47

STEP3 CARD_CREDIT_LINE_HT 800,581 13

Parallel CERT_DEPOSIT_HT 248,494 4

CONSUMER_INST_LN_HT 550,090 9

CREDIT_PROVISIONS_HT 413,043 7

RETAIL_CHECKING_HT - -

RETAIL_SAVING_HT 329,147 5

Subtotal STEP3 800,581 13

STEP4-1

Serial

TRAN_DETAIL_ACCT_83 1,923,914 32

TRAN_DETAIL_ACCT_84 1,446,005 24

Subtotal STEP4-1 3,369,919 56

Tran_Detail Import Performance

We did two passes of the import; the results are shown for both. Pass 1 uses BCP. Here is the
command.bcp %DB_NAME%.dbo.TRAN_DETAIL_ACCT_%NUM% in
%3\TRAN_DETAIL_ACCT_%NUM%.txt -c -r \n -t"|" -S %SERVER% -U%USER% -P %PASS%

-b 100000 -h "TABLOCK, order(TXD_CYC_DT ASC, TXD_CYC_FREQ ASC,

TXD_A_HLD_ORG_CD ASC, TXD_ACCT_ID ASC, TXD_A_FIN_INST_NO ASC, TXD_APPL_SYS_ID

ASC, TXD_ACCT_NO ASC, TXD_TRAN_DT ASC, TXD_TRAN_SEQ_NO ASC, TXD_TRAN_CD ASC)"

-o %LOG_DIR%\STEP4_TRAN_DETAIL_ACCT_%NUM%.log- This test loads the data into the table
unsorted, and the server has to sort it.- The average import time per table was 1,945 seconds (that is,
32 minutes). The longest tables import was 5,006 seconds (that is, 83 minutes).Pass 2 uses BULK INSERT.
Here is the command.osql -S %SERRVERNAME% -d %DATABASE% -U %USERNAME% -P
%PASSWORD% -Q "BULK INSERT %DB_NAME%.dbo.tran_detail_acct_%NUM% FROM

'%3\TRAN_DETAIL_ACCT_%NUM%.txt' WITH (TABLOCK ,CODEPAGE =

'RAW',FIELDTERMINATOR ='|',ROWS_PER_BATCH = 100000, ORDER(TXD_CYC_DT ASC,

TXD_CYC_FREQ ASC, TXD_A_HLD_ORG_CD ASC, TXD_ACCT_ID ASC, TXD_A_FIN_INST_NO

ASC, TXD_APPL_SYS_ID ASC, TXD_ACCT_NO ASC, TXD_TRAN_DT ASC, TXD_TRAN_SEQ_NO

ASC, TXD_TRAN_CD ASC))”- The BULK INSERT time also includes the time it took to build the
index. The import tables have indexes defined. The average import time per table was 1,620 seconds
(that is, 27 minutes). The longest table’s import was 2,591 seconds (that is, 43 minutes).- We used
the TABLOCK and –h “ORDER()” parameters in the BCP command for optimization. This decreased the
load time almost by half.

Loaded Row Count

Table Name Loaded
Bulked Up

Row Count

ACCT_HT 5,592,356 16,777,068

CARD_CREDIT_LINE_HT 1,217,097 3,405,424

CERT_DEPOSIT_HT 1,146,640 3,220,152

CONSUMER_INST_LN_HT 1,254,016 3,501,549

CREDIT_PROVISIONS_HT 1,645,043 4,495,969

CUST_ACCT_REL_HT 7,642,494 23,276,637

CUST_HT 7,165,192 21,495,576

CUST_NON_PERS_HT 392,467 1,177,401

CUST_PERS_HT 6,773,268 20,319,804

RETAIL_CHECKING_HT 165,041 490,279

RETAIL_SAVING_HT 1,583,574 4,341,972

TRAN_DETAIL 19,107,244 2,300,000,000

Comments
The best approach is to use BULK INSERT with the primary key in place.

Fast Track Backup Performance – Bonus Item
The performance we achieved was 2,107.8 MB per second.

Command
BACKUP DATABASE [TrackC] TO DISK =

N'C:\MountR5\R5A\Backups\TrackC_F1.bak', DISK =

N'C:\MountR5\R5B\Backups\TrackC_F2.bak', DISK =

N'C:\MountR5\R5C\Backups\TrackC_F3.bak' WITH NOFORMAT, NOINIT, NAME =

N'TrackC-Full Database Backup', SKIP, NOREWIND, NOUNLOAD, COMPRESSION, STATS

= 10GO

Results
We backed up a 1.3-terabyte database in 10:44 minutes. The size of the backup file was 203 GB.

Compression of Tables – Extra Item
Compression Summary

A number of tables were compressed using page compression. The tables show the actual and
estimated compression ratio.

Track D - Compression of Big Tables

 Actual Values Estimated

 Before Compression After Compression

Actual Compression

Ratio
Before Compression

Estimated

Compression Size

Estimated

Compression Ratio

ACCT_HT 18757 7262 61% 18757 9446 50%

CUST_HT 17644 9241 48% 17644 10790 39%

CUST_ACCT_REL_HT 9762 1928 80% 9762 5451 44%

TRAN_DETAIL 2102900 277507 87% 2102900 699720 67%

Items in red show actual compression ratio and sizes. This is higher than the estimated compression.

 Note: For TRAN_DETAIL its actual size is 85 times the partition size, because there are 85 partitions.

Ad-hoc Query Performance
A set of ad-hoc queries ran in compressed and uncompressed state for the four tables.

Results

Description CompressedHr:Min:Sec
Uncompressed

Hr:Min:Sec

Query1 2:21:4 2:10:54

Query2 2:50:47 2:43:48

Query3 0:17:56 0:11:51

_ERR Fixed Sub query Track D

Query4
0:02:02 0:02:18

Query5 0:00:33 0:01:20

Query6 0:02:47 0:02:54

Query7 0:11:54 0:12:41

Query8 0:12:9 2:51:17

CUST_HT, ACCT_HT, and CUST_ACCT_REL_HT were uncompressed, and TRAN_DETAIL was compressed.

Comments
Different query characteristics and different tables being used in the joins impact the run time
differently. Query8 runs for a much shorter time with compression turned on, whereas other queries
display different behavior. In most cases, compression turned on for the four key tables seems to work
better.The key difference between Query1, Query2, and Query8 seems to be the additional
CUST_PERS_HT table involved in the join and the selection of different grouping sets. The compression
setting should be set based on the most common queries.

Conclusion
This paper discusses a Fast Track configuration that we built. The configuration scaled well according to
the demands put on it by the different tracks. We were able to deliver excellent performance numbers
for serial runs both before and after optimization. Additionally, the performance numbers for volumized
data scaled according to the growth in size of the data. We did additional testing on different
approaches for loading the data, that is, BULK INSERT vs. the bcp utility. We also loaded data into
databases with nonclustered and clustered primary keys and were able to show the workload
performance numbers for both. The compression scenario delivered impressive compression ratios and
indicated areas where it could be used for query performance optimization. The backup scenario proved
that the speed and backup compression will be key wins for manageability of the data warehouse.We
were able to conclude that the performance of the Fast Track configuration was better than current
production by many orders of magnitude.We were able to deliver all of the above with a small team of
six and complete the work of setting up the Fast Track config, translating the Oracle code, writing and
optimizing the code, running tests, and documenting results within a short span of time. The
performance was delivered by an older generation DL785 G5 Fast Track configuration. We believe we
have satisfied and even exceeded the criteria of the POC by demonstrating great performance, amazing
price/performance, and scalability.Given the opportunity to deliver the enterprise data warehouse, we
can deliver workload performance far surpassing your expectations with the latest G7 hardware. Fast
Track 3.0 specification with the G7 family of hardware takes advantage of the latest CPU technologies
such as additional cores, higher clock speeds and cache sizes, plus larger disk sizes (600 GB vs. 300 GB)
that provide more capacity with the same number of enclosures. This specification is expected to be out
soon.We believe we can deliver the best performance through our expertise in optimization and
migrating code from different database platforms.

Appendix B – Fast Track Queries, Their Plans, and Tuning Suggestions

Q1 – Coreplan – QueryPlan – Not Tuned

Execution Results

The execution time was 2 minutes.

Q1 – Coreplan

Optimization - Data Fixes

Remove leading and trailing spaces ahead of time rather than as part of the query.

Query Plan

Execution Results

The execution time was 2 seconds.

Q2 – FINS_CASHDEP - Query Plan – Not Tuned

Execution Results

The execution time was 3 minutes and 2 seconds.

Q2 – FINS_CASHDEP
Optimization – Code Changes

Remove the function on the right side of the search condition. Create a parameter and assign the value
from the function to it. Refer to the parameter directly.declare @startdate datetimeset
@startdate = DATEADD(D, -5, '31-jul-10') -- old way --
(TRAN_DETAIL.TXD_BUS_DT BETWEEN DATEADD(D, -5, ssma_oracle.to_date2('31-jul-

10', 'dd-mon-yy')) AND ssma_oracle.to_date2('31-jul-10', 'dd-mon-yy')

-- better way --(TRAN_DETAIL.TXD_BUS_DT BETWEEN DATEADD(D, -5,

'31-jul-10') AND '31-jul-10' --Best way - eliminate the function

altogether. (TRAN_DETAIL.TXD_BUS_DT BETWEEN @startdate AND '31-

jul-10'

Query Plan

Execution Results
The execution time was 2 seconds.

Q3 – FINS_FDPLACE – Query – Not Tuned

Query Plan

Execution Results
The execution time was 2 seconds.

Q3 – FINS_FDPLACE
Optimization - Schema Changes

Precompute the columns that are used in function calls as part of search condition. Ideally, heavy
functions should not be run on columns (especially in large tables) as part of a query. The calculated
columns commonly used in queries should be setup as part of an ETL operation or as a computed
column, persisted or otherwise.ALTER TABLE dbo.TRAN_DETAIL ADD
 DT_CHOPPED_TXD_ACCT_NO_9_3 varchar(3) NULLgo ALTER TABLE

dbo.TRAN_DETAIL ADD DT_CHOPPED_TXD_ACCT_NO_10_3 varchar(3) NULLgo update

TRAN_DETAIL set DT_CHOPPED_TXD_ACCT_NO_9_3 =

substring(TRAN_DETAIL.TXD_ACCT_NO, 9, 3),DT_CHOPPED_TXD_ACCT_NO_10_3 =

substring(TRAN_DETAIL.TXD_ACCT_NO, 10, 3)

Optimization - Code Changes

Refer to the precomputed column directly in the query.

Query Plan

Execution Results

The execution time was 1 second.

Q4 – MUTIARA_CPS - Query Plan – Not Tuned

Execution Results
There were multiple attempts. The best execution time was 2 minutes and 14 seconds.

Q4 – MUTIARA_CPS
Optimization - Code Changes

Replace references to Oracle-like function calls from the SQL Server Migration Assistant (SSMA) tool
with native Transact-SQL calls. (ROUND(ssma_oracle.datediff(A.ACCT_BUS_CYC_DT,
A.ACCT_LIMIT_APPR_DT) / 30,0)) AS MD_MTH_ON_BOOK,

(ROUND(ssma_oracle.datediff(A.ACCT_BUS_CYC_DT, A.ACCT_LIMIT_APPR_DT) / 30,0))

AS MD_LN_AGE, was changed
to (ROUND((convert(float(53),convert(datetime,A.ACCT_BUS_CYC_DT) -
convert(datetime,A.ACCT_LIMIT_APPR_DT))) / 30,0)) AS MD_MTH_ON_BOOK,

(ROUND((convert(float(53),convert(datetime,A.ACCT_BUS_CYC_DT) -

convert(datetime,A.ACCT_LIMIT_APPR_DT))) / 30,0)) AS MD_LN_AGE, Replace the
old-style join with a JOIN statement.FROM dbo.ACCT_HT AS A LEFT OUTER JOIN
dbo.PRODUCT AS P ON A.ACCT_PROD_CD = P.PROD_PROD_CD,

dbo.CARD_CREDIT_LINE_HT AS BWHERE A.ACCT_ACCT_NO = B.VM_ACCT_NO AND was
changed to FROM dbo.ACCT_HT AS A LEFT OUTER JOIN
dbo.PRODUCT AS P ON A.ACCT_PROD_CD = P.PROD_PROD_CD JOIN

dbo.CARD_CREDIT_LINE_HT AS B ON A.ACCT_ACCT_NO = B.VM_ACCT_NO

WHERE Another possible fix would have been to create a temp table or variable table that
contained the values for the IN clause and forming a join rather than a subquery. The temp/variable
table would have contained an inclusion list (IN) rather than an exclusion list (NOT IN). This fix was not
put in place for the query code due to time limitation.

Query Plan

http://www.microsoft.com/sqlserver/en/us/product-info/migration-tool.aspx#oracle

Execution Results

The execution time was 1 minute and 18 seconds.

Q5 – PIDM_APP1 - Query Plan – Not Tuned

Execution Results

The execution time was 4 seconds.

Q5 – PIDM_APP1
Optimization-Code Changes
There are multiple CASE statements like this one that can be replaced. These statements should be
replaced by ETL processes that build the necessary computed columns if the computed columns are
frequently used. It’s not ideal to have multiple CASE statements within a query statement. CASE
WHEN A.ACCT_APPL_SYS_ID = 'STS' AND substring(A.ACCT_ACCT_NO, 9, 3) IN (

'001', '003', '007', '008') THEN 2 WHEN A.ACCT_APPL_SYS_ID = 'IMS' AND

substring(A.ACCT_ACCT_NO, 10, 3) IN ('201') THEN 2 WHEN

A.ACCT_APPL_SYS_ID = 'STS' AND substring(A.ACCT_ACCT_NO, 9, 3) IN ('002',

'004', '013', '009') THEN 1 WHEN A.ACCT_APPL_SYS_ID = 'IMS' AND

substring(A.ACCT_ACCT_NO, 10, 3) IN ('202') THEN 1 END AS BANK_TYP The
following is a low-impact change that precalculates the CONVERT statement in a variable and feeds it
into the search condition.WHERE A.ACCT_ACCT_ID = B.CAR_R_ACCT_ID AND C.CUS_KEY
= B.CAR_CUST_KEY AND A.ACCT_APPL_SYS_ID IN ('STS', 'IMS') AND

B.CAR_PRIME_NO = 'Y'/*onli take primary holder*/ AND (B.CAR_EXPIRATION_DT

>= '31-JUL-2010' OR B.CAR_EXPIRATION_DT = CONVERT(datetime2, '01/01/0001',

101)) We did not apply these changes to our query because it was already high-performing.

Query Plan

Execution Results

The execution time was 2 seconds.

Stored Procedures

Comments

CTSM_ME_PROD_PARTITION performed approximately 18 times faster than it did in the existing
production environment without optimizations. MUTIARA_MAIN_JUL10 performed approximately 21
times faster without optimizations. DCS_MERGED_IND_SP consists of three heavy procedures being
called by a large base proc. The three procedures; all used cursors to perform precalculations. This is not
an ideal way to perform the operations. Kpi_Run_On_Age performs heavy CASE-based operations that
will affect the time taken to execute the queries.

Stored Procedure 1 - CTSM_ME_PROD_PARTITION
Execution Results

The execution time was 01:06 (1 minute and 6 seconds).

Optimization – Code Changes

We converted the execute statements to direct Transact-SQL statements. For example, EXECUTE
('TRUNCATE TABLE CTSM') was changed to TRUNCATE TABLE CTSM.We also converted old-style
joins to Transact-SQL joins. We applied the query hint FORCE ORDER to specify that the join order
indicated by the query syntax should be preserved during query optimization.We converted Oracle-like
function calls from SSMA to direct Transact-SQL calls. INSERT dbo.CTSM_LOG(LOG_TIME,
LOG_PROCESS_NAME) VALUES (ssma_oracle.to_char_date(sysdatetime(), 'DD-MON-

YYYY HH:MI:SS AM'), 'CTSM START') was changed toINSERT dbo.CTSM_LOG(LOG_TIME,
LOG_PROCESS_NAME) VALUES (CONVERT(varchar(32), sysdatetime(), 109), 'CTSM

START')

Execution Results

The execution time was 1 minute and 17 seconds.

Stored Procedure 2 - MUTIARA_MAIN_JUL10
Execution Results

The execution time was 11 minutes and 29 seconds.

Optimization – Code Changes

We converted Oracle-like SSMA function calls to native Transact-SQL calls.We converted old-style joins
to Transact-SQL join statements.We consolidated individual UPDATE statements into a single statement.

Execution Results

The execution time was 06:40 (6 minutes and 40 seconds).

Stored Procedure 3 - DCS_MERGED_IND_SP
Execution Results

The query ran for a long time, and it was terminated after 3 hours.

Optimization - Data Fixes

We fixed data by removing leading and trailing spaces. The data contained either leading or training
spaces. This forced the code to constantly trim left and right in this fashion. We converted EXECUTE
statements to direct Transact-SQL statements.As a second phase of fixes, code using cursors in the

procedures DCS_IND_2B_DUP_STS, DCS_IND_2B_DUP_IMS, and DCS_IND_2A_DUP_IMS were replaced
with straight Transact-SQL statements.

Execution Results

The execution time was between 3 and 5 minutes.

Stored Proc 4 - Kpi_Run_On_Age
Execution Results

The execution time was 1 hour, 15 minutes, and 41 seconds.

Optimization – Code Fixes

We replaced calls to Oracle-like SSMA function calls with a custom view.WHEN
floor(MONTHS_BETWEEN_PER_BUS_CYC_DT_PER_CUST_DOB / 12) BETWEEN 0 AND 12 THEN

'12 YRS AND BELOW'The following views were created to emulate the MONTHS_BETWEEN
function.CREATE VIEW
CUST_PERS_HT_MONTHS_BETWEEN_PER_BUS_CYC_DT_PER_CUST_DOBASSELECT --

MONTHS_BETWEEN PER_BUS_CYC_DT PER_CUST_DOBcase when ((dateadd(dd, -

day(dateadd(mm,1,PER_BUS_CYC_DT)), dateadd(mm,1,PER_BUS_CYC_DT)) =

PER_BUS_CYC_DT) and (dateadd(dd, - day(dateadd(mm,1,PER_CUST_DOB)),

dateadd(m,1,PER_CUST_DOB)) = PER_CUST_DOB)) or (day(PER_BUS_CYC_DT) =

day(PER_CUST_DOB)) then 12*(year(PER_BUS_CYC_DT) - year(PER_CUST_DOB)) +

month(PER_BUS_CYC_DT) - month(PER_CUST_DOB) else 12*(year(PER_BUS_CYC_DT)

- year(PER_CUST_DOB)) + month(PER_BUS_CYC_DT) - month(PER_CUST_DOB)

+convert(numeric(38,19), PER_BUS_CYC_DT -

dateadd(mm,datediff(mm,0,PER_BUS_CYC_DT),0) - (PER_CUST_DOB -

dateadd(mm,datediff(mm,0,PER_CUST_DOB),0))) / 31end as

MONTHS_BETWEEN_PER_BUS_CYC_DT_PER_CUST_DOBFROM CUST_PERS_HTgo

Execution Results

The execution time was between 2 and 4 minutes.

Section 4: Performance

Tuning the Performance of Backup Compression in SQL

Server 2008

Overview

Backup compression is a new feature in SQL Server 2008 that can help provide smaller sized backups and reduce

backup time. This document provides guidance related to tuning options for backup performance. All of the

information and test results presented here were done specifically by using the backup compression feature of SQL

Server 2008; however, they apply broadly to any backup scenario whether backup compression is used or not. They

also apply to restore operations; however, restore will not be covered in depth in this document. For an introduction

to the backup compression feature, see Backup Compression, in SQL Server Books Online.

Benefits of Backup Compression

One major benefit of backup compression is space saving. The size of the compressed backup is smaller than that of

the uncompressed backup, which results not only in space savings, but also in fewer overall I/O operations during

backup and restore operations. The amount of space you save depends upon the data in the database, and a few

other factors, such as whether the tables and indexes in the database are compressed, and whether the data in the

database is encrypted. To determine the effectiveness of backup compression, the following query can be used:

SELECT

 b.database_name 'Database Name',

 CONVERT (BIGINT, b.backup_size / 1048576) 'UnCompressed Backup Size (MB)',

 CONVERT (BIGINT, b.compressed_backup_size / 1048576) 'Compressed Backup

Size (MB)',

 CONVERT (NUMERIC (20,2), (CONVERT (FLOAT, b.backup_size) /

 CONVERT (FLOAT, b.compressed_backup_size))) 'Compression Ratio',

 DATEDIFF (SECOND, b.backup_start_date, b.backup_finish_date) 'Backup

Elapsed Time (sec)'

FROM

 msdb.dbo.backupset b

WHERE

 DATEDIFF (SECOND, b.backup_start_date, b.backup_finish_date) > 0

 AND b.backup_size > 0

ORDER BY

 b.backup_finish_date DESC

Table 1 shows the output of the above query after taking an uncompressed and a compressed backup.

Database

Name

Uncompressed

Backup Size (MB)

Compressed Backup

Size (MB)

Compression

Ratio

Backup Time

(Seconds)
Comments

BCTEST 292705 95907 3.05 1705
Compressed

backup

BCTEST 292705 292705 1 3348
Uncompressed

backup

Table 1: Comparing compressed and uncompressed backup

For an uncompressed backup, the compression ratio is 1 and the Compressed Backup Size reports the same value as

the Uncompressed Backup Size. The higher the compression ratio, the greater the space saving. For our test database,

we achieved a compression ratio of 3.05 and saved approximately 67% space for the backup. Figure 1 illustrates the

benefits of backup compression in terms of space and time. Databases using the Transparent Database Encryption

(TDE) feature of SQL Server 2008 may not see as high backup compression ratios (in most cases, it will be close to 1)

due to the fact that encrypted data does not lend itself well to compression.

Figure 1: Benefits of backup compression in terms of space and time

As illustrated in Figure 1, a compressed backup is smaller in size, and hence requires fewer write I/Os to the backup

media. This results in reduced backup time. Backup is an I/O intensive operation so reduction in I/O will be beneficial

to performance.

Test Workload and Test Environment

Our test environment for these results consisted of a database representing an OLTP stock trading application with a

database size (excluding free space) of approximately 300 GB. The hardware used for the testing was a 4-socket dual

core DELL 6950 server and an EMC Clariion (CX700) storage array with 4GB of cache allocated 80% to write

operations. The volume/LUN layout is shown in Table 2.

Volume Purpose RAID Level Number of Disks

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningthePerformanceofBackupCompressioni_B17D/image_2.png

E: Data files 1+0 8

F: Data files 1+0 8

G: Data files 1+0 8

H: Data files 1+0 8

L: Log files 1+0 8

M: Backup files 1+0 8

P: Backup files 1+0 2

Q: Backup files 1+0 2

R: Backup files 1+0 2

S: Backup files 1+0 2

Table 2: Disk volume layout for backup compression tests

In each of the disk volumes shown in Table 2 there was no sharing of physical disks between any of the volumes.

There were 32 total disks for the data, 8 for the log and 16 for the backup files.

SQL Server data files were striped such that each filegroup contained four data files—each file of a filegroup was

placed on a separate data volume.

Determining Achievable Throughput of Backup Compression

Whenever you attempt to tune the performance of backup compression, it is important to first understand the

achievable theoretical throughputs of the given hardware configuration, specifically the storage. The throughput of

backup compression is bound by the CPU resources, the throughput of the input devices, or the throughput of the

output devices.

One method of determining the throughput of a given configuration is to perform backup to a NUL device multiple

times by varying the BUFFERCOUNT setting. Use the default BUFFERCOUNT first, and then explicitly specify

BUFFERCOUNT in subsequent tests—each time increasing BUFFERCOUNT to a higher value. For example:

BACKUP DATABASE [BCTEST] TO DISK = 'NUL' WITH COMPRESSION

BACKUP DATABASE [BCTEST] TO DISK = 'NUL' WITH COMPRESSION, BUFFERCOUNT = 50

Default BUFFERCOUNT is determined dynamically by SQL Server based on the number of database volumes and

output devices. Default values for BUFFERCOUNT are chosen so they will apply to a broad range of environments

which is why tuning these on high end systems may be necessary to obtain optimal performance.

More information on tuning the BUFFERCOUNT parameter will be given later in this document. The BACKUP section

in SQL Server Books Online also contains related information.

At some point during the above tests, you will observe one of the following, which will determine the limits of the

hardware:

 The total CPU utilization will be near 100%.

 The disk throughput will remain constant, while the latency increases.

If total CPU utilization nears 100% across all cores, this is your bounding resource. If the total CPU is less than 100%,

the observed throughput of the reads is your maximum achievable throughput. Once you have this value, you can

then perform a backup to a real output device. If you do not achieve the same throughput attained by using BACKUP

to NUL, write throughput to the output device is your bottleneck.

Figure 2 illustrates the throughput we achieved as we increased BUFFERCOUNT during our BACKUP to NUL tests.

Figure 2: Backup throughput to NUL device with varying BUFFERCOUNT

http://technet.microsoft.com/en-us/library/ms186865(SQL.100).aspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningthePerformanceofBackupCompressioni_B17D/image_4.png

Similarly, the performance monitor graph in Figure 3 illustrates the fact that I/O on the read device is our bounding

resource. This performance monitor log was run continuously across all iterations of our tests. Our achieved

throughput was approximately 400 MB/sec before the read operations became I/O bound.

Figure 3: Disk throughput and latency during backup compression

Notice that near the intersection of the black straight lines there is a leveling off in the throughput (Disk Read

Bytes/sec counter), while the latency (Avg. Disk sec/Read counter) continues to increase. This indicates a bottleneck

on the I/O resources.

Ultimately, in our tests with a real output device this was the throughput we achieved, which means the bottleneck

was on the I/O performance of our input devices.

Considerations for Tuning Backup Performance

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningthePerformanceofBackupCompressioni_B17D/image_6.png

Several considerations come into play when you attempt to increase the performance of compressed backup

operations. The goal of our testing was to determine the highest throughput obtainable with the simplest

configuration. Performance of backup operations in SQL Server is influenced by the following:

 Database disk volume and backup device layout

 Size of I/Os and number of outstanding I/O requests

 Hardware configuration

Database Volume and Backup Device Layout

Database volume and the device layout have an impact on backup performance, irrespective of whether the backup is

compressed. For backup operations, there is a single reader thread per database volume (drive letter or mount point

volume), and a single writer thread per backup device. Figure 4 illustrates the performance differences of backup

compression between the following configurations. In this article, a backup device is synonymous with a file.

 Single backup volume (M) with a single backup device

 Single backup volume (M) with four backup devices

 Four backup volumes (P, Q, R, and S) with four backup devices

Figure 4: Backup compression performance versus number of backup devices

In Figure 4, BC refers to BUFFERCOUNT and MTS refers to MAXTRANSFERSIZE. These settings are discussed in more

detail later in this document.

As shown in Figure 4, having multiple backup devices improves backup performance. We observed very slight

improvement by having the multiple backup devices on separate volumes. This is likely because our test was bound

by read throughput as illustrated in Figure 3.

BUFFERCOUNT and MAXTRANSFERSIZE were left at the default values for the test results in Figure 4. By default we

observed MAXTRANSFERSIZE to be an average of 512 KB, and BUFFERCOUNT was 13 and 28 for 1 device and 4

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningthePerformanceofBackupCompressioni_B17D/image_8.png

devices respectively. SQL Server determines the default setting for BUFFERCOUNT based on the number of reader

volumes and output devices. Using multiple backup devices results in an implicit increase in the BUFFERCOUNT value.

The increase in BUFFERCOUNT, in addition to the increased number of threads writing to the backup files explains

why the performance of multiple devices on a single volume increases (described more later). Results using other

values are shown later in Figure 6.

Figure 5: Parallelism influence on CPU utilization

The number of threads used for compression operations is dynamically determined and comes from the SQLOS

thread pool. In our case, having either 1) increased BUFFERCOUNT with a single output device, or 2) multiple output

devices, resulted in greater throughput and more concurrent compression operations. As shown in Figure 5, either of

these increased parallelism and overall CPU usage across all CPUs in our server. A greater number of backup devices

improves backup performance. However, it adds a management complexity. You have now multiplied the number of

backup files to track. If you lose one of these files, the entire backup is useless.

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningthePerformanceofBackupCompressioni_B17D/image_10.png

Using backup compression results in higher CPU utilization when compared to uncompressed backups; this is due to

the compression of the data. This cost is generally offset by the benefits of backup compression discussed earlier in

this paper.

For backups that are executed concurrently with user workload, reducing the number of backup devices or

BUFFERCOUNT may reduce the overall CPU used by the backup operation, leaving more CPU resources for the

workload. This trade-off can be made to accommodate scenarios where CPU is a constrained resource that must be

preserved for user workload.

Size of the I/Os and the Number of Buffers Used by Backup

In some scenarios, tuning the size of the I/O issued by backup / restore operations as well as the number of internal

buffers used for the transfer of data may help increase throughput independently of the underlying volume / device

layout. These are controlled by the MAXTRANSFERSIZE and BUFFERCOUNT options of the backup and restore

commands. When tuning these, keep in mind the following:

 Memory used for backup buffers comes from virtual address space, which resides outside the buffer pool.

The potential amount of memory used for these operations is equal to MAXTRANSFERSIZE * BUFFERCOUNT.

Care should be taken on 32-bit systems because specifying values for these settings that are too high may

result in out-of-memory errors since there is a limited amount of virtual address space available for this. On

32-bit systems, the default amount of virtual address space outside of the buffer pool is 256 MB.

 Choosing an initial value for BUFFERCOUNT can be difficult if you do not know the default value. This default

value is dynamic and determined by SQL Server at run time. The default value is influenced by the number of

backup devices and the number of database volumes. Testing is necessary to determine an optimal value.

Running with trace flags 3605 & 3213 will result in output to the ERRORLOG containing the number of

buffers used for backup operations.

 With the exception of very small databases and snapshot backups of VLDB using VDI technologies, the

default MAXTRANSFERSIZE is 1 MB.

Note: Snapshot backups taken by using VDI integrated storage solutions cannot use backup compression.

 I/O size issued for backup / restore operations ranges from 64 KB up to MAXTRANSFERSIZE, based on the

allocation of data within a data file. MAXTRANSFERSIZE refers to the size of the I/O operation issued to read

data from the database files. Only contiguous regions of data on the disk are read. The continuity of the

underlying data pages has an impact on the size of the I/Os. Therefore, the actual I/O size you observe may

be less than the value of MAXTRANSFERSIZE specified. The default value for MAXTRANSFERSIZE is 1 MB.

Figure 6 extends the data in Figure 4 by including tuning of MAXTRANSFERSIZE and BUFFERCOUNT. Figure 6 shows

backup time and CPU utilization for six different configurations. As illustrated in Figure 6, throughput comparable to

that attained by using multiple devices can be achieved when using a single device on a single LUN by adjusting the

MAXTRANSFERSIZE and BUFFERCOUNT parameters.

http://msdn2.microsoft.com/en-us/library/ms189548.aspx

Figure 6: Backup time and CPU utilization (average for all CPU’s) versus device/volume configuration,

MAXTRANSFERSIZE and BUFFERCOUNT

Although tuning MAXTRANSFERSIZE may result in slightly higher throughput, it also results in much larger I/O sizes.

Larger I/O sizes of the backup operation when mixed with a concurrent OLTP workload may result in slower overall

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningthePerformanceofBackupCompressioni_B17D/image_12.png

I/O response times. The recommended tuning approach is to adjust BUFFERCOUNT first, and then determine if tuning

MAXTRANSFERSIZE will provide any additional performance advantage. Keep in mind when tuning this parameter

that increasing the value may increase the size of the I/O with limited increase in overall throughput. Using multiple

output devices as opposed to tuning these parameters may be a simpler approach to achieving greater throughput.

However, this also may introduce the additional management overhead of having to maintain multiple backup files.

Due to time constraints, we did not test all configurations in our scenario.

Figures 7 shows the read and write throughput attained during these tests. The write throughput is less than the read

throughput because of compression.

Figure 7: Read and write throughput during backup operations

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningthePerformanceofBackupCompressioni_B17D/image_14.png

Hardware Configuration

Backup compression operations are parallelized dynamically up to the number of CPUs on the machine so there is a

potential performance benefit to a machine with more physical CPUs. Similarly, the physical characteristics of the I/O

configuration including the number of disks, cache memory available for I/O operations, and the throughput

attainable on the I/O path, have a significant effect on performance. I/O operations related to backup / restore may

ultimately be bound by the limits of the hardware. It is important to understand the potential throughput of your

specific configuration in order to know when you are exhausting the capabilities of the hardware.

Recommendations

This article provides a good amount of detail into the internals of backup compression. A summary of our

recommendations for tuning backup compression and restore are:

 Use the method of backing up to NUL to determine the potential throughput attainable on your particular

configuration.

 Performance of backup operations may be increased by utilizing multiple backup devices and/or increasing

BUFFERCOUNT. Using multiple devices over a single device with increased BUFFERCOUNT may offer slight

additional benefit; however, use of a single device with increased BUFFERCOUNT may provide nearly the

same throughput without the need to manage multiple backup files.

 Keep in mind that adjusting backup parameters to increase the performance of backup may have adverse

impact to user workload running on the system. Always consider what is best for your particular scenario.

 MAXTRANSFERSIZE should be considered a secondary tuning approach. In our tests this provided little

practical benefit over the default used by BACKUP

 Consider the parallelism benefits of volume design on backup / restore operations at database creation time.

This is one of the many things to consider when determining how many volumes to use for a SQL Server

database.

 Monitor your I/O and CPU utilization during tests to ensure that any performance bottlenecks you encounter

are not hardware related.

 Be careful while increasing the value of the BUFFERCOUNT parameter on 32-bit systems because specifying

too high values for this may result in out-of-memory errors, since there is a limited amount of virtual address

space available for this. On 32-bit systems, the default amount of virtual address space outside of the buffer

pool is 256 MB.

Keep in mind that the results described here indicate the performance that is attainable in one specific configuration.

Performance may be much higher or lower in different configurations. As an additional data point, Backup More Than

1GB per Second Using SQL2008 Backup Compression on the SQLCAT blog illustrates the performance attainable on

very high-end systems.

Summary

There are many approaches to tuning the performance of backup in SQL Server 2008. Understanding how volume

and device layout, and number of CPUs influence parallelism, as well as understanding other tuning options can

provide you with the ability to significantly increase the performance of backup and restore. The decisions on which

approach to use depend largely on what is optimal for your given environment.

Appendix A: Test Hardware and Software

http://blogs.msdn.com/sqlcat/archive/2008/03/02/backup-more-than-1gb-per-second-using-sql2008-backup-compression.aspx
http://blogs.msdn.com/sqlcat/archive/2008/03/02/backup-more-than-1gb-per-second-using-sql2008-backup-compression.aspx

Server

DELL PowerEdge 6950

 4 socket dual core

 AMD Opteron 2.8 GHz

 x64

 32 GB RAM

Storage

EMC Clariion CX700

 10K SCSI drives

 4 GB cache (80% write, 20% read)

 2 HBA’s

Software

 Windows Server 2003 Enterprise Edition Service Pack 2 x64

 SQL Server 2008 February CTP x64

SQL Server Indexing: Using a Low-Selectivity BIT Column

First Can Be the Best Strategy

Overview

When discussing indexing strategies, Microsoft SQL Server customers frequently claim that you should

never place indexes on columns with few values or columns of data types such as BIT or gender. One

customer pointed me to sys.dm_db_missing_index_details dynamic management view (DMV), claiming

that if they followed the guidance to put the equality column first, a BIT column would be the first

column in the index, and this would be a problem.

In fact, there are times when using a column with few values as the first column in an index is the best

option, and this includes times when a BIT column or a gender column is first in the index.

This technical note shows that columns such as BIT columns can sometimes be the best choice for an

index and that SQL Server can determine when this is the case. This technical note uses an example to

demonstrate this and to show that SQL Server does know that the index with the equality column first is

the better choice—even if the equality column is a BIT column.

NOTE: This note is intended for experienced database administrators (DBAs) and software developers

who have an understanding of SQL Server fundamentals.

Compare: Place the BIT Column First

Consider the following query:

SELECT COUNT(*)

FROM testTable

WHERE bitCol = 1 AND intCol BETWEEN 2 AND 5

In this case:

 bitCol is an equality column. You are looking for one specific value in bitCol.

 intCol is an inequality column. You are looking for a range of values in intCol.

Some guidance recommends putting the most cardinal column first in an index. Other guidance

recommends that you put the equality column first in an index. In this case, this means putting a BIT

column first.

To see which is the right choice, examine a very small set of data to see the differences between using a

unique index on (bitCol, intCol) and a unique index on (intCol, bitCol). Consider a table with intCol values

from 1 to 10 and bitCol values of 0 and 1.

Sort with the Inequality Column First

The index on (intCol, bitCol) might result in the following logical data arrangement:

intCol bitCol

1 0

1 1

2 0

2 1

First row meeting conditions

3 0

3 1

4 0 Rows Evaluated

4 1

5 0

5 1

6 0

Row to determine out of range

6 1

7 0

7 1

8 0

8 1

9 0

9 1

10 0

10 1

Table 1: Data ordered by (intCol, bitCol)

Starting from the first row that satisfies the condition in the query’s WHERE clause and counting to the

last row that satisfies the condition, you can see that seven rows must be evaluated to return four rows.

The next row after the last one satisfying the condition must always be evaluated in a range query to

know that the end of the range has been reached, so eight rows must actually be evaluated to find the

four rows that actually satisfy the condition.

Sort with the Equality Column First

Now look at the same data indexed by (bitCol, intCol):

bitCol intCol

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

0 10

1 1

1 2
 First row meeting conditions

1 3 Rows evaluated

1 4

1 5

1
6

Row to determine out of range

1 7

1 8

1 9

1 10

Table 2: Data ordered by (bitCol, intCol)

Looking at the span between the first and last row that satisfy the query when the query is indexed like

the example in Table 2, you can see that there are four rows in the range and one row to determine that

the range has been exceeded, so five rows must be evaluated to return four rows that satisfy the

conditions.

What Does This Mean?

The data set used in the example above includes every possible combination for the range of data. This

makes it the worst case scenario for both index possibilities.

You can see that in this worst case scenario putting the equality column (bitCol) first requires the

evaluation of about half as many rows to return the same data set. This is true because there are only

two possible values in bitCol. As the number of possible values for that equality column increases, the

worst case scenario for indexing on the inequality column first becomes increasingly more “expensive”

than indexing on the equality column first.

The best case scenario for putting the intCol first while returning the same result set would be if the

original data set had no rows with a bitCol value of 0. If this were the data set, then the best case for

putting intCol first requires evaluation of the same number of rows as putting the bitCol first. Therefore,

the best case for indexing with the inequality column first is the same as best and worst case scenario of

indexing with the equality column first.

This is true with other value combinations also. In any scenario other than best case, it is better to put

the equality column first, and this is true even if the equality column is a BIT column.

To summarize:

 Sorting on the inequality column first can never be more efficient than sorting on the equality
column first.

 There is only one case in which sorting on equality column first or inequality column first is
equally efficient; in all other cases, sorting on the equality column first is better than sorting on
the inequality column first.

Looking at a flat representation of a small data set, it is clear that you should put the equality column

first in indexes to support queries with equality and inequality conditions. This may include times when

a BIT column, or other column with low selectivity, appears first in an index.

Translating to a SQL Server Index Structure

A SQL Server index is a B+ tree: The root and intermediate pages of the index contain keys and pointers

to lower-level pages to faciliitate navigation to the correct child page. All of the index data is stored on

the leaf pages. While the data in the leaf page of a non-clustered index is different from the data in the

leaf page of a clustered index, no data is returned until the leaf level of the index is reached.

The headers of index pages also contain pointers to the next and previous page at that level. On an

index seek for a range of values such as the range of values returned by the query in the example above,

the keys at each level of the index are compared to the values in the condition to locate the beginning of

the range. The pointer to the correct child page is then followed, and the process is repeated until the

leaf level of the index is reached. At this point, a range scan begins.

Values are evaluated at the leaf level of the index. If all the values on a page are read and the end of the

range has not yet been reached, then the pointer to the next page is followed; the data on the next leaf

page is then read and evaluated to find rows that meet the filter criteria. In this way, the leaf level of the

index is scanned from the beginning to the end of the range, much as was done in Tables 1 and 2 to find

the rows to be returned for the query.

The common recommendation to always put the most selective column first is based on the idea that

you can eliminate more branches in the root and intermediate page levels by evaluating only one value,

rather than evaluating the first key and then proceeding to subsequent key values in the index. SQL

Server reads at most one page at the root and each intermediate level of the index for each range

evaluated. Medium to large indexes may be only three to six levels deep, so placing the most selective

column first may help SQL Server eliminate a few comparisons, and thus save a few CPU cycles on three

to six pages, in most cases.

However, once the leaf level is reached and scanning begins on the requested range, placing the

inequality column first can result in the reading of hundreds or even thousands of extra pages to satisfy

the same query. Clearly, the tradeoff at the leaf level can quickly overwhelm the advantages gained at

the root and intermediate levels on queries that return ranges of values.

An Example to Demonstrate Tradeoffs with the Choice of First Column

To demonstrate these tradeoffs, start with the following script. You should run the script on a test or

development server.

USE tempdb

GO

IF (SELECT OBJECT_ID('dbo.testTable') IS NOT NULL)

 DROP TABLE dbo.testTable

GO

CREATE TABLE dbo.testTable

(

 charCol CHAR(200)

, bitCol BIT

, intCol INT

)

GO

-- insert some test data into the table:

SET NOCOUNT ON

DECLARE @val INT

set @val = 0

WHILE @val < 100000

BEGIN

 INSERT INTO dbo.testTable VALUES (@val, 0, @val)

 INSERT INTO dbo.testTable VALUES (@val, 1, @val)

 SET @val = @val + 1

END

After the script is run, the populated table is properly set up in tempdb. At this point, the table has no

indexes, so any access, with or without a WHERE clause, requires a full table scan.

To see how much time and how many page reads are required for this data access, set STATISTICS TIME

and STATISTICS IO to “on” with the following script:

SET STATISTICS TIME ON

SET STATISTICS IO ON

Establish a Baseline

Execute a count query with a filter specifying an equality condition for the BIT column and an inequality

condition for the INT column, similar to that used in the first example. This count query is used with all

iterations to show the effect of different indices and options.

SELECT COUNT(*)

FROM testTable

WHERE bitCol = 1 AND intCol BETWEEN 100 AND 300

After running the count query, check the Messages tab for information about the number of reads and

the wall clock CPU time needed for execution. These metrics are used to gauge the effectiveness of the

index options.

For example, when the count query was executed in a test, the following critical lines of message output

were obtained:

Table 'testTable'. Scan count 1, logical reads 5556, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

 SQL Server Execution Times:

 CPU time = 31 ms, elapsed time = 31 ms.

This means SQL Server read 5,556 data pages and used 31 milliseconds (wall clock) of CPU resources to

resolve the count query with no indexes on the table; this is the baseline result.

Create a Clustered Index with the More-Selective Column First

Next, create the clustered index with the integer intCol column first. Note that there are 10,000 distinct

values in the intCol column and only two values in the bitCol column. If you use selectivity as the

criterion, this index is designed as follows:

CREATE CLUSTERED INDEX testTable_intCol_bitCol on testTable(intCol, bitCol)

Re-run the count query with the same WHERE clause:

SELECT COUNT(*)

FROM testTable

WHERE bitCol = 1 AND intCol BETWEEN 100 AND 300

When the query was executed in a test, the following critical lines from the messages output were

obtained:

Table 'testTable'. Scan count 1, logical reads 15, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

 SQL Server Execution Times:

 CPU time = 0 ms, elapsed time = 1 ms.

The scan count of 1 indicates only one navigation from root to leaf level of the index was necessary

because only one range is scanned in this query. When the table is indexed with the more-selective

intCol first in the index, nine pages are read to resolve the query. The process took 1 ms to execute.

Create a Clustered Index with the Equality Column First

Drop the existing index and create a new clustered index with the BIT column (bitCol) first:

DROP INDEX testTable_intCol_bitCol on testTable

CREATE CLUSTERED INDEX testTable_bitCol_intCol ON testTable(bitCol, intCol)

Run the query again:

SELECT COUNT(*)

FROM testTable

WHERE bitCol = 1 AND intCol BETWEEN 100 AND 300

When the query was executed in a test, the following critical information was returned in the Messages

tab:

Table 'testTable'. Scan count 1, logical reads 10, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

 SQL Server Execution Times:

 CPU time = 0 ms, elapsed time = 0 ms.

By putting the less-selective bitCol first in the index, you reduce the number of total pages read to

resolve this query from 15 to 10. The elapsed time to execute the query is now too small to measure.

This improvement occurs because the less-selective column is the equality column in this query.

NOTE: Depending on the computer you use for these tests, the elapsed time may actually be

immeasurably small for both queries. The number of page reads is the better indicator of the amount of

data that must be read—and thus the amount of work required—to resolve this query.

As you can see from the example, if you are indexing for queries that have both equality and inequality

conditions, putting the equality column first is more important than putting the more-selective column

first. This can also be demonstrated using the SQL Server index structures.

Does SQL Server Know This?

Customers frequently think that SQL Server does not use an index if the selectivity of the first column is

too low. The example above demonstrates that this is not the case, but does SQL Server know that an

index with low selectivity on the first column may be the more efficient index?

Test with Two Non-Clustered Indexes

For an answer, drop the clustered index on the table above and create two non-clustered indexes to

represent the data. The only difference between the two indexes is which column is first. When queried

in this way, SQL Server determines which index it will use for the query.

-- Drop the clustered index:

DROP INDEX testTable_bitCol_intCol on testTable

-- create the two nonclustered indexes

CREATE NONCLUSTERED INDEX tesTable_bitCol_intCol

 ON testTable(bitCol, intCol) INCLUDE (charCol)

CREATE NONCLUSTERED INDEX tesTable_intCol_bitCol

 ON testTable(intCol, bitCol) INCLUDE (charCol)

To produce the estimated execution plan, press Ctrl-L in Management Studio or execute the query after

selecting Include Actual Execution Plan. Hover over Index Seek to see which index was selected.

In a test, after both indexes were created, the following estimated execution plan was obtained:

Figure 1. Estimated execution plan showing which index was selected

Below Object in the ToolTip, you can see that tempdb.dbo.testTable.tesTable_bitCol_intCol was the

index chosen to perform the seek. SQL Server therefore chose the index with the BIT column first. This

clearly demonstrates that SQL Server does know that the index with the equality column first is the

better choice.

http://sqlcat.com/blogs/technicalnotes/clip_image009_34747246.jpg

How Does SQL Server Know That the Index Is Useful?

One frequently voiced objection to putting a low-selectivity column first in an index is that statistics are

only maintained for the first column. This is true of the histogram, but the histogram is not the only

factor evaluated when deciding if an index is useful for a query with multiple filter conditions in the

WHERE clause or JOIN clause. Regardless of which column comes first in the index, SQL Server also

evaluates statistics on the second column when generating an execution plan. The following example

shows the process used by SQL Server.

To start, execute the following script to clear the work that was done previously, including auto-created

statistics and reset:

SET STATISTICS TIME OFF

SET STATISTICS IO OFF

USE tempdb

GO

IF (SELECT OBJECT_ID('dbo.testTable')) IS NOT NULL

 DROP TABLE dbo.testTable

GO

CREATE TABLE dbo.testTable

(

 charCol CHAR(200)

, bitCol BIT

, intCol INT

)

GO

-- insert some test data into the table:

SET NOCOUNT ON

DECLARE @val INT

set @val = 0

WHILE @val < 100000

BEGIN

 INSERT INTO dbo.testTable VALUES (@val, 0, @val)

 INSERT INTO dbo.testTable VALUES (@val, 1, @val)

 SET @val = @val + 1

END

-- create the two nonclustered indexes

CREATE NONCLUSTERED INDEX testTable_bitCol_intCol

 ON testTable(bitCol, intCol) INCLUDE (charCol)

CREATE NONCLUSTERED INDEX testTable_intCol_bitCol

 ON testTable(intCol, bitCol) INCLUDE (charCol)

Execute the Query and Examine the Execution Plan

Next, execute the following query again to force SQL Server to compile an execution plan and decide

which index to use:

SELECT COUNT(*)

FROM testTable

WHERE bitCol = 1 AND intCol BETWEEN 100 AND 300

In a test, the following estimated execution plan was obtained:

Figure 2. Estimated execution plan with the non-clustered indexes

Note that the index with bitCol as the first column is chosen again. Note also that the estimated number

of rows, calculated from the statistics, is very close to the actual number of rows.

Examine the Statistics

Using the following statements, you can see the statistics that exist on the testTable after executing this

query:

SELECT * FROM sys.stats

WHERE [object_id] = OBJECT_ID('testTable')

In the test, the following results were obtained:

Table 3. Statistics obtained from running the example query

object_id name
stats_i

d
auto_create

d
user_create

d
no_recomput

e
has_filte

r
filter_definitio

n

45357665

4
testTable_bitCol_intC

ol
2 0 0 0 0 NULL

45357665

4
testTable_intCol_bitC

ol
3 0 0 0 0 NULL

No automatically generated statistics have yet been created, but SQL Server was able to estimate the

cardinality for the seek operation above very accurately.

http://sqlcat.com/blogs/technicalnotes/clip_image011_3CA897DD.jpg

Look next at the statistics for testTable_bitCol_intCol by executing the following:

DBCC SHOW_STATISTICS('testTable', 'testTable_bitCol_intCol')

(See DBCC SHOW_STATISTICS (Transact-SQL) for details of the results sets returned by DBCC

SHOW_STATISTICS.)

Note that densities are calculated and stored for bitCol, the combination of bitCol, intCol. However, the

histogram is calculated using only the first column of the index. There are only two possible values for a

non-null BIT column, so only two rows exist for this entry, as follows:

Table 4. Statistics for testTable_bitCol_intCol

RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS

0 0 100000 0 1

1 0 100000 0 1

With statistics showing that 100,000 values exist for 0 and 100,000 values exist for 1, how does SQL

Server come to an estimate of 200 rows for a seek with the predicate above?

Drop One Index and Run the Query Again

The question can be best answered by dropping one of the indexes and running the query again.

Execute the following query:

-- drop the index that is not being used

DROP INDEX testTable_intCol_bitCol ON testTable

Then execute the query again capturing the actual execution plan:

SELECT COUNT(*)

FROM testTable

WHERE bitCol = 1 AND intCol BETWEEN 100 AND 300

The test resulted in the following estimated execution plan:

http://msdn.microsoft.com/en-us/library/ms174384.aspx

Figure 3. Estimated execution plan after one index dropped

Notice the same index was used on the same data, but the estimated number of rows has changed. This

indicates that something has changed with the statistics that are used to generate the query plan, even

though the index that was used for a seek was not changed.

Determine What Changed

To see what changed in the statistics, execute the following query again:

SELECT * FROM sys.stats

WHERE [object_id] = OBJECT_ID('testTable')

You should get the following results:

object_id name
stats_i

d
auto_creat

ed
user_creat

ed
no_recompu

te
has_filt

er
filter_definiti

on

45357665

4
testTable_bitCol_intCol 2 0 0 0 0 NULL

45357665

4
_WA_Sys_00000003_1B090

7CE
3 1 0 0 0 NULL

In the first pass, the testTable_intCol_bitCol index was in place, and that index had statistics on intCol.

When that index was dropped, no statistics existed for intCol; for SQL Server to estimate the cardinality

http://sqlcat.com/blogs/technicalnotes/clip_image013_1A045962.jpg

that included results from intCol, therefore, it had to create statistics for that column. This is only

possible because AUTO_CREATE_STATISTICS was enabled on the database where this table exists.

The difference in the estimates between using the statistics on testTable_intCol_bitCol and using auto-

created statistics is sampling; when testTable_intCol-bitCol was created, statistics were created with

FULLSCAN, but auto-creation and auto-updating of statistics always use sampling.

To verify this, run the following on your test server:

-- update the statistics with fullscan

-- this will ensure the statistics created by

-- auto-create stats is updated with the same

-- sampling as the index was when it was created

UPDATE STATISTICS testTable WITH FULLSCAN

-- get rid of all query plans in cache to

-- force SQL to compile a new query plan next time

-- the query is esecuted

DBCC FREEPROCCACHE

Now, execute the SELECT statement again, capturing the actual execution plan. In the test, the result

was the following execution plan:

Figure 4. Execution plan after running FULLSCAN

Since the new auto-created column statistics are updated with FULLSCAN this time, SQL Server has the

same quality of statistics on the second column as it had when testTable_intCol_bitCol existed. The

estimate of rows to be returned from the seek is once again almost exactly the same as the actual result.

In Summary

Regardless of which column comes first in the index, SQL Server needs to evaluate statistics on both

columns in the filter condition when determining the usefulness of an index—the statistics on the first

column alone are not sufficient. To find statistics on the second column when a query plan is generated,

SQL Server first looks to see if an index exists that has that column as its first column. If such an index

exists, SQL Server uses the statistics on that index. If such an index does not exist and no statistics have

been created on the second column and if AUTO_CREATE_STATISTICS is enabled on that database, SQL

Server creates statistics on the second column and use these auto-created statistics when generating a

query plan.

Recommendations

Placing a low-selectivity column first in an index can cause problems in the same scenarios in which

placing any other column first in an index causes problems.

Index for the Workload as a Whole

Indexes should be designed for your overall workload rather than for any one particular query. So how

many indexes should you have on your table? There is really is no single answer, but if you create the

index on (bitCol, intCol), then the index is used for seeks for queries with WHERE clauses such as:

http://sqlcat.com/blogs/technicalnotes/clip_image015_0C519D5A.jpg

WHERE bitCol = 1 AND intCol BETWEEN 100 AND 200

 Or WHERE clauses such as:

WHERE bitCol = 1 AND intCol = 150

But would not be useful for queries with WHERE clauses such as:

WHERE intCol BETWEEN 100 AND 200

In other words, the index is useful for a seek only if the first column of the index appears as a limiting

condition in the query. If you have a mix of both types of queries in your workload, then you need to

evaluate whether it is worthwhile to maintain both indexes. You must decide if having both indexes in

place provides enough additional benefit to “pay” for the extra work needed to maintain the extra index

on data modifications.

Create and Maintain Statistics

Be sure SQL Server has the statistics available or has the ability to create the statistics needed for

generation of optimal query plans. Cost-based optimization depends on statistics. Use

AUTO_CREATE_STATISTICS and AUTO_UPDATE_STATISTICS where possible. Even if auto-created or

auto-updated statistics are not used, SQL Server must have updated statistics created with a sufficient

sampling to generate optimal query execution plans.

Conclusion

Understanding the nature of the queries being executed is essential to choosing proper indexes.

Examining the cardinality or selectivity of a column alone is not sufficient to choose an optimal indexing

strategy.

When choosing indexes to optimize queries with both equality and inequality conditions, equality

columns should be placed first—even if the equality column is not as selective as the inequality column.

This is true even if the equality column is a BIT column. Note that placing the inequality column first in

an index can never be more efficient than placing the equality column first.

When you next encounter an execution plan with a missing index suggestion that has a BIT column first,

consider it carefully against the query that generated it. SQL Server is probably right about the BIT

column being the best choice for the first column.

Top Tips for Maximizing the Performance & Scalability of

Dynamics AX 2009 systems on SQL Server 2008

Authors: Peter Scharlock, Mark Prazak

Reviewers: Kevin Cox, Mike Ruthruff, Norberto Garcia, Sri Srinivasan

Introduction:
This article summarizes the top tips for maximizing the performance and scalability of the Microsoft Dynamics AX

2009 application when utilizing SQL Server 2008. These tips are the result of collaboration between the Dynamics AX

Performance Team & the SQL Server Partner Advisory Team based on optimizing real customer workloads and

extensive benchmarking efforts. The tips encompass recommended best practices, as well as exposing newly released

or modified, Dynamics and SQL Server code.

1. Maximize Cursor Performance

 The Dynamics AX application uses the well-known SQL Native Client ODBC API for its interaction with the SQL

Server 2008 database. The AX programming model calls API Server Cursors extensively for paging through data, and

in most cases this provides great performance, scalability, and reliability. However, during performance testing we

have uncovered numerous areas for optimizing cursor performance. In most cases, the AOS servers utilize the fastest

and most optimal SQL Server cursor type: Fast Forward-Only with the Autofetch (FFO) option. See documentation

here: http://msdn.microsoft.com/en-us/library/ms187502.aspx

As stated in the SQL 2008 Books Online topic listed above, Fast Forward-only cursors are never converted, however it

is possible that under certain conditions a ‘static-type’ execution plan may be created nonetheless, which essentially

disables the optimal behavior. These conditions include; the resultset includes one or more ‘blobs’, and/or not having

the appropriate indexes to optimally satisfy the cursor.

Maximize Auto-Fetch capability by paying attention to:

Table design considerations

Limit the use of AX 2009 specific ‘container’ and ‘memo’ data-types (which utilize the SQL Server ‘image’ and ‘text’

data-types). SQL Server will degrade to a less optimal cursor type/behavior if the query contains either of these data-

types. Retrieving these data-types will create a much more expensive static query plan. If you do need to add /

retrieve these data-types try to make sure that these queries retrieve a single row or small number of rows, this will

limit the time that it takes to create the static dataset in tempdb.

http://msdn.microsoft.com/en-us/library/ms187502.aspx

Keep the row length small to maximize the number of rows that get returned by the Auto-Fetch cursor

SQL Cumulative Updates (CU)

 Joint scalability testing between the SQL and AX performance engineering teams revealed a SQL issue that

prevented SQL Server from using prefetch / read-ahead logic under certain cases even when the optimal

cursor type was generated by SQL Server. This issue has been fixed (in SQL 2005 and SQL 2008) and

documented in the following Knowledge Base article: http://support.microsoft.com/kb/973877

Evaluate whether this CU is a requirement for your implementation. As per SQL Server sustained engineering policy,

this change will be automatically rolled into the next available SQL Server Service Pack.

AOS Configuration

 The ‘Maximum Buffer Size’ setting can be adjusted to increase the number of rows retrieved in a single fetch

operation. The default setting is 24 (KB). You can increase this setting but do so in relatively small

increments, such as 8K at a time, and monitor AOS memory consumption; make certain there is not a

substantial increase in memory for the AX32Serv.exe process. After increasing this setting, you should

monitor SQL Server:Batch Requests/Sec to determine if there has been a material decrease in round trips to

SQL Server.

Pessimistic Concurrency Considerations

Currently, X++ SELECT statements issued under AX’s pessimistic locking will request a dynamic cursor and not a FFO

cursor, so we recommend: optimistic locking for this reason in addition to the concurrency benefits it provides.

There is a pending design change in AX4, AX2009 and the future AX6 that will request FFO cursors even when

pessimistic locking is used. An announcement of this change will be made on the AX Performance blog:

http://blogs.msdn.com/axperf when completed.

2. Index Management

 Like most other SQL Server applications, Dynamics AX takes full advantage of indexes. However, there are a

number of very important considerations when adding and/or modifying indexes on an AX database;

http://support.microsoft.com/kb/973877
http://blogs.msdn.com/axperf

Indexes must be created/modified using the Application Object Tree (AOT) function within AX

 Once the AX object model is aware of the new Index or Index modification, an AX synchronization process

must be run; this process creates/modifies the actual SQL Server Index(es). NOTE: Index changes made directly

against the SQL Server database run the risk of being dropped during a subsequent synchronization run.

Observe basic and accepted practices regarding clustered indexes:

 All tables should have a clustered index.

Indexes that maximize the benefit of clustering are those which are frequently used to return a range of rows.

The clustered index key should not include columns which are updated.

Consider the key length when choosing a clustered index. A long clustered key can inflate the size of non-clustered

indexes on the same table. This is because every non-clustered index ‘embeds’ the clustering key as the mechanism to

find the path back to the actual data row.

Unique Indexes

 Ensure that any index which is known to be unique is defined as such in the AOT (as primary, or

AllowDuplicates:No). Unique indexes serve as cache lookup keys for AX record-level caching. NOTE: in AX4

only the primary key is a cache lookup key.

Index Fragmentation considerations

 Many indexes defined in the AX schema do not cause any performance degradation even if fragmentation

levels are very high. As a rule of thumb, we can postpone rebuilding AX indexes that are used exclusively for

locating a single row.

Examples of such indexes are:

 RecId index on any table

 TransIdIdx on SalesLine table

We can use the following criteria for identifying such indexes:

 Are unique, due to AllowDuplicates::No or are designated as the primary key.

 Are generally composed of two key columns, one of them being DataAreaId.

The following query can be used to locate indexes meeting these criteria:

select OBJECT_NAME(id), name from

sysindexes

where indexproperty(id, name, 'IsUnique') = 1 and keycnt = 2 and INDEX_COL(OBJECT_NAME(id), indid,

1) =

'DATAAREAID'

Fragmentation is not the only reason for rebuilding indexes; The DBA should also consider rebuilding indexes

whenever large amounts of data have been removed from the AX database. Doing so will reclaim space and make it

available for reuse.

Consider rebuilding indexes for tables affected by the following processes:

 The AX default cleanup processes are run. These processes are module specific and can generally be located

under Periodic->Cleanup.

 Intelligent Data Management Framework (IDMF) is used to purge or archive data.

Missing Indexes

SQL Server has the ability to identify missing indexes by way of a number Dynamic Management Objects. These

objects can be monitored to detect cases where the Query optimizer believes that adding an index would help

performance. These DMO’s and their use are documented here: http://msdn.microsoft.com/en-

us/library/ms345524(v=SQL.100).aspx

http://msdn.microsoft.com/en-us/library/ms345524(v=SQL.100).aspx
http://msdn.microsoft.com/en-us/library/ms345524(v=SQL.100).aspx

NOTE: whenever an index is added to the AX schema, it should be carefully tested by the DBA before being put into

the production environment.

3. SQL Server statistics

 The SQL Server query optimizer is tasked with creating optimal query plans based on a defined set of heuristics. A

major piece of these heuristics is the SQL Server statistics; they help the optimizer by supplying details about the data

distribution, last time stats were updated, and so on.More about SQL Statistics found in the following Books-Online

topic here: http://msdn.microsoft.com/en-us/library/ms190397(v=SQL.100).aspx For the SQL query optimizer to do its

job effectively the statistics must be kept up-to-date; the following tips are recommended guidelines for AX.

Enable Auto-Update statistics

 Enabling auto-updates statistics allows the SQL Server Engine to automatically update statistics based on

specific threshold values. Follow guidance provided in the Books-Online topic listed above.

Enable Auto-Create statistics

 Enabling auto-create statistics allows the SQL Server Engine to automatically create new statistics on columns

as necessary. Follow guidance provided in the Books-Online topic listed above.

There is a startup cost associated with the creation of new statistics due to the Auto-Create statistics setting. This cost

can result in high CPU on a new AX deployment due to the large number of composite indexes that exist in the AX

database. The additional CPU consumption will subside after a short time (a few hours) of a steady AX user workload.

You can preempt much of this statistics startup cost through the use of the system stored procedure

sp_createstats. You can use sp_createstats to initially create statistics on all columns participating in an index:

sp_createstats @indexonly = 'indexonly'

Auto-update async should be left at its default OFF setting. It was previously advised to enable Auto-update async

but this recommendation has now been retracted. We have identified several processes, such as Update Inventory

on Hand and General Ledger Post, which have the potential to degrade if Auto-update async is enabled. Also,

ongoing performance testing did not show a material benefit to any AX process if Auto-update async is enabled.

http://msdn.microsoft.com/en-us/library/ms190397(v=SQL.100).aspx

4. Parameterized Query considerations

 Before a query, batch, stored procedure, trigger, prepared statement, or dynamic SQL statement begins execution

on an instance of Microsoft SQL Server, it is compiled into a query plan by the SQL Server Database Engine query

optimizer. Then the plan is executed to produce a result-set. The compiled query plans are stored into a part of SQL

Server memory that is called the plan cache. Reusing complied query plans offer significant performance benefits

because they save resources by not having to compile every time the query is executed. One way to further enhance

this benefit is by using Parameterized queries, that is; Queries are compiled with parameters rather than literal values.

By doing this the query can be compiled for a single parameter value, and yet be reused for many other parameter

values.

By default, Dynamics AX parameterizes all queries to take advantage of these performance enhancements but there

are a number of conditions where parameterized queries may not be the best choice. For example, to be effective,

parameterized queries work best when;

 The distribution of the data being retrieved is evenly distributed

 The query result-sets contain approximately the same number of rows

 The set of used parameter values would typically generate the same query plan

As you can see, there are numerous conditions where parameterized queries may not be the best choice for a specific

AX implementation. These conditions are generally related to a phenomenon known as parameter sniffing. Details

about parameter sniffing can be found in the following blog:

http://blogs.msdn.com/queryoptteam/archive/2006/03/31/565991.aspx

Basically, when creating a query plan, the SQL Server optimizer uses the parameter values passed the ‘first time’ to

create the cached execution plan for this query and this plan will be utilized for all subsequent calls to this query

including parameter values that might have prompted a different query execution plan. For example; let’s suppose

we have a simple parameterized query that does the following: select * from table1 where country = @Param1. Now

imagine that the query is compiled and cached where the first invocation passes the value ‘USA’ for the parameter

@Param1. Now let’s suppose the second invocation uses the value ‘Norway’ as the parameter value. Using the

points above as a guide, what could be the result?

The distribution of the data being retrieved is evenly distributed.

http://blogs.msdn.com/queryoptteam/archive/2006/03/31/565991.aspx

 In this case, everything would work fine, however if either value was highly skewed, that is; many more of one

value than the other, then we have typically seen that an optimal plan will be created for the first passed value, but

this plan may not be the best choice for the ‘next value’.

The query result-sets contain approximately the same number of rows.

 This is very similar to the description above

The set of used parameter values would typically generate the same query plan.

 Again, this is very similar to the description above

Because these are data conditions generally out of the control of the AX application, there are a number of ways to

successful address these conditions:

AX Server configuration

 The AX Server Configuration Utility has two configuration settings pertaining to query

parameterization. These are located on the utility’s Database Tuning tab under Auto Generation Options:

 Use literals in join queries from forms and reports

 Use literals in complex joins from X++

Checking either of these settings will suppress parameterization of queries described in the respective setting

label. The default for both settings is OFF and it is not recommended to change either one.

X++ ForcedLiterals

ForceLiterals is a find option that can be used with SELECT statements issued through X++. When present on

a SELECT statement ForceLiterals will suppress parameterization and literal values will appear in the WHERE

clause. The effect of ForceLiterals is that the SQL statement will recompile each time it is executed.

To accomplish the same effect for a form’s datasource, we include the following in the datasource’s init

method:

this.query().literals(true);

In both cases where we specify literals to be used, we must exercise caution that doing so does not introduce the

security threat of SQL injection; the literal values should not be derived from a user accessible field on a form. We

must also consider the cost of repeated compilation when forcing literals in place of parameterization.

NOTE: the XML representation of a query plan (captured using DMO’s or by saving an execution plan in XML):

http://msdn.microsoft.com/en-us/library/ms190646.aspx

identifies the parameter values that were used to compile the query, as well as the current runtime parameter value.

Comparing these values can be highly valuable in diagnosing parameter sniffing issues.

Plan Guides force specific behavior for certain ‘problematic’ queries. Books-online documentation:

http://technet.microsoft.com/en-us/library/ms190417.aspx

Use of plan guides to pass the following:

OPTION(RECOMPILE)

OPTION(OPTIMIZE FOR…)

OPTION(OPTIMIZE FOR UNKNOWN)

NOTE: using this method against the AX 2009 derived queries is complex because of the extensive use of API cursors.

This method should be used in moderation.

SQL Server trace flag: 4136

 This new trace flag effectively disables the parameter sniffing process at a global SQL Server level, while

preserving the benefits of plan cache reuse.

The following KB Article provides more information about how to obtain the Cumulative Update to enable the

traceflag, as well as details under which conditions the traceflag is ignored. KB:

http://support.microsoft.com/kb/980653

Evaluate whether your AX 2009 implementation will benefit from this trace flag.

http://msdn.microsoft.com/en-us/library/ms190646.aspx
http://technet.microsoft.com/en-us/library/ms190417.aspx
http://support.microsoft.com/kb/980653

NOTE: this traceflag is to be used where parameter sniffing is problematic because of skewed data or other reasons

pointed out in the following blog: http://blogs.msdn.com/queryoptteam/archive/2006/03/31/565991.aspx it should

be used only under fully tested conditions that have proven that the traceflag is beneficial for your specific workload.

5. Concurrency considerations

 The AX application supports many (hundreds or thousands of) users accessing the database at the same time.

When some of these users attempt to modify the same data in a database at the same time, a system of controls

must be implemented so that modifications made by one person do not adversely affect those of another person.

This is called concurrency control. There are a number of important considerations to achieve optimal concurrency

control when using the AX application:

Read Committed Snapshot Isolation (RCSI): http://technet.microsoft.com/en-us/library/ms177404.aspx

RCSI is the recommended setting for the AX database. This concurrency model allows ‘writers to block readers’ but

also ‘readers do not block writes’. This model provides for excellent performance while also ensuring that that

database operations maintain transactional consistency. NOTE: this is not the default SQL Server setting!

When upgrading to Microsoft Dynamics AX 2009, some AX upgrade scripts require RCSI to be disabled during the

upgrade process. If RCSI is turned off for the upgrade it must be re-enabled before the actual OLTP workload is

restarted. RCSI should be enabled during the entire Microsoft Dynamics AX 2012 upgrade process in order to prevent

additional blocking during pre-processing and delta-processing script execution.

Lock Escalation

Lock escalation is a SQL Server mechanism that converts many fine-grain locks into fewer coarse-grain locks.

This reduces system overhead; however it also increases the probability of concurrency contention. This trade-

off has often caused blocking and sometimes even deadlocking in the AX application. Previous versions of

SQL Server permitted controlling lock escalation (trace flags 1211 and 1224), but this was only possible at an

instance-level granularity.

SQL Server 2008 offers a better solution. A new ALTER TABLE SET (LOCK_ESCALATION = { AUTO | TABLE |

DISABLE }) option has been introduced to control lock escalation at a table level. Now, lock escalation can be

disabled at a table by table basis. Details can be found here: http://msdn.microsoft.com/en-

us/library/ms190273.aspx

NOTE: Lock escalation can be monitored by a trace event as described in the following article:

http://msdn.microsoft.com/en-us/library/ms190723.aspx

http://blogs.msdn.com/queryoptteam/archive/2006/03/31/565991.aspx
http://technet.microsoft.com/en-us/library/ms177404.aspx
http://msdn.microsoft.com/en-us/library/ms190273.aspx
http://msdn.microsoft.com/en-us/library/ms190273.aspx
http://msdn.microsoft.com/en-us/library/ms190723.aspx

Pessimistic locking on custom tables

SQL Server has a pessimistic concurrency mode: Snapshot Isolation; however the AX application team

implements its own pessimistic concurrency model to more easily satisfy the AX object model requirements.

It is important to follow the specific AX pessimistic implementation guidelines when you have created your

own custom AX tables: http://msdn.microsoft.com/en-us/library/bb190073(AX.10).aspx

Conclusions:

Utilizing standard SQL Server 2008 and AX 2009 best practices generally provide good performance. This article goes

into much more depth; pointing out very specific functionality that will allow the AX 2009 DBA to maximize the

performance, scalability, and reliability on their implementation on SQL Server 2008. Although this article is meant for

current/future AX customers, much of the information presented below is applicable to other ISV applications as well.

http://msdn.microsoft.com/en-us/library/bb190073(AX.10).aspx

Top SQL Server 2005 Performance Issues for OLTP

Applications

OLTP work loads are characterized by high volumes of similar small transactions.

It is important to keep these characteristics in mind as we examine the significance of database design, resource

utilization and system performance. The top performance bottlenecks or gotchas for OLTP applications are outlined

below.

Database Design issue if….

 Too many table joins for frequent queries. Overuse of joins in an OLTP application results in longer running

queries & wasted system resources. Generally, frequent operations requiring 5 or more table joins should be

avoided by redesigning the database.

 Too many indexes on frequently updated (inclusive of inserts, updates and deletes) tables incur extra index

maintenance overhead. Generally, OLTP database designs should keep the number of indexes to a functional

minimum, again due to the high volumes of similar transactions combined with the cost of index

maintenance.

 Big IOs such as table and range scans due to missing indexes. By definition, OLTP transactions should not

require big IOs and should be examined.

 Unused indexes incur the cost of index maintenance for inserts, updates, and deletes without benefiting any

users. Unused indexes should be eliminated. Any index that has been used (by select, update or delete

operations) will appear in sys.dm_db_index_usage_stats. Thus, any defined index not included in this DMV

has not been used since the last re-start of SQL Server.

CPU bottleneck if…

 Signal waits > 25% of total waits. See sys.dm_os_wait_stats for Signal waits and Total waits. Signal waits

measure the time spent in the runnable queue waiting for CPU. High signal waits indicate a CPU bottleneck.

 Plan re-use < 90% . A query plan is used to execute a query. Plan re-use is desirable for OLTP workloads

because re-creating the same plan (for similar or identical transactions) is a waste of CPU resources.

Compare SQL Server SQL Statistics: batch requests/sec to SQL compilations/sec. Compute plan re-use as

follows: Plan re-use = (Batch requests - SQL compilations) / Batch requests. Special exception to the plan re-

use rule: Zero cost plans will not be cached (not re-used) in SQL 2005 SP2. Applications that use zero cost

plans will have a lower plan re-use but this is not a performance issue.

 Parallel wait type cxpacket > 10% of total waits. Parallelism sacrifices CPU resources for speed of execution.

Given the high volumes of OLTP, parallel queries usually reduce OLTP throughput and should be avoided.

See sys.dm_os_wait_stats for wait statistics.

Memory bottleneck if…

 Consistently low average page life expectancy. See Average Page Life Expectancy Counter which is in the

Perfmon object SQL Server Buffer Manager (this represents is the average number of seconds a page stays in

cache). For OLTP, an average page life expectancy of 300 is 5 minutes. Anything less could indicate memory

pressure, missing indexes, or a cache flush.

 Sudden big drop in page life expectancy. OLTP applications (e.g. small transactions) should have a steady (or

slowly increasing) page life expectancy. See Perfmon object SQL Server Buffer Manager.

 Pending memory grants. See counter Memory Grants Pending, in the Perfmon object SQL Server Memory

Manager. Small OLTP transactions should not require a large memory grant.

 Sudden drops or consistenty low SQL Cache hit ratio. OLTP applications (e.g. small transactions) should have

a high cache hit ratio. Since OLTP transactions are small, there should not be (1) big drops in SQL Cache hit

rates or (2) consistently low cache hit rates < 90%. Drops or low cache hit may indicate memory pressure or

missing indexes.

IO bottleneck if…

 High average disk seconds per read. When the IO subsystem is queued, disk seconds per read increases. See

Perfmon Logical or Physical disk (disk seconds/read counter). Normally it takes 4-8ms to complete a read

when there is no IO pressure. When the IO subsystem is under pressure due to high IO requests, the average

time to complete a read increases, showing the effect of disk queues. Periodic higher values for disk

seconds/read may be acceptable for many applications. For high performance OLTP applications,

sophisticated SAN subsystems provide greater IO scalability and resiliency in handling spikes of IO activity.

Sustained high values for disk seconds/read (>15ms) does indicate a disk bottleneck.

 High average disk seconds per write. See Perfmon Logical or Physical disk. The throughput for high volume

OLTP applications is dependent on fast sequential transaction log writes. A transaction log write can be as

fast as 1ms (or less) for high performance SAN environments. For many applications, a periodic spike in

average disk seconds per write is acceptable considering the high cost of sophisticated SAN subsystems.

However, sustained high values for average disk seconds/write is a reliable indicator of a disk bottleneck.

 Big IOs such as table and range scans due to missing indexes.

Top wait statistics in sys.dm_os_wait_stats are related to IO such as ASYNCH_IO_COMPLETION, IO_COMPLETION,

LOGMGR, WRITELOG, or PAGEIOLATCH_x.

Blocking bottleneck if…

 Index contention. Look for lock and latch waits in sys.dm_db_index_operational_stats. Compare with lock and

latch requests.

 High average row lock or latch waits. The average row lock or latch waits are computed by dividing lock and

latch wait milliseconds (ms) by lock and latch waits. The average lock wait ms computed from

sys.dm_db_index_operational_stats represents the average time for each block.

 Block process report shows long blocks. See sp_configure “blocked process threshold” and Profiler “Blocked

process Report” under the Errors and Warnings event.

 Top wait statistics are LCK_x. See sys.dm_os_wait_stats.

 High number of deadlocks. See Profiler “Graphical Deadlock” under Locks event to identify the statements

involved in the deadlock.

Network bottleneck if…

 High network latency coupled with an application that incurs many round trips to the database.

 Network bandwidth is used up. See counters packets/sec and current bandwidth counters in the network

interface object of Performance Monitor. For TCP/IP frames actual bandwidth is computed as packets/sec *

1500 * 8 /1000000 Mbps.

Table-Valued Functions and tempdb Contention

Overview
tempdb contention can be caused by using multi-statement table-valued functions (TVFs) in certain
parts of queries, such as the WHERE clause of a query or the column list of a SELECT query. With a multi-
statement TVF, a table variable is created and dropped on each call to the TVF, leading to potentially
thousands of table variable creations, allocations, and deallocations for a single query. Simultaneous
execution of these queries that have multi-statement TVFs can create contention, and this contention
can negatively affect the performance of SQL Server even if best practices for tempdb configuration are
applied.

This technical note explores the detection, cause, and elimination of tempdb contention caused by using
multi-statement TVFs in certain parts of queries. The paper uses examples to demonstrate several
options for reducing contention and provides extensive links for more detailed information.

NOTE: This technical note is intended for experienced database administrators (DBAs) and software
developers who have an understanding of Microsoft SQL Server fundamentals.

Detecting tempdb Contention

When troubleshooting a problem with SQL Server performance, the first question to ask is: “What is SQL
Server waiting for?” For the answer, you can use the Dynamic Management View (DMV)
sys.dm_exec_requests.

Querying the sys.dm_exec_requests DMV returns information about each request that is executing
within SQL Server. The query shows you information about currently executing user processes that are
waiting: what each process is currently doing and what each process is waiting for.

The following code shows such a query.

SELECT

 r.session_id

 ,r.status

 ,r.command

 ,r.database_id

 ,r.blocking_session_id

 ,r.wait_type

 ,AVG(r.wait_time) AS [WaitTime]

 ,r.wait_resource

FROM

 sys.dm_exec_requests AS r

 INNER JOIN

 sys.dm_exec_sessions AS s ON(r.session_id = s.session_id)

WHERE

 r.wait_type IS NOT NULL

 AND s.is_user_process = 1

GROUP BY GROUPING SETS((

 r.session_id

 ,r.status

 ,r.command

 ,r.database_id

 ,r.blocking_session_id

 ,r.wait_type

 ,r.wait_time

 ,r.wait_resource), ())

NOTE: You may also find it helpful to query sys.dm_os_wait_stats for evidence of PAGELATCH waits.
While the sys.dm_os_wait_stats DMV does not link PAGELATCH waits to a specific session or wait
resource, high levels of PAGELATCH waits may indicate that further investigation into allocation
contention is needed.

For example, running the query on a poorly performing SQL Server may return the following result set.

Table 1. First result set showing contention on tempdb

session_id status command database_id blocking_session_id wait_type WaitTime wait_resource

109 suspended INSERT 5 600 PAGELATCH_UP 29 2:1:1

118 suspended INSERT 5 600 PAGELATCH_UP 24 2:1:1

120 suspended INSERT 5 600 PAGELATCH_UP 16 2:1:1

150 suspended INSERT 5 600 PAGELATCH_UP 24 2:1:1

165 suspended INSERT 5 600 PAGELATCH_UP 24 2:1:1

175 suspended INSERT 5 600 PAGELATCH_UP 1 2:1:1

206 suspended INSERT 5 600 PAGELATCH_UP 6 2:1:1

210 suspended INSERT 5 600 PAGELATCH_UP 5 2:1:1

242 suspended INSERT 5 600 PAGELATCH_UP 30 2:1:1

247 suspended INSERT 5 600 PAGELATCH_UP 15 2:1:1

259 suspended INSERT 5 600 PAGELATCH_UP 7 2:1:1

260 suspended INSERT 5 600 PAGELATCH_UP 7 2:1:1

305 suspended INSERT 5 600 PAGELATCH_UP 29 2:1:1

358 suspended INSERT 5 600 PAGELATCH_SH 1 2:1:1

361 suspended INSERT 5 600 PAGELATCH_UP 24 2:1:1

370 suspended INSERT 5 600 PAGELATCH_UP 17 2:1:1

401 suspended SELECT 5 600 PAGELATCH_UP 24 2:1:1

419 suspended INSERT 5 600 PAGELATCH_UP 17 2:1:1

450 suspended INSERT 5 600 PAGELATCH_UP 16 2:1:1

482 suspended INSERT 5 600 PAGELATCH_UP 21 2:1:1

492 suspended INSERT 5 600 PAGELATCH_UP 26 2:1:1

510 suspended INSERT 5 600 PAGELATCH_UP 10 2:1:1

518 suspended INSERT 5 600 PAGELATCH_UP 29 2:1:1

540 suspended INSERT 5 600 PAGELATCH_UP 24 2:1:1

561 suspended INSERT 5 600 PAGELATCH_UP 21 2:1:1

562 suspended INSERT 5 600 PAGELATCH_UP 29 2:1:1

607 suspended INSERT 5 600 PAGELATCH_UP 29 2:1:1

609 suspended INSERT 5 600 PAGELATCH_UP 22 2:1:1

617 suspended INSERT 5 600 PAGELATCH_UP 9 2:1:1

656 suspended INSERT 5 600 PAGELATCH_UP 7 2:1:1

662 suspended INSERT 5 600 PAGELATCH_UP 17 2:1:1

665 suspended INSERT 5 600 PAGELATCH_UP 25 2:1:1

667 suspended INSERT 5 600 PAGELATCH_UP 11 2:1:1

NULL NULL NULL NULL NULL NULL 18 NULL

NOTE: When using grouping sets with one empty set of parentheses as in the preceding example, one
row has NULLs for all columns except the aggregated column. The aggregated column in this one row is
an aggregate of the aggregations. In the example above, the WaitTime column is averaged for each
process, and the grouped row is an average of the averages.

In the earlier example, many processes are blocked by session_id 600, but because none of these
queries are waiting for locks, this is not considered lock blocking. The wait_type shows that the
suspended queries are waiting for PAGELATCH_UP and shows that the suspended queries have been
waiting for an average of 18 milliseconds (ms). While 18 ms is a relatively short period of time, the large
number of processes being blocked by a single resource means that cumulative wait degrades system
performance and leads to long waits for the query response for users.

The database_id in the earlier example is 5, but this is not the location of the resource for which the
processes are waiting. To find the location of the bottleneck, see the wait_resource column. In the
earlier example, every process is waiting for a resource identified as 2:1:1. For a PAGELATCH, this
resource description follows the format DatabaseID:fileID:pageID.

A databaseID of 2 is always tempdb. A fileID of 1 is always the primary data file for a database (fileID 2 is
the transaction log). These results therefore show that there is contention on pageID 1 of the primary
data file on tempdb.

From the results in Table 1 and recognizing that the contention is on fileID 1, an experienced DBA may
decide that what is needed is one equally sized data file for each core, as recommended in Storage Top
10 Best Practices (http://technet.microsoft.com/en-us/library/cc966534.aspx). However, a query for
tempdb files on this 8-core computer shows that it already has 8 equally sized tempdb data files, as
shown in Table 2.

SELECT DB_NAME(database_id) as database_name, physical_name, size

FROM sys.master_files

WHERE DB_NAME(database_id) = 'tempdb'

Table 2. Results from sys.master_files shows tempdb with eight equally sized data files

(Note that this computer also has eight processor
cores, though this is not visible here. The number of
cores can usually be obtained by running msinfo32
from a command prompt.)

NOTE: You can query sys.database_files from any
database to get a full list of the files and information
about whether the files are transaction logs or rows.
For more information about this file catalog view, see
sys.database_files (Transact-SQL)
(http://msdn.microsoft.com/en-
us/library/ms174397.aspx).

For the preceding example, a subsequent query of
sys.dm_exec_requests returns the following results, which show the contention moving to different files
in tempdb:

database_name physical_name size

Tempdb d:\mssql_tempdb\tempdev.mdf 32,768

tempdb D:\MSSQL_TEMPDB\templog.ldf 64

tempdb D:\MSSQL_TEMPDB\tempdev2.ndf 32,768

tempdb D:\MSSQL_TEMPDB\tempdev3.ndf 32,768

tempdb D:\MSSQL_TEMPDB\tempdev4.ndf 32,768

tempdb D:\MSSQL_TEMPDB\tempdev5.ndf 32,768

tempdb D:\MSSQL_TEMPDB\tempdev6.ndf 32,768

tempdb D:\MSSQL_TEMPDB\tempdev7.ndf 32,768

tempdb D:\MSSQL_TEMPDB\tempdev8.ndf 32,768

http://technet.microsoft.com/en-us/library/cc966534.aspx
http://technet.microsoft.com/en-us/library/cc966534.aspx
http://msdn.microsoft.com/en-us/library/ms174397.aspx

Table 3. Subsequent queries show contention moving to different files in tempdb

session_id status command database_id blocking_session_id wait_type WaitTime wait_resource

53 suspended INSERT 2 541 PAGELATCH_UP 31 2:3:1

65 suspended INSERT 5 541 PAGELATCH_UP 37 2:3:1

113 suspended SELECT 5 541 PAGELATCH_UP 24 2:3:1

152 suspended INSERT 5 541 PAGELATCH_UP 24 2:3:1

179 suspended INSERT 5 541 PAGELATCH_UP 5 2:3:1

182 suspended INSERT 5 541 PAGELATCH_UP 24 2:3:1

228 suspended INSERT 5 541 PAGELATCH_UP 34 2:3:1

882 suspended INSERT 5 740 PAGELATCH_UP 38 2:3:1

(Rows removed for brevity)

932 suspended INSERT 5 740 PAGELATCH_UP 26 2:3:1

NULL NULL NULL NULL NULL NULL 23 NULL

Further querying shows that the contention migrates among all of the data files periodically and does
not always appear on pageID 1.

For example, a query may return the following results, which show the contention on a different pageID.

Table 4. Contention sometimes shows on pageID 3 instead of pageID 1

session_id status command database_id blocking_session_id wait_type WaitTime wait_resource

118 suspended INSERT 5 493 PAGELATCH_UP 2 2:7:3

120 suspended INSERT 5 493 PAGELATCH_UP 5 2:7:3

150 suspended INSERT 5 490 PAGELATCH_UP 28 2:7:3

259 suspended INSERT 5 609 PAGELATCH_UP 28 2:7:3

260 suspended INSERT 5 609 PAGELATCH_UP 9 2:7:3

296 suspended INSERT 5 609 PAGELATCH_UP 25 2:7:3

305 suspended INSERT 5 609 PAGELATCH_UP 7 2:7:3

321 suspended INSERT 5 609 PAGELATCH_UP 0 2:7:3

351 suspended INSERT 5 609 PAGELATCH_UP 36 2:7:3

876 suspended INSERT 5 609 PAGELATCH_UP 2 2:7:3
(Rows removed for brevity)

NULL NULL NULL NULL NULL NULL 16 NULL

Understanding the Contention
After you have detected tempdb contention, you can start to determine what this contention means.

Overview of PFS, GAM, and SGAM Pages

Every data file begins with the same series of pages, which keep track of file allocation and usage:

 PageID 1 is the Page Free Space or PFS page.
The PFS page keeps track of which pages are allocated. It also keeps track of how full (in
percentage) those pages are.

 PageID 2 is the Global Allocation Map or GAM page.
The GAM page keeps track of which extents are allocated and which are available for allocation.

 PageID 3 is the Shared Global Allocation Map or SGAM page.
Because it is inefficient to allocate a full extent for small objects, the first eight pages for any
object are allocated on shared extents, and subsequent space for a table or index is allocated
on uniform extents. The SGAM page keeps track of which extents are shared extents.

You can verify the type of any page contained in the SQL Server buffer by querying
sys.dm_os_buffer_descriptors.

SELECT DB_NAME(database_id) as dbname,page_type

FROM sys.dm_os_buffer_descriptors

WHERE database_id = 2 AND file_id = 1 AND page_id = 1

You should change the database_id, file_id, and page_id to reflect the page you are interested in. For
example, querying sys.dm_os_buffer_descriptors for the wait_resource in Table 1 shows that pageID 1 is
a PFS page:

Table 5. Results of buffer descriptors

dbname page_type

tempdb PFS_PAGE

Whenever data is inserted into a table that does not have a clustered index, the PFS page must be
accessed to determine which page contains enough free space to hold the row that is being inserted. If
data is being inserted by several processes simultaneously, all of these processes need to find free space
in which to place the data.

These processes can all insert data into separate tables without contention on any Index Allocation Map
(IAM) pages because each table or index has its own set of IAMs. Each process, however, must refer to
the PFS page to find a page with enough free space to hold the row(s) being inserted, and each process
must then update the PFS page after data is inserted. If a large number of separate processes are
inserting data into heap tables, and those tables are in an area of a data file where allocation is tracked
by a single PFS, the referral to the PFS page and the subsequent updating of this page can become a
bottleneck.

Because many different processes can create and drop objects at the same time, and because by default
the first eight pages are allocated in shared extents, each process must refer to the SGAM to find
available shared extents, and each process must then update the SGAM when the extent is no longer
used. With a large number of processes dealing with rapid allocation and deallocation of pages on small
tables or indexes, SGAM updating can become a bottleneck.

In the earlier example, both PFS and SGAM contention can occur, and both can be caused by the same
set of processes.

Trace Flag 1118 Fails to Resolve the Issue

When DBAs identify SGAM contention, they typically enable trace flag 1118. After turning trace flag
1118 on in the earlier example, contention no longer shows on SGAM; contention may show on
additional PFS pages, however, and the total contention may actually increase.

Table 6. Enabling trace flag 1118 results in a change in the pattern of contention

session_id status command database_id blocking_session_id wait_type WaitTime wait_resource

65 suspended INSERT 5 932 PAGELATCH_UP 20 2:8:24264

113 suspended INSERT 5 932 PAGELATCH_UP 9 2:8:24264

152 suspended INSERT 5 932 PAGELATCH_UP 15 2:8:24264

179 suspended INSERT 5 932 PAGELATCH_UP 9 2:8:24264

182 suspended INSERT 5 932 PAGELATCH_UP 7 2:8:24264

210 suspended INSERT 5 932 PAGELATCH_UP 12 2:8:24264

212 suspended INSERT 5 932 PAGELATCH_UP 24 2:8:24264

214 suspended INSERT 5 932 PAGELATCH_UP 12 2:8:24264

(Rows removed for brevity)

791 suspended INSERT 5 932 PAGELATCH_UP 24 2:8:24264

NULL NULL NULL NULL NULL NULL 20 NULL

Querying sys.dm_os_buffer_descriptors shows that page 24264 is another PFS page. If you continue
querying in this example, you may notice that the contention migrates among PFS pages across the
tempdb data files, and the total contention has not been reduced.

Identifying the Cause of the Contention

A DBA can usually reduce or even eliminate tempdb contention, but there are some scenarios in which
the tempdb contention cannot be resolved by the DBA. The earlier example is such a case because the
contention is caused by what is happening in the query l

sys.dm_exec_requests contains a sql_handle column, a statement_start_offset column, and a
statement_end_offset column. You can use these columns to examine the waiting processes and see
which queries are causing the contention. To use these columns, modify the query that has been used to
get the waiting processes as follows.

SELECT r.session_id, r.status, r.command,

r.database_id, r.blocking_session_id, r.wait_type,

r.wait_time, r.wait_resource, t.text,

stmt = SUBSTRING(t.text, (r.statement_start_offset/2) + 1,

 CASE r.statement_end_offset

 WHEN -1 THEN DATALENGTH(t.text)

 ELSE (r.statement_end_offset - r.statement_start_offset)/2

 end)

FROM sys.dm_exec_requests r join sys.dm_exec_sessions s on r.session_id =

s.session_id

CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) t

WHERE wait_type IS NOT NULL and s.is_user_process = 1

This query returns the information you typically see with the waiting processes and returns the full
batch text in the TEXT column and the specific statement within each batch in the STMT column.

In the example, the results show many rows that are executing a function and a few that are executing a

stored procedure, as follows.

CREATE FUNCTION Person.USR_GetTopDuplicateCustomer (@base int)

RETURNS @retval TABLE

(

 AddressLine1 NCHAR(600) NOT NULL,

 AddressLine2 NCHAR(600) NULL,

 City NVARCHAR(30) NOT NULL,

 StateProvinceID INT NOT NULL,

 CT INT NOT NULL

)

AS

BEGIN

 INSERT INTO @retval

 select AddressLine1, AddressLine2, City, StateProvinceID, ct = COUNT(*)

 from Person.Address o

 WHERE AddressID >= @base

 GROUP BY AddressLine1, AddressLine2, StateProvinceID, City

 HAVING COUNT(*) > 1

 return

end

The specific line in the function is the text of the STMT column.

 INSERT INTO @retval

 select AddressLine1, AddressLine2, City, StateProvinceID, ct = COUNT(*)

 from Person.Address o

 WHERE AddressID >= @base

 GROUP BY PersonID, AddressLine1, AddressLine2, StateProvinceID, City

 HAVING COUNT(*) > 1

Another statement within another batch is also running among the contending statements.

SELECT DISTINCT

 (Select top 1 AddressLine1

 from Person.USR_GetTopDuplicateCustomer(AddressID)) as

AddressLine1,

 (Select top 1 ISNULL(AddressLine2, '')

 from Person.USR_GetTopDuplicateCustomer(AddressID)) as

AddressLine2,

 (SELECT TOP 1 City

 FROM Person.USR_GetTopDuplicateCustomer(AddressID)) as City,

 (SELECT TOP 1 StateProvinceID

 FROM Person.USR_GetTopDuplicateCustomer(AddressID)) as

StateProvinceID,

 (Select TOP 1 ct

 FROM Person.USR_GetTopDuplicateCustomer(AddressID)) as ct

FROM Person.AllAddresses a

WHERE AddressID IN

 (SELECT AddressID FROM Person.USR_IsInTop1000Customers(@base))

The TEXT column shows the full batch text and indicates that this statement is found in a stored
procedure named “Person.GetNextDuplicateCustomerSet.”

At this point in the example, you can see the call stack by querying sys.dm_exec_requests. The stored
procedure Person.GetNextDuplicateCustomerSet contains a SELECT query that calls the function
“Person.USR_IsInTop1000Customers” once for each row evaluated in the SELECT query. If the name of
the function is correct, you expect this to result in a maximum of 1,000 rows. The
Person.USR_GetTopDuplicateCustomer function is then called five times for each of those 1,000 rows—
one call for each column returned by the correlated subqueries in the column list. Although the
Person.USR_GetTopDuplicateCustomer TVF is simple, it is not constructed as an inline TVF.

Each call to a multi-statement TVF requires SQL Server to create a table variable to hold the return
values, allocate pages to that table as required, search for free space, and update the corresponding PFS
page as data is added. When the table variable goes out of scope, SQL Server must deallocate the space
used by that variable. All of this work on table variables occurs in tempdb. As larger numbers of users
begin to use the system, and as the size of the data contained in the table variables increases,
contention develops in the SGAM and PFS pages used to track allocation and space available for these
table variables.

This tempdb contention causes SQL Server to be unable to use its available resources efficiently. To
improve the throughput and to scale the application further, you must eliminate this “hot spot
contention.”

NOTE: Although there are calls to TVFs in the column list in this function, there are cases of tempdb
contention caused by queries with calls to TVFs only in the WHERE clause.

When Did Contention Start?

In the earlier example, contention appeared with as few as three concurrent users, and average wait
times for latches became higher than 10 ms with as few as 25 concurrent users. As the number of
concurrent users increased, both the number of processes waiting for latches and the average time each
process waited for a latch increased linearly. Changing the amount of data being stored in the table
variables also had a linear effect on latch wait time for any observed load level.

Reducing or Eliminating Contention

When you have identified the cause of the contention, you can start to determine how to reduce or
eliminate it.

In the earlier example, there is nothing further a DBA can do with configuration to alleviate the
contention. Changes must be made to the queries and to the method used to build the desired result

set. Assuming that the existing queries result in the correct data set, you should concentrate on pulling
this data set more efficiently.

The options to eliminate the contention are:

 Take advantage of the new syntax (as of Microsoft SQL Server 2005) to eliminate the need for
the correlated subqueries and to lower the number of times the TVFs are called.

 Use a JOIN clause to replace the correlated subquery in the WHERE clause.

 Eliminate the use of TVFs for the data in the SELECT list.

Each of these solutions may work in some scenarios.

Eliminating the Correlated Subqueries in the Selected Columns

Depending on the query, you can eliminate calls to TVFs in a SELECT list by doing any of the following:

 Use an APPLY operator in the FROM clause instead of individual correlated subqueries for each
column.

 Pull the data into a temporary or staging table and performing an appropriate JOIN to that
table.

 Rewrite the query so that temporary objects are not necessary to pull the appropriate data.

Using an APPLY Operator

In queries such as that in the earlier example, a single TVF is called multiple times in a series of
correlated subqueries, and each call to that function uses the same parameter. Prior to SQL Server 2005,
this was the only way to use this TVF to retrieve the data. SQL Server 2005, however, introduced the
APPLY operator, and this provides another option.

In the example, the query is constructed such that it uses the TVF in correlated subqueries on each
column: The table variable is built and dropped once for each column when the function is called on
each row. A CROSS APPLY or OUTER APPLY clause offers an advantage over the multiple correlated sub-
queries in the SELECT list because one table variable is returned for each row. In the example, the
function is called for each of the five columns, so it is possible to reduce the number of times the table
variable is returned for each row from five to one by using an APPLY operator.

Following is an example of writing a query to use the APPLY operator.

NOTE: You may need to modify the TVF to ensure that it only returns one row when only the first row of
the results set is used.

SELECT DISTINCT

 d.AddressLine1

 , d.AddressLine2

 , d.City

 , d.StateProvinceID

 , d.ct

FROM Person.AllAddresses a

CROSS APPLY Person.USR_GetTopDuplicateCustomer(AddressID) d

WHERE AddressID IN

 (SELECT AddressID FROM Person.USR_IsInTop1000Customers(@base))

This query replaces a call to Person.USR_GetTopDuplicateCustomer for each column in each row with a
single call to Person.USR_GetTopDuplicateCustomer for the row. This reduces the number of calls to
that stored procedure by 80 percent.

Note, however, that Person.USR_IsInTop1000Customers still gets called for each row of the results set,
and because the argument used to call it never changes, the same result set is returned every time. You
can therefore further reduce the potential for contention by obtaining this result set only once, as
follows.

-- retrieve the list of top 1,000 customers first

SELECT AddressID INTO #top1000Customers

FROM Person.USR_IsInTop1000Customers(@base)

-- use the temp table

-- instead of calling the TVF for every row

SELECT DISTINCT

 d.AddressLine1

 , d.AddressLine2

 , d.City

 , d.StateProvinceID

 , d.ct

FROM Person.AllAddresses a

CROSS APPLY Person.USR_GetTopDuplicateCustomer(AddressID) d

WHERE AddressID IN

 (SELECT AddressID FROM #top1000Customers)

NOTE: Multi-statement TVFs are very different from inline TVFs. Temporary objects are not created by
inline TVFs as they are with multi-statement TVFs. Inline TVFs may be another option to consider, but

note that even when using inline TVFs, using the correlated subqueries in the column list of the SELECT
is inefficient. You should therefore use the CROSS APPLY clause when possible with inline TVFs.

Using Temporary Tables with JOINS

Another option is to rewrite the procedure so that the multi-statement TVF is not called for each
column, or even for each row. Sometimes queries using multi-statement TVFs are written to reuse the
logic in a TVF; with SQL Server, however, you must consider how the data is retrieved.

In the earlier example, the purpose of the query is to determine which addresses out of the next 1,000
addresses appear more than once in the table. Although the user-defined function makes it easy to
reuse logic, the extra overhead of allocating and deallocating space for the table variable being returned
by the function puts an additional load on SQL Server and causes a bottleneck in tempdb where the
TVFs are created.

A JOIN clause can often replace the logic of the correlated subqueries in the column list of the SELECT
query. In the earlier example, a JOIN on a single object eliminates the need to make calls to the TVF in
the column list. If the data used in the SELECT lists can be pulled into a temporary table once per
execution of the stored procedure, a JOIN can then be used to include this data in the final result set
rather than using the TVFs in the query.

Using temporary staging tables provides a way to break down the logic if it is too complex to be
efficiently performed in a single query. Using temporary tables also lets temporary objects be created
only once per execution, and this reduces the potential for tempdb contention even more than using
CROSS APPLY does.

Following is an example of how you can use temporary tables with joins for this particular example.

-- get the next 1,000 addresses

SELECT TOP 1000 AddressID

INTO #top1000Customers

FROM Person.Address WHERE AddressID >= @base

ORDER BY AddressID

-- get the list of duplicate addresses

select AddressLine1, AddressLine2, City, StateProvinceID, ct = COUNT(*)

INTO #duplicateAddresses

FROM Person.Address

WHERE AddressID IN (SELECT AddressID FROM #top1000Customers)

GROUP BY AddressLine1, AddressLine2, StateProvinceID, City

HAVING COUNT(*) > 1

SELECT a.AddressID, a.AddressLine1, ISNULL(a.AddressLine2, '') AddressLine2,

 a.City, a.StateProvinceID, b.ct

FROM Person.Address a JOIN

#top1000Customers ta ON a.AddressID = ta.AddressID

JOIN

#duplicateAddresses b ON a.AddressLine1 = b.AddressLine1

 AND ((a.AddressLine2 = b.AddressLine2)

OR (a.AddressLine2 IS NULL AND b.AddressLine2 IS NULL))

 AND a.City = b.City AND a.StateProvinceID = b.StateProvinceID

Rewriting the Query to Eliminate the Need for Temporary Objects

When steps that perform significant transformations produce the query results, using a temporary table
gives SQL Server a way to calculate statistics on intermediate result sets and makes query performance
more predictable. However, with a simple query, the results can be efficiently limited within the query
without creating a temporary object.

In this example, the logic of the query can be expressed as follows.

/*

 get the list from this set of AddressIDs where duplicates exist,

 and give the count of the occurrences of this in the

next 1,000 addresses

*/

SELECT a.AddressID, a.AddressLine1, ISNULL(a.AddressLine2, '') AddressLine2,

 a.City, a.StateProvinceID, b.ct

FROM Person.Address a JOIN

(

 SELECT TOP 1000 AddressID FROM Person.Address WHERE AddressID >= @base

 ORDER BY AddressID

) ta ON a.AddressID = ta.AddressID -- limit to 1,000

JOIN

(

 select AddressLine1, AddressLine2, City, StateProvinceID, ct = COUNT(*)

 from Person.Address

 WHERE AddressID >= @base

 GROUP BY AddressLine1, AddressLine2, StateProvinceID, City

 HAVING COUNT(*) > 1

) b ON a.AddressLine1 = b.AddressLine1

 AND ((a.AddressLine2 = b.AddressLine2)

 OR (a.AddressLine2 IS NULL AND b.AddressLine2 IS NULL))

 AND a.City = b.City AND a.StateProvinceID = b.StateProvinceID

In this example, the additional work created by multiple calls to the multi-statement TVF is eliminated
by rewriting the query. This significantly increases the performance of each individual execution, and
more importantly, it removes the “hotspot” on tempdb.

No contention develops on tempdb when the same load is applied with the rewritten stored procedure,
which returns the same data. Contention does not develop on tempdb even when the load is increased
to 100 times as many users as the original load. Query performance improves from about 45 seconds
per execution with the original query to less than 1 second per execution with the rewritten query.
However, as frequently occurs with performance tuning, a bottleneck on a different resource develops
at the higher level of throughput.

Conclusion

Transact-SQL programming or querying practices that rapidly create and drop temporary objects can
create significant bottlenecks on tempdb, reducing SQL Server throughput even when best practices for
configuration of tempdb are followed.

Multi-statement TVFs create table variables as return values. Using multi-statement TVFs that are called
once or more for each row processed in a query can lead to tempdb contention because of the number
of times the table variables must be created and dropped in rapid succession.

In the examples described in this white paper, the contention tended to appear on one file at a time, but
contention migrated periodically from file to file. Contention was most often observed on the PFS page,
but contention occasionally appeared on the SGAM page also.

tempdb contention can be reduced or eliminated by altering the Transact-SQL programming so that
these TVFs are not called on each row. Alternately, you can create a temporary table once for each
execution if statistics are needed on an intermediate result set, or you can perform the entire operation
in a single query, removing the function logic to this query. The single-query alternative was
demonstrated in this white paper, eliminating the use of tempdb and therefore any contention on
tempdb. Avoiding the multi-line TVF produced the best query performance and eliminated the tempdb
contention.

Because of the tempdb contention that multi-statement TVFs can cause, you should avoid using multi-
statement TVFs when other ways of deriving the result set are available.

Maximizing Throughput with TVPs

Introduction

This technical note looks at considerations of whether to use the SqlBulkCopy, or Table Valued
Parameters (TVPs) in a customer scenario encountered as part of a CAT engagement. The decision of
which is better depends on several considerations which will be discussed. TVPs offer several
performance optimization possibilities that other bulk operations do not allow, and these operations
may allow for TVP performance to exceed other bulk operations by an order of magnitude, especially for
a pattern where subsets of the data are frequently updated.

Executive Summary

TVPs and MERGE operations make a powerful combination to minimize round trips and batch insert and
update data with high throughput. Parallel operation on naturally defined independent sets of data can
be performed efficiently like this. The TVP makes optimizations possible that are not possible with bulk
insert or other operations types. To get the most out of the operation, you must optimize your
underlying table as well as your method for inserting and updating the data. The principles followed in
this case emphasize these points:

· Do not create artificial keys with IDENTITY when it is not necessary. This creates a point of
contention on heavy, parallel insert operations.

· If old data key values will not expire, use a MERGE operation instead of DELETE and INSERT. This
minimizes data operations; rebalancing and page splits, and the amount of data that must be
replicated. If old data key values will expire, then test two operations of MERGE followed by a
deletion of only the expired keys rather than a DELETE and INSERT of the full data set.

· If not all the data will be changed, modify the “WHEN MATCHED” portion of the MERGE
statement to also check that the data that may change has changed, and only update the data
that is actually changed. This minimizes the number of rows of data that are actually modified,
and thus minimizes the amount of data that must be replicated to secondaries in Windows
Azure SQL Database environments.

Although these are best practices in any environment they become increasingly important in a shared
environment such as Windows Azure SQL Database.

Scenario

In a recent engagement, a problem was encountered in performance of inserting and updating data in
Windows Azure SQL Database. The scenario was:

· Data from hundreds of thousands of devices needs to be stored in Windows Azure SQL Database

· Each device stores approximately 8000 rows of configuration data across three tables in the
database

· Data for each device is updated approximately once per day

· Only the most current data is stored in Windows Azure SQL Database

· The data must be processed at a sustained rate of six devices per second (Approximately 48,000
rows per second)

The first concept tried was to delete the data for each device first, then use the BulkCopy API to insert
the new rows. Several worker role instances were used to scale out the processing of the data into the
database. However; when running this against an Azure SQL Database, this did not give the performance
the scenario demanded.

The second approach was to use Table Valued Parameters (TVPs) with stored procedures to do the
processing. In the stored procedures, the data was validated first. Next, all existing records were deleted
for the device being processed, and then the new data was inserted. This did not perform better than
the previous bulk insert option.

We were able to improve the process to meet the performance demands by making optimizations to
the tables themselves, and to the stored procedures in order to minimize the lock, latch, and Windows
Azure SQL Database specific contention the process initially encountered.

Optimizing the Process
Several optimizations were made to this process.

First, the underlying tables contained identity columns, and data needed to be inserted in sets from
several different processes. This created both latch, and lock contention. Latch contention was created
because each insert is performed only on the last page of the index, and several processes were trying
to insert to the last page simultaneously. Lock contention is created because the identity column was
the primary key and clustered index key, so all processes had to go through the process of having the
identity value created, then only one at a time could insert. To remedy this type of contention, other
values within the data were used as a primary key. In our example, we found composite keys of DeviceID
and SubCondition in one table, and a combination of three columns in the second that third tables that
could be used to maintain entity integrity. Since the IDENTITY column was not really necessary, it was
dropped.

An example of the optimization of the table is

Original Table Definition:

CREATE TABLE dbo.Table1

(

 RecordID BIGINT NOT NULL IDENTITY(1, 1),

 DeviceID BIGINT NOT NULL,

 SubCondition NVARCHAR(4000) NOT NULL,

 Value NVARCHAR(MAX) NOT NULL,

 SubValue TINYINT NOT NULL,

 CONSTRAINT [pk_Table1] PRIMARY KEY CLUSTERED

 (

 RecordID ASC

)

)

Optimized Table Definition:

CREATE TABLE dbo.Table1

(

 DeviceID BIGINT NOT NULL,

 SubCondition NVARCHAR(4000) NOT NULL,

 Value NVARCHAR(MAX) NOT NULL,

 SubValue TINYINT NOT NULL,

 CONSTRAINT [pk_Table1] PRIMARY KEY CLUSTERED

 (

 DeviceID ASC,

 SubCondition ASC

)

)

The second suboptimal part of the described process is that the stored procedure deleted the old data
for a device first, then re-inserted the new data for the device. This is additional maintenance of a data
structure as deletes can trigger re-balancing operations on an index, and inserts can result in page splits
as pages are filled. Making two data modifications, each with implicit maintenance work that must be
done, should be avoided when the data operation can be done with one operation. A “MERGE”
operation can be used in place of a DELETE then INSERT provided the updated set of data will not omit
previous rows of data. In other words, this works if no SubConditions for any DeviceID in the example
table will expire.

Any time data is modified in Windows Azure SQL Database, it must be replicated to two replicas. The
DELETE then INSERT method was inefficient in this as well since both the delete and the insert operation
must be replicated to the Azure SQL Database replicas. Using a MERGE with only the WHEN MATCHED
and WHEN NOT MATCHED conditions will eliminate this double operation, and thus eliminates half of

the data replication, but it still modifies every row of data. In the case of this scenario, at most, 10% of
the incoming data would actually be different from existing data. By adding an additional condition to
the MATCHED condition so that it reads “WHEN MATCHED AND (source.data <> target.data)” only the
rows that contained actual data differences were modified, which means that only the data that was
actually changed in the incoming data needed to be replicated to secondaries. Making this modification
minimized SE_REPL_SLOW_SECONDARY_THROTTLE, SE_REPL_ACK, and other SE_REPL_* wait types.

The last area of optimization we took was to ensure efficient joining with minimal chance for contention
among processes. This action was taken because the optimizer tended to want to scan both source and
target tables to perform a merge join when processing the MERGE operation. This was not only
inefficient, but caused significant lock contention. To eliminate this contention, the query was hinted
with “OPTION (LOOP JOIN)”.

An example of the MERGE written to minimize the amount of data that must be processed into the
tables is:

CREATE PROCEDURE [dbo].[TVPInsert_test]

 @TableParam TVPInsertType_test READONLY

AS

BEGIN

 MERGE dbo.Table1 AS target

 USING @TableParam AS source

 ON target.DeviceID = source.DeviceID

 and target.SubCondition = source.SubCondition

 WHEN MATCHED AND

 (Source.Value != target.Value

 OR Source.SubValue != Target.SubValue)

 THEN

 UPDATE SET Value = Source.Value, SubValue = Source.SubValue

 WHEN NOT MATCHED THEN

 INSERT (DeviceID, SubCondition, Value, SubValue)

 VALUES (Source.DeviceID, Source.SubCondition

 , Source.Value, Source.SubValue)

 OPTION (LOOP JOIN)

END

The Table Value Type definition created for use with this stored procedure:

CREATE TYPE dbo.TVPInsertType_test AS TABLE

(

 DeviceID BIGINT NOT NULL,

 SubCondition NVARCHAR(4000) NOT NULL,

 Value NVARCHAR(MAX) NOT NULL,

 SubValue TINYINT NOT NULL,

 PRIMARY KEY CLUSTERED

 (

 DeviceID ASC,

 XPath ASC

)

)

NOTE: Check the properties of joins before using join hints. Loop joins can explode in cost when scans,
including range scans, are performed on the inner table (the table accessed second). However; the join
in the MERGE is primary key to primary key. In this case, there is no chance for range scans on the inner
table, and therefore, the risk of cost explosion on the loop join is eliminated.

Testing the Optimization
Performance was tested by running multiple concurrent processes to process data. Elapsed time was
measured as only the time it took to execute the three stored procedures for the in-processing of the
new data. In different tests, the amount of data changed in each incoming data set varied so that
measurements could be taken with 10%, 18%, 25%, or 100% modified data. Since 10% was determined
to be the most that would ever be seen on any particular processing day, the changed percentage of
10% was used as the main indicator of the amount of improvement the optimizations would yield, and
other percentages were used to give an indication of what might happen should an exceptional day
produce much different data.

To test headroom, the tests were run with 4, 8, 12, and 16 concurrent processes. 8 was considered to be
the number of worker roles that would normally be processing data, so this was the main test of record.
Testing with 12 and 16 concurrent processes allowed us to determine if it was likely that adding worker
roles improved or hurt throughput, and thus evaluate whether bursts above the normal level of
processing could be handled by scaling out the worker role tier.

In the tests, data was processed with no delay between data sets, and the elapsed time to process the
data into the database was recorded. Initially, 8000 tests were run and statistics taken on it to give the
indication. However; the number of tests was reduced to 1000 when comparing just the original stored
procedures with the optimized stored procedures because the original method produced so much
contention that it became obvious with the lower number of tests that the optimizations were
worthwhile.

The comparison between stored procedures with 8 concurrent processes was:

Milliseconds Original Stored Procedures and Tables Optimized Stored Procedures and Tables

AVG 13095.27 422.91

Median 12553.00 356.00

Standard Deviation 3489.15 255.88

Max 32306 2750

Min 4460 210

MS/Device* 1636.91 52.86

* MS/Device was calculated as the average time/number of concurrent processes. It can be read as “On average, one device was

processed every ____ milliseconds.” One device every 53 milliseconds is well within the requirement of 6 devices per second.

Conclusion

The question of whether to use SqlBulkCopy or TVP is not always a question of which operates faster.
When not all the data that is received actually changes data in the table, using a TVP as a parameter for
a stored procedure, and optimizing appropriately can lead to very significant performance advantages
over other methods that must delete and insert full sets only.

Additionally, ensuring the underlying tables do not make use of IDENTITY columns or other order-forcing
mechanism allows for data modifications to be spread over multiple database pages, thus removing the
potential for contention for the single, last-page where ordered writes of new data will be performed.

Resolving PAGELATCH Contention on Highly Concurrent

INSERT Workloads

Introduction

Recently, we performed a lab test that had a large OLTP workload in the Microsoft Enterprise
Engineering Center. The purpose of this lab was to take an intensive Microsoft SQL Server workload and
see what happened when we scaled it up from 64 processors to 128 processors. (Note: This
configuration is supported as part of the Microsoft SQL Server 2008 R2 release.). The workload had
highly concurrent insert operations going to a few large tables.

As we began to scale this workload up to 128 cores, the wait stats captured were dominated by
PAGELATCH_UP and PAGELATCH_EX. The average wait times were tens of milliseconds, and there were
a lot of waits. These waits were not expected, or they were expected to be a few milliseconds only.

In this TechNote we will describe how we first diagnosed the problem and how we then used table
partitioning to work around it.

Diagnosing the Problem

When you see large waits for PAGELATCH in sys.dm_os_wait_stats, you will want to do the following.
Start your investigation with sys.dm_os_waiting_tasks and locate a task waiting for PAGELATCH, like
this:

SELECT session_id, wait_type, resource_description

FROM sys.dm_os_waiting_tasks

WHERE wait_type LIKE 'PAGELATCH%'

Example Output:

The resource_description column lists the exact page being waited for in the format:
<database_id>:<file_id>:<page_id>.

Using the resource_description column, you can now write this rather complex query that looks up all
these waiting pages:

SELECT wt.session_id, wt.wait_type, wt.wait_duration_ms

, s.name AS schema_name

, o.name AS object_name

, i.name AS index_name

FROM sys.dm_os_buffer_descriptors bd

JOIN (

SELECT *

, CHARINDEX(':', resource_description) AS file_index

, CHARINDEX(':', resource_description

 , CHARINDEX(':', resource_description)) AS page_index

, resource_description AS rd

FROM sys.dm_os_waiting_tasks wt

WHERE wait_type LIKE 'PAGELATCH%'

) AS wt

ON bd.database_id = SUBSTRING(wt.rd, 0, wt.file_index)

AND bd.file_id = SUBSTRING(wt.rd, wt.file_index, wt.page_index)

AND bd.page_id = SUBSTRING(wt.rd, wt.page_index, LEN(wt.rd))

JOIN sys.allocation_units au ON bd.allocation_unit_id = au.allocation_unit_id

JOIN sys.partitions p ON au.container_id = p.partition_id

JOIN sys.indexes i ON p.index_id = i.index_id AND p.object_id = i.object_id

JOIN sys.objects o ON i.object_id = o.object_id

JOIN sys.schemas s ON o.schema_id = s.schema_id

The query shows that the page we are waiting for is in a clustered index, enforcing the primary key, of a
table with this structure:

CREATE TABLE HeavyInsert (

 ID INT PRIMARY KEY CLUSTERED

 , col1 VARCHAR(50)

) ON [PRIMARY]

What is going on here, why are we waiting to access a data page in the index?

Background Information

To diagnose what was happening in our large OLTP workload, it’s important to understand how SQL
Server handles the insertion of a new row into an index. When a new row is inserted into an index, SQL
Server will use the following algorithm to execute the modification:

1. Record a log entry that row has been modified.
2. Traverse the B-tree to locate the correct page to hold the new record.
3. Latch the page with PAGELATCH_EX, preventing others from modifying it.
4. Add the row to the page and, if needed, mark the page as dirty.
5. Unlatch the page.

Eventually, the page will also have to be flushed to disk by a checkpoint or lazy write operation.

However, what happens if all the inserted rows go to the same page? In that case, you can see a queue
building up on that page. Even though a latch is a very lightweight semaphore, it can still be a contention

point if the workload is highly concurrent. In this customer case, the first, and only, column in the index
was a continuously increasing key. Because of this, every new insert went to the same page at the end
of the B-tree, until that page was full. Workloads that use IDENTITY or other sequentially increasing
value columns as primary keys may run into this same issue at high concurrency too.

Solution

Whenever many threads need synchronized access to a single resource, contention can occur. The
solution is typically to create more of the contended resource. In this case, the contended resource is
the last page in the B-tree.

One way to avoid contention on a single page is to choose a leading column in the index that is not
continually increasing. However, this would have required an application change in the customer’s
system. We had to look for a solution that could be implemented within in the database.

Remember that the contention point is a single page in a B-tree. If only there was a way to get more B-
trees in the table. Fortunately, there IS a way to get this: Partition the table. The table can be partitioned
in such a way that the new rows get spread over multiple partitions.

First, create the partition function and scheme:

CREATE PARTITION FUNCTION pf_hash (TINYNT) AS RANGE LEFT FOR VALUES (0,1,2)

CREATE PARTITION SCHEME ps_hash AS PARTITION pf_hash ALL TO ([PRIMARY])

This example uses four partitions. The number of partitions you need depends on the amount
of INSERT activity happening on the table. There is a drawback to hash-partitioning the table
like this: Whenever you select rows from the table, you have to touch all partitions. This means
that you need to access more than one B-tree – you will not get partition elimination. There is a
CPU cost and latency cost to this, so keep the number of partitions as small as possible (while
still avoiding PAGELATCH). In our particular customer case, we had plenty of spare CPU cycles,
so we could afford to sacrifice some time on SELECT statements, as long as it helped us increase
the INSERT rate.

Second, you need a column to partition on, one that spreads the inserts over the four partitions. There
was no column available in the table for this in the Microsoft Enterprise Engineering Center scenario.
However, it is easy to create one. Taking advantage of the fact that the ID column is constantly
increasing in increments of one, here is a simple hash function of the row:

CREATE TABLE HeavyInsert_Hash(

 ID INT NOT NULL

 , col1 VARCHAR(50)

 , HashID AS CAST(ABS(ID % 4) AS TINYINT) PERSISTED NOT NULL)

With the HashID column, you can cycle the inserts between the four partitions. Create the
clustering index in this way:

CREATE UNIQUE CLUSTERED INDEX CIX_Hash

ON HeavyInsert_Hash (ID, HashID) ON ps_hash(HashID)

By using this new, partitioned table instead of the original table, we managed to get rid of the
PAGELATCH contention and increase the insertion rate, because we spread out the high
concurrency across many pages and across several partitions, each having its own B-tree
structure. We managed to increase the INSERT rate by 15 percent for this customer, with the
PAGELATCH waits going away on the hot index in one table. But even then, we had CPU cycles
to spare, so we could have optimized further by applying a similar trick to other table with high
insert rates.

Strictly speaking, this optimization trick is a logical change in the primary key of the table. However,
because the new key is just extended with the hash value of the original key, duplicates in the ID column
are avoided.

The single column unique indexes on a table are typically the worst offender if you are experiencing
PAGELATCH contention. But even if you eliminate this, there may be other, nonclustered indexes on the
table that suffer from the same problem. Typically, the problem occurs with single column unique keys,
where every insert ends up on the same page. If you have other indexes in the table that suffer from
PAGELATCH contention, you can apply this partition trick to them too, using the same hash key as the
primary key.

Not all applications can be modified, something that is a challenge for ISVs. However, if you DO have the
option of modifying the queries in the system, you can add an additional filter to queries seeking on the
primary key.

Example: To get partition elimination, change this:

 SELECT * FROM HeavyInsert_Hash

 WHERE ID = 42

To this:

 SELECT * FROM HeavyInsert_Hash

 WHERE ID = 42 AND HashID = CAST(ABS(42 % 4) AS TINYINT)

With partition elimination, the hash partitioning trick is almost a free treat. You will still add one byte to
each row of the clustered index.

Bulk Loading Data into a Table with Concurrent Queries

Introduction

This article describes load scenarios for the common data warehouse scenario in which many queries
read data from a table while the table is loaded. The key question that administrator/developer has to
answer before deciding on a strategy is whether the read queries can afford to wait. If they can wait,
you won’t want to complicate the loading process by running queries simultaneously with the load.
However, if you have a business need to run queries while you load data, read on.

For these tests, we used Microsoft® SQL Server® 2008. We created two identical tables, each containing
18 million rows totaling 2.6 GB. One table was organized as a heap, and the other was organized as a
clustered index. These tables were used as targets into which data was bulk inserted. The input data file
for the bulk insert had 65,535 rows. We were not concerned about performance differences between
loading heaps or indexes; we were looking instead at the impact of queries concurrent with loads.

One of the test’s goals was to understand whether read committed snapshot isolation (RCSI) makes any
difference in query concurrency during loads. Does it help keep readers “unblocked” from the loading
process? And how does the WITH TABLOCK option affect the bulk loading process?

Bulk Insert into Heap Table

For our first test, we loaded data into the heap with RCSI turned off (that is, with the default READ
COMMITTED isolation level).

BULK INSERT Without TABLOCK hint, Read Committed

To imitate a data warehouse workload, we had five concurrent connections executing random SELECT
statements on the table. While the SELECT statements were running, we started the bulk load
operation. We used the sys.dm_exec_requests dynamic management view (DMV) to monitor requests
on the server, and we observed that the BULK INSERT statement was waiting in the queue with
LCK_M_IX wait type. Figure 1. shows the output of sys.dm_exec_requests while the BULK INSERT
statement was being blocked by the SELECT statement. As soon as the BULK INSERT operation started
loading data (Figure 2), all SELECT statements were blocked by the BULK INSERT statement until it
completed.

Figure 1 : BULK INSERT is waiting for the SELECT statement to complete

http://msdn.microsoft.com/en-us/library/ms188277.aspx

Figure 2 : BULK INSERT is loading data, and SELECT statements are blocked

BULK INSERT With TABLOCK hint, Read Committed

For this test, the same five SELECT statements were running concurrently when we started the bulk
insert, but this time we specified the WITH TABLOCK option. This time the sys.dm_exec_requests DMV
indicated that the BULK INSERT operation was waiting with the LCK_M_BU wait type (Figure 3). The
LCK_M_BU wait type occurs in SQL Server when a task is waiting to acquire a Bulk Update (BU) lock. Just
as with our first test, as soon as BULK INSERT started loading data, we saw that the SELECT statements
(Figure 4) were blocked by the bulk insert operation.

Figure 3: BULK INSERT with TABLOCK waiting for the SELECT statement to complete

Figure 4: SELECT statements waiting for the BULK INSERT statement with TABLOCK to complete

For our second test, we did the same test but with RCSI enabled. We wanted to see whether it would
produce different results.

BULK INSERT Without TABLOCK Hint, Read Committed Snapshot Isolation

When we loaded data into the heap table without using the TABLOCK hint, we did not observe any
waits. We concluded that option provides the maximum amount of concurrency, if you need to load
data into a table while you run SELECT queries.

 Figure 5: BULK INSERT into HEAP table with no TABLOCK hint

BULK INSERT with TABLOCK Hint, Read Committed Snapshot Isolation

Despite the fact that we were using RCSI while we were loading data into the table, the
sys.dm_exec_requests DMV indicated that the BULK INSERT operation was waiting for a LCK_M_IX lock
and that it was being blocked by an active SELECT statement.

Two other SELECT queries, which were issued after the BULK INSERT command started, were observed
waiting on the LCK_M_S lock type.

Figure 6: BULK INSERT into HEAP with the TABLOCK hint

As soon as the SELECT statement with session_id 59 (in Figure 6) was completed, BULK INSERT started
loading data, with the selects in sessions 55 and 60 continuing to wait until the BULK INSERT command
completed.

We did observe another interesting effect. So far we were dealing only with the BULK INSERT command.
But SQL Server 2008 introduced bulk optimization the INSERT INTO … SELECT statement. This operation
behaved like BULK INSERT in all the tests on the heap table. The only exception was that if we loaded
data into the table using INSERT INTO … SELECT with the TABLOCK hint under RCSI mode, none of the
readers was blocked.

Isolation level TABLOCK specified?
TIME to load data

(min:sec)
WAIT TYPE

Read Committed NO TABLOCK 3:34 LCK_M_IX

Read Committed WITH TABLOCK 1:28
LCK_M_BU*

Read Committed Snapshot Isolation NO TABLOCK 0:04 NONE

Read Committed Snapshot Isolation WITH TABLOCK 1:03 LCK_M_IX

*Very short; difficult to measure how long it was taken

Table 1: Duration of data loading into the heap table

BULK INSERT into a Table with Clustered Index

Next, we loaded data into the table with a clustered index and with RCSI turned off. This test didn’t
show any surprises and behaved as expected: All read operations were blocked while BULK INSERT was
loading data into the table.

If RCSI was enabled, no blocking was observed with BULK INSERT running with concurrent read
operations. As we expected, enabling RCSI eliminated locks for read operations that allowed
simultaneous loading of the data into the table.

Figure 7: BULK INSERT into a table with a clustered index, no TABLOCK hint, and RCSI turned off

Figure 8: BULK INSERT into a table with a clustered index, a TABLOCK hint, and RCSI turned off

Figure 9: BULK INSERT into a table with a clustered index and RCSI enabled

Figure 9 shows SELECT statements reading from the table while a BULK INSERT is running. BULK INSERT
behaved similarly both with and without the TABLOCK hint. This helped us conclude that if you are
loading data with RSCI enabled, the TABLOCK hint in the BULK INSERT statement doesn’t play a
significant role, as far as concurrency is concerned.

Isolation level TABLOCK specified?
TIME to load data

(min:sec)
WAIT TYPE

Read Committed WITH TABLOCK 6:49 LCK_M_IX

Read Committed NO TABLOCK 10:18 LCK_M_X

Read Committed Snapshot Isolation WITH TABLOCK 01:01 NONE

Read Committed Snapshot Isolation NO TABLOCK 0:48 NONE

Table 2: Duration of data loading into the table with a clustered index

The only time that readers were blocked by bulk operations was when data was loaded into an empty
table with the clustered index built on it. In that special case only, we observed that read operations
were blocked by bulk load operations and read operations if they had the LCK_M_SCH_S wait type. This
lock was released only after the loading batch was completed.

Conclusion

RSCI can provide great benefits, if you are bulk loading into the table with concurrent readers working
on it . In most cases, it provides you with the ability to read while bulk loads are performed. Bulk loading
does not affect the size of the version store in tempdb under RCSI; however, RCSI cannot be enabled at
the table level. It can be enabled on the entire database only. Therefore you should carefully analyze
your workload to ensure that other operations on your database will not cause the tempdb size to
explode.

Note that RCSI will introduce 14 noncompressible bytes into every row in every table in the database
(http://blogs.msdn.com/sqlserverstorageengine/archive/2008/03/30/overhead-of-row-versioning.aspx).
An alternative strategy for concurrent readers is to execute queries using the READ UNCOMMITTED
isolation level (also known as a dirty read), but this requires application changes, and it can deliver
transitionally inconsistent results. RCSI requires no application change, and it guarantees consistent
results.

http://blogs.msdn.com/sqlserverstorageengine/archive/2008/03/30/overhead-of-row-versioning.aspx

For more information about data loading strategies and scenarios, see the Data Loading Performance
Guide at http://msdn.microsoft.com/en-us/library/dd425070.aspx

http://msdn.microsoft.com/en-us/library/dd425070.aspx

Section 5: Real World Scenarios

Lessons Learned from Benchmarking a Tier 1 Core Banking

ISV Solution - Temenos T24

Background

TEMENOS T24 is a complete banking solution designed to meet the challenges faced by financial
institutions in today’s competitive market. By working with Microsoft, Temenos was able to take
advantage of the latest Windows and SQL Server technologies to tune T24 and run it well on Microsoft
platform. The lessons learned in the tech note were derived from T24 solution tuning engagement, but
most of them apply to other typical OLTP workloads as well.

Benchmark Overview

The benchmark environment, created to reflect real-world retail banking activity volumes, was

made up of 25 million accounts and 15 million customers across 2,000 branches. At peak

performance, the system processed 3,437 transactions per second (TPS) in online business

testing and averaged a record-breaking 5,203 interest accrual and capitalizations per second

during COB testing, processing 25 million accounts in less than two hours. The maximum CPU

utilization of the database server during the peak hour did not exceed 70%, providing

considerable additional capacity. In addition, the testing demonstrated near linear scalability (95

percent) in building up toward the final the hardware configuration.

T24 Architecture

The T24 solution consists of several layers, as shown below, including:

• User access

• Presentation (clients)

• Messaging/connectivity (web servers)

• Application (application servers)

• Database (database servers)

The application layer accepts messages in a Temenos-specific format called Open Financial Services
(OFS). All requests, from a web browser or from a non-web client, are translated into the OFS format
and then submitted to the application layer. The communication between the messaging/connectivity
layer and the application layer depends on the specific deployment and can use various channels,
including message queues, web services, and a native direct connection between the two layers.

T24 was originally designed to use jBASE, a multidimensional database that uses records consisting of
fields, multi-values (multi-valued lists), and sub-values. OFS messages are transformed into the internal
record format and processed by the application layer; the records are then stored in a jBASE database.

When SQL Server, a supported database system, is used, the jBASE records are transformed into XML
format (or in some cases left as BLOBs) and are stored in the database.

1. SQL Server File Configuration

1.1 Configure Data Files

The filegroup used for the T24 data should be composed of multiple files. Best practice is to use one file
for every two CPU cores on computer systems with 32 or more cores. On computer systems with less
than 32 cores, use the same number of files as the number of CPU cores (the ratio should be 1:1). The
data files should be equal in size. Note that the out-of-the-box configuration uses only one file in the
primary filegroup, so you need to add additional files for optimal configuration.
Pre-allocate enough space in the data files based on the initial size of the computer system. Monitor the
database free space and if necessary extend each file simultaneously so that all of the files have the
same amount of free space. SQL Server optimizes writes by spreading its write operations across the
files based on the ratio of free space among the files, so extending all files at once maintains this
optimization.

Leave the autogrowth setting on as an “insurance policy” so that SQL Server does not stop when it runs
out of space; however, do not rely on autogrowth to extend the database files as a standard way of
operating. While you should not allocate space for the data files in small units, if you allocate in very
large units during autogrowth, the application must wait (possibly several minutes) while the space is
allocated. Since you cannot control when autogrowth engages, allocate only by the space needed for a
few days of operations.
1.2 Configure Log File
The transaction log file, generally a sequentially written file, must be written as quickly as possible—
even before the data is written to the data files (the data portion can be rebuilt from the log if
necessary). While there is no performance benefit from using more than one file, multiple files can be
beneficial for maintenance purposes (for example, if you are running out of space on the log drive).
Adding physical devices to support the LUN can benefit performance.
1.3 Configure tempdb Files
SQL Server tempdb files are used for the storage of temporary data structures. The tempdb files are
responsible for managing temporary objects, row versioning, and online index rebuilds. T24 uses a read-
committed snapshot isolation level as its default isolation level, which uses row versioning. For more
information, see Isolation Levels in the Database Engine.
To ensure efficient tempdb operation:

Create one tempdb file per physical CPU core.

This reduces page free space (PFS) contention.
Pre-size the tempdb files, and make the files equal in size.

Do not rely on autogrow.
Use startup trace flag 1118.

For more information about this SQL Server trace flag, see the article Concurrency
Enhancements for the tempdb Database.

For information on how to set startup settings for SQL Server, see the article Configure Server Startup
Options (SQL Server Configuration Manager.
For further information, see the MSDN article Optimizing tempdb Performance.
2. SQL Server Memory Configuration

2.1 SQL Server Memory Settings

Configure the SQL Server “max server memory (MB)” setting by taking the amount of memory allocated
to the database system and subtracting one GB for every four cores (round up). This leaves the
operating system with enough memory to work efficiently without having to “grab” memory back from
SQL Server. For example, if the server has 64 GB of RAM and 24 cores, set the maximum memory to 58
GB (64 GB minus 6 [24 cores divided by 4]).

http://msdn.microsoft.com/en-us/library/ms189122.aspx
http://support.microsoft.com/kb/328551
http://support.microsoft.com/kb/328551
http://msdn.microsoft.com/en-us/library/ms345416.aspx
http://msdn.microsoft.com/en-us/library/ms345416.aspx
http://msdn.microsoft.com/en-us/library/ms175527.aspx

2.2 Lock Pages in Memory
To reduce SQL Server paging, you can grant the SQL Server service account “Lock Pages in Memory”
privilege through the Windows Group Policy editor.
For detailed instructions, see How to reduce paging of buffer pool memory in the 64-bit version of SQL

Server on the Microsoft® Support site.
3. Recovery Interval Change

Increasing the recovery interval server configuration option causes the checkpoint process to occur less
often. This can reduce the I/O load driven by checkpoints and improve the overall performance. During
lab testing, a recovery interval of 5–10 minutes has been determined to be the best setting for T24.
Before changing the recovery interval, you should consider its implication on the mean time to recovery
and recovery point objectives. Note that when using failover clustering, a longer recovery interval also
influences the failover time of the database instance.
For more information about the recovery interval option, see the article Recovery Interval Option.
4. Use Trace Flag 834

On computer systems with 64 or more CPU cores, use startup trace flag 834. When this trace flag is set,
SQL Server uses Windows large-page memory allocations for the buffer pool. Allocating buffer pages is
expensive, and turning on trace flag 834 boosts performance.
For more information about this SQL Server trace flag, see Microsoft Support Article 920093
5. Enable Receive-Side Scaling

You should enable Receive-Side Scaling (RSS) on the SQL Server network interface card (NIC) that is
serving the application servers. This setting is found on the Advanced Property tab of the network card.
Also, be sure that offloading options are enabled. See the Microsoft® Developer Network (MSDN®)
articles Introduction to Receive-Side Scaling and Receive-Side Scaling Enhancements in Windows Server
2008 for more information. If your NIC does not support these options, consider replacing it with one
that does.
You should configure the maximum number of RSS processors by setting the MaxNumRssCpus registry
key value to 8 on a computer system with 32 or more CPU cores. For computer systems with less than
32 cores, use the default setting.
The RSS base CPU number (RssBaseCpu) is the CPU number of the first CPU that RSS can use. RSS cannot
use the CPUs that are numbered below the base CPU number. You should set RssBaseCpu carefully so it
does not overlap with the starting CPU.
Lab testing has shown good results with setting both registry key values to 8 (on a computer system with
more than 32 cores); this means that 8 RSS processors are used starting with core number 8 to process
network traffic.

http://support.microsoft.com/kb/918483
http://support.microsoft.com/kb/918483
http://msdn.microsoft.com/en-us/library/ms191154.aspx
http://support.microsoft.com/kb/920093
http://msdn.microsoft.com/en-us/library/ff556942.aspx
http://download.microsoft.com/download/A/D/F/ADF1347D-08DC-41A4-9084-623B1194D4B2/RSS_Server2008.docx
http://download.microsoft.com/download/A/D/F/ADF1347D-08DC-41A4-9084-623B1194D4B2/RSS_Server2008.docx

Note: You should use the Windows RSS registry keys to configure these values instead of NIC settings
because NIC settings can be overridden by the Windows registry keys.
6. Index Fill-factor Change

In high-volume deployments (installations with 10 million accounts and more) of T24, you should
consider a lower fill factor with PAD_INDEX on for indexes on hot tables with high latch contention.
Consider a lower fill factor only if there is need to improve the performance and if excessive latch
contention has been observed. Lab testing has shown good results using a fill factor of 50% for hot
tables.
Page latch contention can be identified by examining the “SQL Server: Wait Statistics – Page Latch waits”
performance counter and querying the dynamic management view sys.dm_os_wait_stats using this query:
SELECT * FROM sys.dm_os_wait_stats
WHERE wait_type LIKE 'PAGELATCH%'
To identify which tables and which pages experience latch contention, you can use the following
queries:
SELECT *
FROM sys.dm_db_index_operational_stats (DB_ID('T24'), NULL, NULL, NULL)
ORDER BY [page_latch_wait_in_ms] DESC, tree_page_latch_wait_in_ms DESC
and
SELECT * FROM sys.dm_os_waiting_tasks
WHERE wait_type LIKE 'PAGELATCH%'

For more information on the fill-factor option for indexes, see the article Fill Factor.
7. Optimizing T24 XQueries – Promote Key Attributes/Elements to Relational

Columns

To improve query performance, start by identifying slow-running queries. The following query selects
the top 50 SQL Server statements ordered by the total CPU time (i.e., total amount of CPU time, in
microseconds, for all executions of each statement):
SELECT TOP 50
 SUM(query_stats.total_worker_time) AS "total CPU time",
SUM(query_stats.total_worker_time)/SUM(query_stats.execution_count) AS "avg CPU Time",
SUM(query_stats.execution_count) AS "executes",

http://msdn.microsoft.com/en-us/library/ms177459.aspx

SUM(query_stats.total_logical_reads) AS "total logical reads",
SUM(query_stats.total_logical_reads)/SUM(query_stats.execution_count) AS "avg logical reads",
SUM(query_Stats.total_logical_writes) AS "total logical writes",
SUM(query_Stats.total_logical_writes)/SUM(query_stats.execution_count) AS "avg logical writes",
 MIN(query_stats.statement_text) AS "statement text"
FROM
 (SELECT QS.*,
 SUBSTRING(ST.text, (QS.statement_start_offset/2) + 1,
 ((CASE statement_end_offset
 WHEN -1 THEN DATALENGTH(ST.text)
 ELSE QS.statement_end_offset END
 - QS.statement_start_offset)/2) + 1) AS statement_text
 FROM sys.dm_exec_query_stats AS QS
 CROSS APPLY sys.dm_exec_sql_text(QS.sql_handle) as ST) AS query_stats
GROUP BY query_stats.query_hash

ORDER BY 1 DESC
For T24, we have identified some of the XQueries on the list of the top list. An example of T24 XQuery is:
SELECT t.RECID,t.XMLRECORD
FROM F_HOLD_CONTROL t
WHERE t.XMLRECORD.exist(N'/row/c2[.="NEW.LOAN.REPORT"]') = 1
For XQuery like this, we can use scalar promotion to reduce the query runtime. A single-value field (or

even a specific value of a multi-valued field) that is part of the XMLRECORD can be “promoted” as

computed column of the table and be used in relational search conditions. Further, a relational index

can be created on the computed column to improve the query performance. The detailed steps to

promote a single-value XML field are as follows:

1.) Create a persisted computed column for the specific field.

Create a user-defined function that evaluates the value of the field. The return value of
the function should be a single scalar value. Using this function, the computed column
should be added to the table and persisted.

-- scalar promotion of single valued field
CREATE FUNCTION udf_HOLD_CONTROL_C2(@xmlrecord XML)
RETURNS nvarchar(35)
WITH SCHEMABINDING
BEGIN
 RETURN @xmlrecord.value('(/row/c2/text())[1]', 'nvarchar(35)')
END

ALTER TABLE F_HOLD_CONTROL
ADD C2 AS dbo.udf_HOLD_CONTROL_C2(XMLRECORD) PERSISTED

2.) Create non-clustered index on the computed column.
After creating the persisted computed column, create an index for this column:
-- example 1
CREATE INDEX ix_HOLD_CONTROL_C2 ON F_HOLD_CONTROL(C2)

Verify optimizations
Verify that the changes are successful and measure the impact of the optimizations.

For scalar promotion (promoted and indexed fields):
Verify the query translation.

Without scalar promotion, T24 uses a query syntax such as:
SELECT t.RECID,t.XMLRECORD
FROM F_HOLD_CONTROL t
WHERE t.XMLRECORD.exist(N'/row/c2[.="NEW.LOAN.REPORT"]') = 1

The execution of this query usually uses a table scan to retrieve the results.
After promoting the field “c2”, query should become:

SELECT t.RECID,t.XMLRECORD
FROM F_HOLD_CONTROL t

WHERE t.c2 = 'NEW.LOAN.REPORT'
In this case, index lookup on ix_HOLD_CONTROL_C2 is used.

Prove that the index is used by reproducing the query and verifying the actual

execution plan. You can run the query in SQL Server Management Studio and activate
the icon “Include Actual Execution Plan” on the SQL Editor toolbar.
Alternatively, you can use the SET STATISTICS PROFILE ON statement to display execution
plan information.

Verify the performance of the query has improved.
After using the application for a period of time (e.g., couple of hours or days), use

the sys.dm_db_index_usage_stats dynamic management view to verify the index usage.
Consider the ratio between index reads and index writes, keeping in mind that an index
usually improves the performance for read operations but slows down modifications
(i.e., inserts, updates, deletes) at the same time.

Consider the number of promoted columns and indexes per table. Too many

indexes may degrade the overall performance. As a general rule, you should avoid
creating more than seven indexes on a table for T24.

Do not create XML indexes on T24 XMLRECORD fields. The impact on transaction

latency is too high, and the benefit in query performance is usually not significant.

Section 6: Replication

Initializing a Transactional Replication Subscriber from an

Array-Based Snapshot

Overview

This article describes how to initialize a transactional replication Subscriber from an array-based snapshot rather than

using the native SQL Server snapshot mechanism. Initializing the Subscriber using a SAN-based restore solution is

particularly beneficial for very large databases. In this context, I use the term VLDB to mean a database that is typically

multi-terabyte and requires specialized administration and management This is primarily because the standard

transactional replication initialization process, which is typically restricted by either the network or storage I/O

bandwidth, could take longer than the business service-level agreement (SLA) permits because of the time needed to

initialize or recover the Subscriber. In contrast, initializing a Subscriber using an array-based snapshot utilizes the

Virtual Device Interface (VDI) freeze and thaw mechanism, thereby minimizing recovery time. This procedure is also

particularly beneficial in non-production environments that use transactional replication and require repeatable tests

with large volumes of data.

Scope

This procedure was performed using Microsoft SQL Server 2005 Enterprise Edition IA64 with Service Pack 2 (SP2) and

cumulative update 9 running on Windows Server 2003 Datacenter Edition IA64. The procedure is expected to be

identical in SQL Server 2008; however, this was not tested during the exercise. The storage array was provided by

Hitachi Data Systems (HDS), and HDS Split Second was used to manage the array-based snapshots (backup and

restore of the databases). VERITAS Storage Foundation HA software was used for volume management.

It should be emphasized that even though the hardware listed above was used, the principle of initializing a

Subscriber from an array-based snapshot can be performed using other storage array network (SAN) vendor

technologies – specific implementation details will vary. Microsoft recommends that customers attempting this

procedure work closely with an engineer from the storage vendor to ensure the solution are implemented correctly.

When Is This Technique Useful?

There may be situations where the Publisher, Distributor, and Subscriber need to be restored after data loss. This

technique:

·

Minimizes the transactional replication setup time for the Subscriber through the use of the underlying Virtual Device

Interface (VDI) storage mechanisms, which reduce the time required to back up and restore large volumes of data.

· Supports repeated benchmark tests to re-establish a test baseline.

· Provides rapid recovery of the Subscriber if data loss has occurred and the database(s) need to be recovered from a

point outside of the distribution retention period.

Background

Transactional replication has been available as a feature in SQL Server since version 6.0. Available functionality has

grown since this time to include tracer tokens to measure latency, concurrent snapshot processing, and peer-to-peer

replication. However, the general premise has remained the same: to replicate a copy or subset of the data to another

database. The Publisher, Distributor, and Subscriber terminology is used to describe the nodes within the topology.

For more information about replication, see SQL Server Books Online.

A transactional replication Subscriber can be initialized using one of the following mechanisms:

a) Transactional replication concurrent snapshot processing

b) Database snapshot (this requires SQL Server 2005 Enterprise Edition with Service Pack 2)

c) Initialize from log sequence number (LSN) (SQL Server 2008 only)

d) SQL Server backup (initialize from backup)

e) Copy of the data or array-based restore

A summary of the pros and cons for each technique is presented in a table below.

Option (a) – Transactional replication concurrent snapshot processing does not require an outage, and it allows

production activity to occur on the Publisher while the initialization process is copying the schema and data to the

Subscriber. Concurrent snapshot processing does not hold shared locks during snapshot generation, thereby allowing

production activity to continue. However, a schema modification lock (Sch-M) is taken for a brief period. In contrast to

option (d) and (e), this procedure also has the benefit of only copying the schema and data that is required rather

than making a complete copy of the database.

Option (b) – SQL Server 2005 Enterprise Edition with Service Pack 2 introduced a new snapshot mechanism that

permits the initialization of the Subscriber from a database snapshot. The database snapshot functionality was

introduced in SQL Server 2005 to provide a read-only static view of the database using sparse files. Before a page is

updated in the source database, the original page is copied to the sparse file. Subsequent updates to the same

modified page do not prompt a repeat of this procedure. That is, the pre-change copy of a particular page only

pushes into the database snapshot once after the database snapshot is created. It is possible to initialize a

transactional replication Subscriber from a database snapshot as described above. This procedure is similar to the

concurrent snapshot processing described in option (a) in that it permits transactional activity during the initialization

procedure. However, although a database snapshot utilizes the sparse file capability of NTFS, with a lot of concurrent

updates, the database snapshot may grow. It is important to ensure that sufficient storage space is allocated for the

database snapshot sparse files to store data pages that have been updated during the Subscriber initialization period,

because the database snapshot stores the pre-updated page images.

Option (c) – Initialize from LSN was introduced in SQL Server 2008 to aid the configuration of peer-to-peer

transactional replication topologies. Initializing from an LSN can also be used in disaster recovery scenarios; instead of

performing a full re-initialization of the Subscriber database, you can initialize a Subscriber from an LSN. This means

that the Distribution Agent will apply transactions (after the supplied LSN), from the distribution database to the

Subscriber, as long as the distribution retention period has been set appropriately.

Option (d) - A Subscriber can also be initialized from a SQL Server backup. For more information, see “Initializing a

Transactional Subscription without a Snapshot” in SQL Server Books Online (http://msdn.microsoft.com/en-

us/library/ms151705.aspx). This approach restores the complete dataset on the Subscriber and does not require an

outage for the initialization, as long as the distribution database stores the in-flight transactions that were taken after

the backup. Post-configuration administrative procedures may be required to remove unwanted objects and data on

the Subscriber database.

Option (e) - It is also possible to initialize the Subscriber using a copy of the data. The database can be provisioned

using any mechanism that will copy the Publisher schema and data to the Subscriber, such as a manual network file

copy of the data and log files, a native SQL Server restore, or alternatively, an array-based restore. While this approach

does require an outage during the initialization process, an array-based restore is particularly beneficial for very large

databases (VLDBs) in either production or benchmark environments where the setup time can be minimized by using

the VDI mechanisms. This technique was used to initialize the Subscriber from a HDS-array based snapshot, which is

the focus of this article, and is discussed in more detail in the rest of this article. For more information about VDI, see

“SQL Server 2005 Virtual Backup Device Interface (VDI) Specification”

(http://www.microsoft.com/downloads/details.aspx?familyid=416f8a51-65a3-4e8e-a4c8-

adfe15e850fc&displaylang=en

The table below summarizes the pros and cons of the transactional replication snapshot techniques.

Initialization technique

Online

Pros

Cons

Use when

Concurrent snapshot

processing

Yes

Available in Workgroup,

Standard, and

Enterprise editions,

allows online

processing, generates a

snapshot only for

published objects.

Duration of Subscriber

initialization is

impacted by size of

database, network, and

so on. DML statements

can be expensive.

Online processing is a requirement,

storage space is limited on the

Subscriber.

Database snapshot

Yes

No locking on the

Publisher database, in

comparison to

concurrent snapshot

processing.

Enterprise Edition only.

Requires sufficient

storage for the

snapshot sparse files.

Online processing is a requirement,

concurrency is essential, sufficient

storage exists for the sparse file.

http://msdn.microsoft.com/en-us/library/ms151705.aspx
http://msdn.microsoft.com/en-us/library/ms151705.aspx
http://www.microsoft.com/downloads/details.aspx?familyid=416f8a51-65a3-4e8e-a4c8-adfe15e850fc&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=416f8a51-65a3-4e8e-a4c8-adfe15e850fc&displaylang=en

Initialize from LSN

Yes

Full snapshot not

required, allows online

processing.

SQL Server 2008

Enterprise only, must

be able to determine

correct LSN.

Only consider if a full snapshot is

not feasible and not necessary.

May also be suitable for

environments that use database

mirroring and transactional

replication.

SQL Server Backup

(initialize with backup)

Yes

Full snapshot not

required, allows online

processing.

Restores a complete

copy of the database on

the Subscriber (for

example, requires more

storage space) and

persists copies of all

objects unless

removed.

Data volume is manageable and

offline initialization is not an

option. Speed of backup and

restore is preferable to use of the

BCP utility to copy data.

Copy of data /

array-based restore

No

Rapid backup/restore

of large data volumes,

replication snapshot is

not required.

Offline processing,

must stop transactional

activity, requires a

complete copy of the

data on the Subscriber.

Volume of data is in the terabyte

range and backup and restore

times are a priority.

Pros and Cons for Transactional Replication Initialization Techniques

Setup Procedure – Initializing the Subscriber from an Array-Based Snapshot

The procedure to initialize the Subscriber from a copy of the data is similar to using the native SQL Server restore

mechanism. However, the array-based approach is more useful for large databases, because hardware

implementations of the VDI freeze and thaw mechanism allow large amounts of data to be copied quickly and in a

transactionally consistent manner, thereby reducing the restore time.

High-Level Steps

The following procedure was used to initialize the Subscriber during a high-end benchmark with a multi-terabyte

database. The backup and restore of the database was performed using the HDS array capabilities. This includes the

use of HDS Split Second, which is a command-line utility developed by Hitachi Consultancy Services. We also tested a

full database backup operation with SQL Server 2005. However, this was simply to benchmark the operation for a 17-

terabyte database.

It is important to note that application activity must be paused during this operation, because any change in data at

the Publisher will result in data inconsistency. This inconsistency will be raised as an alert in Replication Monitor. One

can use tablediff, a command line utility that returns detailed information about the differences between two tables.

It can also generate a Transact-SQL script to bring a subscription into convergence with data at the Publisher. This

utility can be used to correct data inconsistencies; however, it is recommended that precautionary steps be put in

place to ensure that the application or any other activity cannot write to the Publisher or Subscriber databases during

this procedure. These steps are discussed later. Alternatives to this approach that allow transactional activity during

the setup procedure include concurrent snapshot processing, initialization from backup, and initialization from a

database snapshot. Generating a replication snapshot for this volume of data would take many hours, so we elected

to initialize the Subscriber using an array-based restore in order to minimize the movement of data.

Initializing the Subscriber

The following steps were used to initialize the Subscriber from the array-based restore. The majority of the time was

consumed by the backup and restore procedures using HDS Split Second. This was approximately two hours. The

other activities were DBA operations to modify and validate the replication metadata.

1. Pause application activity.

2. Disable the application login(s) using ALTER LOGIN <login> DISABLE.

3. Ensure the database is in RESTRICTED_USER WITH ROLLBACK IMMEDIATE mode to clear user connections that may

still be in the database. Please note that RESTRICTED_USER does not prevent access to applications run under the

context of sysadmin, dbcreater, or sysadmin.

4. Back up the primary (Publisher) database using a storage array-based mechanism.

5. Restore the primary (Publisher) database on a separate instance using the storage array-based mechanism. This

database will become the Subscriber.

6. Recover the Subscriber database and check the SQL Server error log to verify completion of the recovery operation.

7. Set the RESTRICTED_USER mode on the subscription database to prevent any user activity. This is simply an

additional precautionary step to ensure that applications or users cannot access the database. Please refer to step 3

above, because the same caveat applies.

8. Enable the NOT FOR REPLICATION value on the Subscriber tables (and any other objects that will be published for

replication). The NOT FOR REPLICATION option enables you to specify which database objects are treated differently

if a replication agent performs a transactional operation. For example, the identity column value is not incremented if

a replication agent performs an insert operation. For more information, see “Controlling Constraints, Identities, and

Triggers with NOT FOR REPLICATION” in SQL Server 2005 Books Online (http://msdn.microsoft.com/en-

us/library/ms152529(SQL.90).aspx) or SQL Server 2008 Books Online (http://msdn.microsoft.com/en-

us/library/ms152529.aspx).

9. Create the publication(s) on the Publisher.

10. Drop any redundant columns on the subscription database using ALTER TABLE DROP COLUMN. For our tests,

binary large object (BLOB) columns were dropped, because we did not replicate columns of this data type (primarily

to reduce the storage requirement on the Subscriber). We did not drop any other objects, because there were

scenarios where we wanted to be able to view or query copies of nonpublished tables on the Subscriber.

11. Optional: Reclaim storage space on the Subscriber by using DBCC CLEANTABLE in the subscription database and

by specifying a batch size to reduce the impact on the transaction log. In previous smaller volume tests, we also

reclaimed the BLOB storage space, using DBCC CLEANTABLE with a batch size of 100,000. If a batch size is not

specified, DBCC CLEANTABLE processes the whole table in one transaction and the table is exclusively locked during

the operation. This can require considerable transaction log space for very large tables.

12. Create the subscriptions using the replication support only sync_type of sp_addsubscription. This is a key

component of the process, because it indicates that the Subscriber already has a copy of the schema and data and

does not require initialization with a replication snapshot.

13. Perform DBA checks. For this exercise, we used Transact-SQL scripts to ensure that the number of objects marked

for publication was consistent with the number of objects marked for replication at the Subscriber. For example:

-- Count the number of columns with the NOT FOR REPLICATION option set to 1.

-- Execute this on the Publisher and Subscriber to ensure the count is consistent.

-- Investigate further if there is a difference.

USE <Publisher or Subscriber>

GO

SELECT COUNT(*) NOT_FOR_REPL_IDENT_Tables

FROM sys.identity_columns

WHERE is_not_for_replication = 1

AND OBJECTPROPERTY(OBJECT_ID, 'IsMSShipped') = 0;

Similar statements can also be executed for foreign keys, triggers, and constraints that may require this property to be

set.

14. Enable the publication and subscription databases for MULTI_USER activity.

http://msdn.microsoft.com/en-us/library/ms152529(SQL.90).aspx
http://msdn.microsoft.com/en-us/library/ms152529(SQL.90).aspx
http://msdn.microsoft.com/en-us/library/ms152529.aspx
http://msdn.microsoft.com/en-us/library/ms152529.aspx

15. Enable the application login(s); for example, use ALTER LOGIN <login> ENABLE.

It is advisable to launch Replication Monitor (Sqlmonitor.exe) to verify that the publications are healthy and that the

Log Reader and Distribution agents are not reporting any problems. Similarly, posting a tracer token will also provide

a good idea of latency between the databases.

Restoring the Databases for Repeated Benchmark Tests – Initializing the Subscriber from an

Array-Based Snapshot

There may be situations where the transactional replication databases need to be restored to a previous point in time,

for example, in a benchmark environment to re-establish the baseline for repeated tests. This eliminates the need to

re-create the replication objects and also synchronise the Publisher and Subscriber, which can be time-consuming for

large databases.

The procedure is similar to that shown above, with the added advantage that SQL Server transactional replication has

already been configured and is functioning correctly.

The following steps were used to initialize the transactional replication Publisher, Distributor, and Subscriber from the

array-based restore prior to each test cycle.

1. Pause application activity.

2. Disable the application login(s) by using ALTER LOGIN <login> DISABLE; on both the publication and subscription

databases.

3. Ensure that the Publisher database is in RESTRICTED_USER WITH ROLLBACK IMMEDIATE mode to clear user

connections that may still be in the database. Connections under the context of sysadmin, dbcreator, or db_owner

will still be allowed.

4. Stop the SQL Server Agent services on both the Publisher and Subscriber, or disable the Log Reader and

Distribution agent jobs to ensure that the array-based backup and restore mechanisms have exclusive access to the

database.

5. Set RESTRICTED_USER mode on the subscription database to prevent any user activity.

6. Use the HDS array-based restore mechanisms to:

 a. Restore the Publisher database.

 b. Restore the distribution database.

 c. Restore the Subscriber database.

Note: For large OLTP databases with high transaction volume, you may observe intermittent I/O in System Monitor or

Performance Monitor (perfmon.exe) after the restore and recovery. This is typically due to the GHOST_CLEANUP

process, which is removing records that have been marked for deletion. This process can be observed in the

sys.dm_exec_requests catalog view.

7. Start the SQL Agent Service on the Publisher, Distributor, and Subscriber.

8. Enable the Publisher and Subscriber databases for MULTI_USER activity.

9. Enable the application login(s); for example, use ALTER LOGIN <login> ENABLE.

As with the previous procedure, it is recommended that Replication Monitor be launched to verify the health of the

publications. The Log Reader and Distribution agents should also be launched before the application logins are

enabled.

The restore of the Publisher, Distributor, and Subscriber databases can be performed in parallel using the HDS array-

based restore mechanism. This approach was used to re-establish the baseline for repeated benchmark tests.

Observations and Data Points

A number of observations were documented during the initialization of the Subscriber during the benchmark. This

relates to both the initial setup as described above and also to repeated tests conducted during the benchmark.

Figure 1.0 below provides a graphical illustration to accompany the following data points. Numbers denote phases in

figure 1.0.

1. The data was first loaded into the primary OLTP database without using transactional replication.

2. During this data load phase, the data was shadowed to a second set of volumes. Owing to the volume of data, this

was deemed the most appropriate mechanism to provision the Subscriber database due to the volume of data.

Loading data with transactional replication enabled was not appropriate, because the operation is fully logged

regardless of the database recovery model.

3. After the data load had completed, the volumes were dismounted from the Publisher and mounted on the

Subscriber. Transactional replication was then configured using the ‘replication support only’ sync_type parameter to

avoid the need for a replication snapshot.

4. The 17-terabyte Subscriber database was then paired with a set of volumes as a backup. This process took

approximately 17 hours.

A full backup of the 17-terabyte OLTP database using the native SQL Server 2005 backup mechanism took

approximately four hours using eight streams. Please note that this was conducted on SQL Server 2005 Enterprise

Edition. SQL Server 2008 may offer additional gains due to the native backup compression. For the native SQL Server

2005 backup procedure, the following Transact-SQL script was executed.

USE [master]

GO

DECLARE

@DateStr nvarchar(50),

@Stmt nvarchar(1000),

@Filepath nvarchar(50),

@Quote nvarchar(1),

@Databasename nvarchar(50)

SET @Quote = char(39)

SET @Filepath = 'DISK=' + @Quote + '<directory>'

SET @Databasename = '<database>'

SELECT @DateStr = N'_' +

CONVERT(nchar(8),

getdate(), 112) +

N'_' +

RIGHT(N'0' + rtrim(CONVERT

(nchar(2), datepart(hh, getdate()))), 2) +

RIGHT(N'0' + rtrim(CONVERT

(nchar(2), datepart(mi, getdate()))), 2) +

RIGHT(N'0' + rtrim(CONVERT

(nchar(2), datepart(ss, getdate()))), 2)

SELECT @Stmt =

'BACKUP DATABASE ' + @databasename + ' TO ' +

@Filepath + @databasename + @DateStr + '_1.BAK' + @Quote + ', ' +

@Filepath + @databasename + @DateStr + '_2.BAK' + @Quote + ', ' +

@Filepath + @databasename + @DateStr + '_3.BAK' + @Quote + ', ' +

@Filepath + @databasename + @DateStr + '_4.BAK' + @Quote + ', ' +

@Filepath + @databasename + @DateStr + '_5.BAK' + @Quote + ', ' +

@Filepath + @databasename + @DateStr + '_6.BAK' + @Quote + ', ' +

@Filepath + @databasename + @DateStr + '_7.BAK' + @Quote + ', ' +

@Filepath + @databasename + @DateStr + '_8.BAK' + @Quote +

' WITH NOFORMAT, NOINIT, SKIP, NOREWIND, NOUNLOAD, STATS = 5'

EXEC (@Stmt)

You should modify the @Filepath and @Databasename variables if script reuse is intended.

5. New gold (baseline) backups were occasionally required due to schema changes like indexes or partitioning for

performance reasons. This HDS Split Second backup took approximately 30 minutes to complete; this was also a

function of how much data had changed since the last restore, because the data had changed during the test cycle.

While this backup process typically occurs almost instantaneously in the background, we opted to wait for the

completion signal from the array before commencing a new test. SQL Server 2005 differential database backup

timings were comparable and took approximately the same amount of time.

6. Following a test run, a restore of the Publisher, Distributor, and Subscriber databases took approximately two hours.

This was also a symptom of the data that had changed during the test. However, approximately one hour and thirty

minutes of this duration was due to the import and export of the VERITAS volumes, which was sequential in nature.

The Publisher and Subscriber databases were restored in parallel, thereby reducing the restore time for the repeated

benchmark tests. The Distributor could be restored in parallel; however, we opted to conduct this step separately,

because we wanted more control over the procedure.

Figure 1.0. Benchmark Data Points

As previously mentioned, before commencing a test, ensure that the GHOST_CLEANUP process has completed on

both the Publisher and Subscriber databases (following a restore), because it may affect I/O measurements taken

during the test.

Summary

Initializing a transactional replication Subscriber from an array-based restore is beneficial when the data volume is

very large and the restore and configuration time need to be minimized. Though this can still be achieved using any

other restore or data copy mechanism, the benefit of an array-based VDI freeze and thaw, which allows large amounts

of data to be copied quickly and in a transactionally consistent manner, significantly reduces backup and restore time.

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/InitializingaTransactionalReplicationSub_BC1E/repl_2.jpg

Upgrading Replication from SQL Server 2000 32-Bit to SQL

Server 2008 64-Bit without re-initialization

Summary

In this article we summarized the experiences we gathered during the planning and upgrade
of a customer's project. The customer is one of the largest retail shops in its area. Their
architecture is made up of a main server, which is located at headquarters and hosts several
hundred publications containing over a thousand articles. Regional stores are located all over
the country acting as subscribers for the publications hosted on the main server. Based on the
business needs and infrastructure limitations the customer set the following goals for the
project:

Install all SQL Server instances on the Windows Server® 2003 x64 platform.

Upgrade the publisher and distributor from the 32-bit edition of SQL Server 2000 to the 64-bit

edition of SQL Server 2008. (Upgrading subscribers was not a goal of this phase of the project.)

Avoid replication re-initialization.

This paper describes how to upgrade replication members such as Publishers and Distributors
from the 32-bit edition of SQL Server 2000 to the 64-bit edition of SQL Server 2008. Both
clustered and nonclustered environments are discussed.

Section 7: Service Broker

SQL Server Service Broker: Maintaining Identity

Uniqueness Across Database Copies

A Deployment Method: Copying Databases

When dealing with many large customers, they often develop new and interesting ways of using technology and

deploying it. One such case concerning service broker is with large, scale-out deployments consisting of hundreds of

servers where the same database will be copied and deployed many times over. This database will contain all of this

particular customer's service broker standards and custom built pieces for how broker will operate in their

environment. As a package this database can be easily copied and deployed across many instances and servers

through 1) "copy & attach," or 2) backup & restore. The caveat for this approach is that each of these databases will

contain the same service broker identity. Therefore, we need to reset it. For more details on Managing Service

Broker Identities see Books Online (BOL):

http://msdn.microsoft.com/en-us/library/ms166057(SQL.100).aspx

We will get to the relevance of having an actual globally unique service broker identity shortly. However, it's

important to recognize the database properties that are modified when a database is attached or restored. For our

discussion relevant to service broker, I'll point out that the following values are set to 0 when the database is attached

or restored:

 is_broker_enabled

 is_honor_broker_priority_on

 is_trustworthy_on

You can view database properties by querying sys.databases, see BOL:

http://msdn.microsoft.com/en-us/library/ms178534(SQL.100).aspx

SELECT

 name

 ,is_broker_enabled

 ,is_honor_broker_priority_on

 ,is_trustworthy_on

 ,service_broker_guid

FROM sys.databases

http://msdn.microsoft.com/en-us/library/ms166057(SQL.100).aspx
http://msdn.microsoft.com/en-us/library/ms178534(SQL.100).aspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/SQLServerServiceBrokerMaintainingIdentit_141E9/image_2.png

Just after detaching, making a couple copies and attaching the 3 databases, you’ll notice that all of my databases

have the same service_broker_guid. There is no way to know the purpose, function or environment in which the

database is attached or restored. This is why service broker is disabled by default. Now that the database has been

duplicated, we need to reset the service broker identity as follows:

ALTER DATABASE [MySSBDBCopy1] SET NEW_BROKER

ALTER DATABASE [MySSBDBCopy2] SET NEW_BROKER

GO

SELECT

 name

 ,is_broker_enabled

 ,is_honor_broker_priority_on

 ,is_trustworthy_on

 ,service_broker_guid

FROM sys.databases

Giving the database a new service broker identity will enable service broker (is_broker_enabled=1) and will remove all

service broker messages and conversations in the database with sending end dialog messages. Again, in our scenario

since we are deploying a "standards" database we will assume there are no messages or conversations in the

database.

Service Broker Diagnostic Utility

Having 1 or more databases with the same service broker guid may not seem problematic. However, service broker

does assume that this guid is globally unique across "time and space" independent of the location, instance and

server. When messages are sent and received i.e. the initiator and target are the same database, having multiple

identical guids may not pose a problem. Unless you'd like to use the new service broker diagnostic tool called the

ssbdiagnose Utility. See BOL for more detail: http://msdn.microsoft.com/en-us/library/bb934450(SQL.100).asp.

SSBDiagnose is new in SQL Server 2008 however it can be used in SQL Server 2005 only environments or mixed. The

utility will error when used against an instance where there are 2 or more databases having the same service broker

guid. Yes, it is a problem even if the database being diagnosed has a guid that's not duplicated. The Service Broker

Diagnostic Utility will generate output similar to:

Microsoft SQL Server 10.0.1442.23

Service Broker Diagnostic Utility

D 29997 MYSERVER\INST2 SSBReceiver1 Service Broker GUID is identical to that of database SSBReceiver

on server MYSERVER\INST2

D 29997 MYSERVER\INST2 SSBReceiver2 Service Broker GUID is identical to that of database SSBReceiver

http://msdn.microsoft.com/en-us/library/bb934450.aspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/SQLServerServiceBrokerMaintainingIdentit_141E9/image_4.png

on server MYSERVER\INST2

D 29905 MYSERVER\INST2 SSBReceiver Service Broker is not enabled in the database

3 Errors, 0 Warnings

To summarize, when making a copy of a database establish a new service broker identity. This will avoid any potential

future conflicts and will guarantee that your service broker identity will truly be a G.U.I.D.!

Section 8: Troubleshooting

Diagnosing Transaction Log Performance Issues and Limits

of the Log Manager

Overview

For transactional workloads I/O performance of the writes to the SQL Server transaction log is critical to both

throughput and application response time. This document discusses briefly how to determine if I/O to the transaction

log file is a performance bottleneck and how to determine if this is storage related; a limitation is due to log manager

itself or a combination of the two. Concepts and topics described in this paper apply mainly to SQL Server 2005 and

SQL Server 2008.

Monitoring Transaction Log Performance

To determine if I/O performance of transaction log writes is a problem there are several tools which can help quickly

isolate bottlenecks related to the log writes. These are:

1. SQL Server Dynamic Management Views (DMV’s).

a. sys.dm_os_wait_stats: This DMV exposes a number of wait types documented here. The wait type most relevant

the current discussion is WRITELOG. WRITELOG waits represent the time waiting on a log I/O to complete after a

COMMIT has been issued by the transaction. When observed these should be an indication I/O performance and

characteristics of the log writes should be pursued.

b. sys.dm_io_pending_io_requests: This DMV exposes outstanding I/O requests at the individual I/O level.

Documentation for this DMV can be found here. In scenarios where the SQL Server transaction log file is not on a

dedicated volume this DMV can be used to track the number of outstanding I/O’s at the file level. If the transaction

log is on a dedicated logical volume this information can be obtained using Performance Monitor counters. More

details on both are given below.

2. Window Performance Monitor “SQL Server:Databases” Object. This performance

monitor object contains several counters specific to performance of a transaction log for a specific database. In many

cases these can provide more detailed information about log performance as the granularity is at the log level

regardless of the logical storage configuration. The specific counters are:

a. Log Bytes Flushed/sec

b. Log Flushes/sec - (i.e. I/O operation to flush a log record to the transaction log)

c. Log Flush Wait Time

3. Windows Performance Monitor “Logical or Physical Disk” Objects. There are five

counters that should be considered in any I/O analysis:

a. Current Disk Queue Length

http://msdn.microsoft.com/en-us/library/ms179984.aspx
http://msdn.microsoft.com/en-us/library/ms188762.aspx

b. Avg. Disk/sec Read, Avg. Disk/Write

c. Avg. Disk Bytes/Read, Avg. Disk Bytes/Write

d. Disk Reads/sec, Disk Writes/sec

e. Disk Read Bytes/sec, Disk Write Bytes/sec

The key counters to monitor with respect to log performance are the Current Disk Queue Length and Avg. Disk/sec

Write.

These are the primary tools which are used to monitor I/O performance of the transaction log and diagnose any

bottlenecks related to transaction log throughput. When troubleshooting any performance issue it is critical to look

first at the complete overall system performance before focusing on any individual item. For the purpose of this

discussion we will focus on diagnosing transaction log performance.

How Do I Determine if I Have a Log Bottleneck?

The quickest way to determine if you think performance issues are related to transaction log performance is to

monitor sys.dm_os_wait_stats for high waits on WRITELOG. It is important to understand that this counter is

cumulative since SQL Server was last restarted so monitoring deltas of these values over specific time periods is

necessary to provide meaningful details.

There are two primary questions to answer when investigating a performance issue which is suspected to be log

related.

1. Is the performance of the I/O subsystem adequate to provide healthy response times to I/O issued against the log?

2. Am I hitting any limits imposed by SQL Server related to transaction log behavior?

In the majority of experiences observed related to I/O performance issues, improperly sized or poorly configured

storage is the primary contributor to I/O issues. This can be made worse by queries which are not tuned and issue

more I/O than necessary affecting everyone using the I/O subsystem. In addition, there are other factors that will have

some impact on log including things such as transactional replication, log backups, mirroring, storage level replication

etc...

With respect to #1 our recommendation for response time on the log device should be in the range of <1ms to 5ms.

It is important to keep I/O response time on log devices as low as possible which is the primary reason we

recommend isolating logs from data files on separate physical spindles. Writes to the transaction log are sequential in

nature and benefit by being isolated on to separate physical devices. In today’s modern storage environments there

are many considerations which may make this impractical so in the absence of the ability to do this focus on keeping

response times in the healthy range.

Limits of the Log Manager

Within the SQL Server engine there are a couple limits related to the amount of I/O that can be “in-flight” at any given

time; “in-flight” meaning log data for which the Log Manager has issued a write and not yet received an

acknowledgement that the write has completed. Once these limits are reached the Log Manager will wait for

outstanding I/O’s to be acknowledged before issuing any more I/O to the log. These are hard limits and cannot be

adjusted by a DBA. The limits imposed by the log manager are based on conscious design decisions founded in

providing a balance between data integrity and performance.

There are two specific limits, both of which are per database.

1. Amount of “outstanding log I/O” Limit.

a. SQL Server 2008: limit of 3840K at any given time

b. Prior to SQL Server 2008: limit of 480K at any given time

c. Prior to SQL Server 2005 SP1: based on the number of outstanding requests (noted below)

2. Amount of Outstanding I/O limit.

a. SQL Server 2005 SP1 or later (including SQL Server 2008):

i. 64-bit: Limit of 32 outstanding I/O’s

ii. 32-bit: Limit of 8 outstanding I/O’s

b. Prior to SQL Server 2005 SP1: Limit of 8 outstanding I/O’s (32-bit or 64-bit)

Either of the above limits being reached will cause the suspension of the Log I/O until acknowledgments are received.

Below are two examples which illustrate the above and provide guidance on how to determine how isolate whether or

not these limits are being reached.

Example 1

This example illustrates the limit of 32 outstanding I/O’s on the 64-bit edition of SQL Server 2008. The Current Disk

Queue Length counter is represented by the black line in the graph. The workload was executing approximately

14,000 inserts per second with each insert being a single transaction. The workload was generated using a multi-

threaded client. The disk response time in this example is averaging 2ms. High wait times on WRITELOG were

observed as this workload throughput level was approached suggesting investigation of disk throughput on the log

device. This led us to investigate if the 32 outstanding I/O limit was the cause.

In Figure 1 below we can see the limit of 32 outstanding I/O’s clearly being reached. We can also determine it is the

limit of outstanding I/O’s vs. the limit of 480K “outstanding log I/O” based on the following calculations (averages

over this period of time as observed via Performance Monitor).

· (9.6MB Log Bytes Flushed/sec)/(5000 Log Flushes/sec) = ~1.9K per Flush

· (32 Outstanding I/O’s)*(1.9K per Flush) = ~60K “in-flight” at any given time (far below the limit)

Figure 1: Performance Monitor graph illustrating the limit of 32 outstanding I/O’s

In this particular scenario the Current Disk Queue Length could be utilized to diagnose the bottleneck because the log

resided on its own logical volume (in this case H:\) . As discussed above, if the log did not reside on a dedicated

logical volume, an alternative approach to diagnosing the limit being encountered would have been to use the

sys.dm_io_pending_io_requests DMV discussed previously.

The following is a sample query that could be used to monitor a particular log file. This query needs to be run in the

context of the database being monitored. It is worth noting that the results returned by this query are transient in

nature and polling at short intervals would likely be needed for the data to be useful much in the same way

performance monitor samples the disk queue.

select vfs.database_id, df.name, df.physical_name

,vfs.file_id, ior.io_pending

,ior.io_handle, vfs.file_handle

from sys.dm_io_pending_io_requests ior

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/DiagnosingTransactionLogPerformanceIssue_AF5E/image_2.png

inner join sys.dm_io_virtual_file_stats (DB_ID(), NULL) vfs on (vfs.file_handle = ior.io_handle)

inner join sys.database_files df on (df.file_id = vfs.file_id)

where df.name = '[Logical Log File Name]'

For this example, the best strategy to resolve or optimize the transaction log performance would be to isolate the

transaction log file on a storage device which was not impacted by the checkpoint operations. In our storage

configuration this was not possible and shared components (specifically array controllers) were the primary source of

the problem.

Example 2

This example is a little more complicated but illustrates the limit of 480K “in-flight” data running SQL Server 2005 SP2

(64-bit edition). This was observed during a benchmark of a high throughput OLTP application supporting

approximately 15,000 concurrent users. Characteristics of this application were a bit different in that the log flush sizes

were much larger due to logging of larger transactions (including BLOB data). Again, high waits on the WRITELOG

wait type were observed pointing in the direction of investigating I/O performance of the log device.

One important item to note when considering this data is that the log behavior over this period of time is spiky in

nature and it is during the spikes the limits are encountered. If we look at averages over the problem time period we

see the following

· (4,858,000 Log Bytes Flushed/sec)/(124 Log Flushes/sec) = 39,177 bytes per flush

· 5.4 ms per log flush but there are spikes. This is on the edge of health latency for the log.

· Current Disk Queue Length shows spikes and when Current Disk Queue Length * Bytes per flush is close to 480KB

then we will start to see the Log Manager throttle the writes (observed as higher wait times on WRITELOG).

Figure 2 illustrates this although it is not as obvious to see as the pervious example. The correlation to watch for is

(Average Bytes per Flush) * (Current Disk Queue Length) near the 480K limit.

Figure 2: Performance Monitor graph illustrating the limit of 480K outstanding log I/O data

A strategy for resolving this problem would be to work on the storage configuration to bring the latency on the log

writes to a lower average. In this particular scenario, log latency was impacted by the fact that synchronous storage

replication was occurring at the block level from the primary storage array to a second array. Disabling storage level

replication reduces the log latency from the 5ms range to the range of <1ms however disaster recovery requirements

for zero data loss made this not an option for the production environment.

It is worth noting that this was observed on SQL Server 2005 SP2 and migrating to SQL Server 2008 resolved the

bottleneck since the limit in SQL 2008 is 8 times that of SQL Server 2005.

In either example reducing log latency is critical to increasing the transactional throughput. In very high throughput

scenarios at the extreme end we have observed customers approaching this by alternative methods including 1)

utilizing minimal logging capabilities of SQL Server when possible and 2) scaling out the transaction log through

partitioning data into multiple databases.

Summary

The above provides information on limits imposed by the SQL Server Log Manager. These limits are based on

conscious design decisions founded in providing a balance between data integrity and performance. When

troubleshooting performance issues related to log performance, always consider optimizing the storage configuration

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/DiagnosingTransactionLogPerformanceIssue_AF5E/image_4.png

to provide the best response time possible to the log device. This is critical to transactional performance in OLTP

workloads.

Eliminating Deadlocks Caused By Foreign Keys with Large

Transactions

Executive Summary

Validating foreign keys requires additional work for data modification operations and can lead to deadlocks in certain

scenarios. There are, however, ways you can work around this contention and eliminate the possibility of deadlocks

while checking referential integrity.

In this technical note, we describe a recent test lab in which we were able to observe how SQL Server behaves at scale

with tables that use foreign keys. We discuss what we learned about how SQL Server locking and access strategies can

change as the data size changes and we describe the effects these changes can have. We also describe how the

deadlocking was resolved in our case by preventing different transactions from requesting locks on the same rows or

pages, forcing a direct access of the rows and forcing all locks to be taken at the lowest possible granularity. This

allowed for very high levels of concurrent imports on tables that use foreign keys.

Introduction

In a typical parent-child modification operation, one table is modified before the related table or tables are modified.

In the case of inserts, the parent table is modified first; when the child table receives the corresponding insert, a

verification step is initiated. In the case of deletes, the child table is removed first; when the parent table is deleted, a

verification step is carried out to ensure that no child records exist for the parent record. It is in the verification steps

that deadlocking can occur.

When Microsoft SQL Server operates with large INSERT … SELECT combo statements or with large DELETE statements,

SQL Server might choose verification methods that increase the chances of deadlocking. Disabling page locks and

lock escalation on certain objects involved in these transactions and specifying OPTION (LOOP JOIN) might be

necessary to prevent deadlocking in systems that have multiple concurrent large transactions on tables that use

foreign keys.

In a recent test lab, we were able to observe how SQL Server behaves at scale with tables that use foreign keys and we

tested these locking and access strategies that can prevent deadlocking. In our case, 24 or 48 processes imported

data concurrently. Each of these processes performed a bulk insert into a local temporary table where the data was

scrubbed and converted. Each process then used an INSERT … SELECT combo statement to move the scrubbed data

into the permanent tables.

Our system performed well with low volumes of data in the tables and with low volumes of data in the import

transactions. However, severe deadlocking surfaced that effectively prevented concurrent imports as the tables grew

and as the size of the data imported from the temporary staging tables expanded. We observed that this deadlocking

occurred even though different import processes dealt strictly with different sets of data that were loaded into the

same tables.

To resolve deadlocking, we typically resulted had to rollback most of the concurrent transactions, a major setback

when processing these large amounts of data. Moreover, retrying the rolled-back transactions often resulted in

additional deadlocks.

Validation of Foreign Keys

In our benchmark, foreign keys were a critical part of the database design. Dropping foreign keys was not considered

a viable option. Everyone understood that foreign keys would require additional work for data manipulation

operations, but this was deemed to be an equitable tradeoff for maintaining the data integrity, regardless of the

source of the data manipulation operation.

SQL Server places the validation of foreign keys into the query plan after the data is inserted into the target table. You

see the validation of foreign keys as a join to the table against which the data must be validated.

Figure 1 shows a query plan with foreign key validation.

Figure 1: Execution plan showing SQL Server using a loop join to verify referential integrity

In Figure 1, an INSERT … SELECT statement is used to insert data into dbo.referringTable from #detailData. The table

dbo.referringTable has a foreign key that references dbo.HeaderTable.

Starting from the upper right, you can see the flow of the data as SQL Server first scans the #detailData table for the

data to be inserted and then inserts the data into dbo.referringTable. After inserting the data into the base table, SQL

Server sorts the data so that the rows can also be inserted into the non-clustered index ncl_referringTable. This sort

makes the insert into that non-clustered index most efficient, but note that an estimated 42% of the total query cost

is spent on sorting the data in the order of the non-clustered index.

After the data is inserted into dbo.referringTable and all of its associated indexes, SQL Server verifies that referential

integrity is maintained by using a loop join operation to perform a left semi-join to dbo.HeaderTable. Note that the

row count spool operation that is used to support this join accounts for an estimated 40% of the total query cost.

More importantly, the verification does not take place until after the data is inserted into the target table

(dbo.referringTable, in this case). It is only at this point that SQL Server can verify whether the data inserted into the

target table violates the foreign key constraint, so it is at this time that SQL Server determines whether the transaction

can continue or if it must be rolled back.

Note SQL Server acquires shared locks when validating foreign keys, even if the transaction is using read committed

snapshot (read committed using row versioning) or snapshot isolation level. Be mindful of this when examining

deadlock graphs from transactions when these transaction isolation levels are used. If you see shared locks, check to

see whether the locks are taken on an object that is referenced by a foreign key.

http://sqlcat.com/blogs/technicalnotes/qp1_77EB01CD.png

Contention Issues as Transactions Grow

As the amount of data grows, the query plan is likely to change, typically when statistics get updated (automatically or

manually) or when the SQL Server Query engine determines that a significant change in table size necessitates a

different query plan. Additionally, when an index is created, the statistics are updated with fullscan, also causing a

potential change in the query plan.

For large datasets, when the clustered index is added (whether the index is added before or after the data is inserted)

can determine whether SQL Server uses a nested loop join or a merge join during the foreign key validation.

In the query plan shown in Figure 1, the temporary table from which the data to be inserted is selected has no

clustered index key. The statistics have probably been updated, but only by auto-create and auto-update statistics.

This means that the table might contain significantly more data than the statistics indicate. Therefore, we added a

clustered index to the #detailData temporary table after data was added in an effort to improve join efficiencies

(resulting in up-to-date statistics on #detailData’s new index).

Figure 2 shows the query plan for the same INSERT … SELECT statement.

Figure 2: Execution plan showing SQL Server using a merge join to validate referential integrity

Figure 2 and Figure 1 show query plans for the same query, but because SQL Server recognizes that a larger dataset is

being inserted in Figure 2, SQL Server replaces the loop join to validate referential integrity in Figure 1 with a merge

join in Figure 2. This change eliminates the row count spool operation, but the most significant effect it has, from a

concurrency standpoint, is that the clustered index seek on HeaderTable.PK_HeaderTable is replaced by a clustered

index scan on HeaderTable.PK_HeaderTable.

Understanding the potential deadlocking

The new query plan in Figure 2 sets up potential deadlocks in transactions. Consider the following progression with

two transactions, T1 and T2:

1. T1 opens a transaction and inserts a few rows into HeaderTable. Because only a few rows are inserted, an intent

exclusive (IX) lock is taken on HeaderTable and on the pages into which the rows will be inserted. Exclusive key (X)

locks are taken on the rows that are actually inserted.

2. T2 opens a transaction and inserts a few rows into HeaderTable. Because only a few rows are inserted, an IX lock is

taken on HeaderTable and on the pages into which the rows will be inserted. Exclusive key locks are taken on the rows

that are actually inserted. No blocking has occurred at this point.

3. T1 begins inserting data into ReferringTable. Locks are taken as appropriate on this table.

http://sqlcat.com/blogs/technicalnotes/qp2_1D084C3A.png

4. T2 begins inserting data into ReferringTable. Locks are taken as appropriate on this table. Lock escalation is

prevented because multiple transactions concurrently hold locks on this table.

5. When T1 data is inserted into ReferringTable, T1 begins the scan of HeaderTable.PK_HeaderTable to verify

referential integrity. Before the scan is complete, T1 is blocked in its attempt to read the rows that have been inserted

into HeaderTable by T2.

6. When T2 data is inserted into ReferringTable, T2 begins the scan of HeaderTable.PK_HeaderTable to verify

referential integrity. Before the scan is complete, T2 is blocked in its attempt to read the rows that have been inserted

into HeaderTable by T1. This is now a deadlock.

Blocking occurs on HeaderTable when referential integrity is validated because shared locks are taken for this

validation, even if the transaction itself is using read committed snapshot isolation or snapshot isolation levels.

We also encountered deadlocking because, in some instances, a row locking strategy was chosen for inserting rows,

but a page locking strategy was chosen for validation of referential integrity. In this case, T1 and T2 could deadlock

when trying to validate referential integrity because a shared lock on the page was requested by one transaction to

validate the referential integrity, but the other transaction had an IX lock on the page because of X locks on rows

inserted into that page.

Eliminating the Contention

To work around the contention, it is necessary to prevent different transactions from requesting locks on the same

rows or pages. The general idea is to force a direct access of the rows and to force all locks to be taken at the lowest

possible granularity.

In our benchmark, we used the following steps:

1. Ensure that different transactions process different data.

2. Disable lock escalation on HeaderTable.

3. Disable page locking on indexes on HeaderTable.

4. Hint the INSERT … SELECT query with OPTION (LOOP JOIN).

Ensure that different transactions process different data

In the case of our benchmark, there were 24 or 48 processes running concurrently to import data, and each processed

a different dataset. For inserts, data must first be inserted into HeaderTable and then the details that reference those

header records are inserted into detailTable. Mutually exclusive datasets were an integral part of the process; if the

datasets were not mutually exclusive, there would have been primary key violations when inserting data into the

HeaderTable. Note that it might be possible for multiple processes that all refer to the same row in the HeaderTable to

insert data into detailTable; however, the processes must address the situation to prevent accessing the same rows.

Disable lock escalation on HeaderTable

If locks are allowed to escalate on HeaderTable, different types of deadlocking might occur. In our case, lock

escalation on HeaderTable would result in severe contention, preventing the required level of concurrency. Because

we also planned to disable page locking, we would have forced inserts into HeaderTable to take row locks, and single

statements could reach the escalation threshold much faster than if the statement were able to take page locks. For

the sake of concurrency, therefore, we disabled lock escalation.

Lock escalation can be enabled or disabled on a table by using the ALTER TABLE syntax. To disable lock escalation on

HeaderTable, execute the following query:

ALTER TABLE HeaderTable SET (LOCK_ESCALATION = DISABLE)

Note Disabling lock escalation is not appropriate for all scenarios; in some cases, disabling lock escalation can cause

out-of-memory errors in SQL Server. We recommend disabling lock escalation only for dealing with specific

contention issues and only after extensive testing. In some cases, lock escalation can be disabled temporarily for

processes that are known to have contention issues.

Note that you can determine whether lock escalation is allowed or disabled on a table by querying sys.tables.

Disable page locking on indexes on HeaderTable

You can disable page locking on indexes to keep different granularities of locks from causing deadlocks. Disabling

page locking on indexes eliminates the possibility of contention that is caused by the inserts holding key locks (which

implies IX locks are held on the containing pages) and by the validation of referential integrity taking shared page

locks. If page locking is disaabled, the process of checking foreign keys takes row locks, even if a scan is performed.

To disable page locking on HeaderTable.PK_HeaderTable, you can execute the following query:

ALTER INDEX PK_HeaderTable ON HeaderTable SET (ALLOW_PAGE_LOCKS = OFF)

Note Disabling page locking is not appropriate for all scenarios; in some cases, disabling page locking can cause

additional memory contention or can lock escalation, which can increase lock contention. We recommend disabling

page locking on an index only for dealing with specific contention issues and only after extensive testing.

Note that you can determine whether page locking and row locking are enabled by querying sys.indexes.

Hint the INSERT … SELECT query with OPTION (LOOP JOIN)

If a scan is performed to support a merge or hash join, every row in that index or table must be read. If another

transaction holds a lock on a row, the scan cannot complete until the lock on that row is released. This sets up the

possibility of deadlock. To eliminate this possibility, you can force an access strategy that avoids touching rows locked

by other transactions. We can use the OPTION (LOOP JOIN) when we know that the query must validate foreign keys

to prevent the deadlock.

If an index exists to support a seek on the inner table, SQL Server can navigate from the root of that index directly to

the leaf page where the row that needs to be accessed exists when a loop join is used. No other rows need be

checked. This eliminates the possibility of a query being blocked by locks on rows in the table that are locked by other

transactions. (We eliminate the scan by hinting for a loop join to be used, and this prevents the blocking and

deadlocking.)

With normal joins, for example, you can use the INNER LOOP JOIN or the LEFT OUTER LOOP JOIN syntax in the FROM

clause of the query to specify a join type. However, the table that is referenced by a foreign key is not explicitly stated

in the query. Because SQL Server uses a join to validate foreign keys, you can still bring about the chosen join strategy

by using the OPTION clause in the query.

In the query plans shown in Figures 1 and 2, the query text was as follows:

INSERT INTO referringTable SELECT * FROM #detailData

This query allowed SQL Server to choose the join type that was used to validate the referential integrity. In the two

query plans, SQL Server chose two different join strategies. To force SQL Server to use a loop join to validate the

referential integrity, the query should read as follows:

INSERT INTO referringTable SELECT * FROM #detailData

OPTION (LOOP JOIN)

When looking at the resulting query plan, you will notice that the overall estimated subtree cost in the execution plan

is higher with the OPTION (LOOP JOIN) hint than it was when SQL Server chose the scan and merge join. This cost

difference is the reason SQL Server chose the scan and merge join. However, in our case, the contention prevented

concurrency and therefore limited the overall throughput. It was worthwhile to choose a query that had a higher

estimated cost to gain the concurrency and to allow for a higher level of overall throughput. You can determine

whether this is true in your environment only by testing.

Challenges to using the OPTION (LOOP JOIN) hint

Using the OPTION (LOOP JOIN) hint causes SQL Server to use a loop join to perform all joins in the query, not just

joins that are used to validate foreign keys. If SQL Server previously found another join strategy to be more efficient

on other joins, it will now use a loop join operator to perform those joins as well.

In some cases, this can cause a cost explosion. You cannot hint those other joins specifically to use a different join

type, because this will result in an error informing you that you have conflicting join hints. If you must use the OPTION

(LOOP JOIN) hint, consider the following tips:

· Look at the execution plan on the other joins. Ensure that the inner table (the table that appears on the bottom on

the execution plan) has an index to support the loop join without scanning. For example, consider the following

query:

SELECT l.col1, l.col2, r.col3, r.col4

FROM leftTable l

JOIN rightTable r ON l.col1 = r.col1 AND l.col2 = r.col2

OPTION (LOOP JOIN)

If the execution plan shows that rightTable is the inner table, ensure that rightTable has an index on (col1, col2) or on

(col2, col1), whichever is appropriate in the situation, to avoid scanning on the inner table. A loop join that has a scan

on the inner table is very inefficient and can result in high CPU utilization or other resource contention.

· Loop joins for which the seek on the inner table results in a range scan can also be very inefficient and might result

in high CPU utilization or other resource contention. Try to avoid situations in which many rows can be returned from

the inner table on any one join value combination.

As with any possible solution, hinting a loop join results in a tradeoff. In this case, we are trading available CPU

resources for better concurrency. Be sure to test this solution thoroughly in your environment to verify that the

tradeoff is worthwhile.

Summary

Using foreign keys results in additional work for data manipulation operations in which referential integrity is

enforced. The validation of the referential integrity is verified with a join. In cases in which the data being inserted is

small enough, SQL Server defaults to the use of a loop join. In cases in which the dataset being inserted is known to

be large, SQL Server defaults to the use of another join strategy that necessitates a scan of the referenced table.

Scanning can result in deadlocking with concurrent insert operations.

In some cases, transactions may use a key locking strategy when inserting into the referenced table and then use a

page locking strategy when verifying referential integrity. This different granularity can also result in deadlocking.

SQL Server always uses shared locks when validating referential integrity. This is true even if the transactions are using

read committed snapshot (read committed using row versioning) or snapshot isolation levels.

To eliminate the deadlocking when checking referential integrity, you can disable lock escalation on the referenced

table, disable page locking on the referenced table, and hint OPTION (LOOP JOIN) on transactions that operate on

mutually exclusive datasets. This forces SQL Server to lock the minimal amount of data and to use a more direct seek

operation to access the referenced rows while checking referential integrity.

Resolving scheduler contention for concurrent BULK

INSERT

Background information

As you may be aware, SQL Server, through SQLOS, implements its own scheduling mechanism

on top of the Windows operating system. This is done to spend the maximum amount of CPU

time in user mode by using yielding instead of preemptive scheduling. Also, SQLOS can

exercise very fine control over the threads by providing an abstraction on top of Windows

threads.

Central to the SQLOS scheduling mechanism is the scheduler object. A SQLOS scheduler is an

abstraction of a CPU or, in the case of multi-core machines, a CPU-core. Schedulers are grouped

into nodes; a node corresponds either to the hardware NUMA nodes on the host machine or to

the soft NUMA configuration of SQL Server. For example, an 8 CPU dual core machine with 2

hardware NUMA nodes and no soft NUMA configured has 2 nodes with 8 schedulers in each

node.

You can view the SQLOS schedulers and nodes by using the DMV sys.dm_os_schedulers.

Notice that there are some extra, special schedulers in this DMV; these are for SQL Server

internal use. Also, you will see the dedicated admin connection (DAC) scheduler here

(scheduler_id = 255). The schedulers that do the actual query execution work are marked as

VISIBLE ONLINE in the status column.

At connection time, the user’s session is assigned to a specific node. SQL Server uses a round-

robin assignment mechanism to assign the connection to the node. Once a session is on a specific

node, it will not move from it for the duration of the connection.

Whenever a session sends a batch request or RPC to the server, a scheduler is assigned to handle

the full execution of the request. In SQLOS, this call is known as a task. The assignment of a

scheduler is done by identifying the least busy scheduler within the session’s node, although the

scheduler that was used for a prior task on the same connection is somewhat favored. The

assigned scheduler will be used for the duration of the task—it is not possible for SQLOS to do a

scheduler switch inside a task.

BULK INSERT commands

There are cases when SQL Server assignment of schedulers is less than optimal. Remember that

the scheduler is an SQLOS internal abstraction of a CPU Core. So, if two long-running, CPU-

bound queries end up on the same scheduler, they will compete for the same CPU resources. At

the same time, another idle scheduler may have CPU time available. Ideally, the idle schedulers

would take some of the load from the scheduler that is executing two long-running queries. But

remember, the scheduler switch cannot happen in the middle of a task.

Multiple BULK INSERT tasks fit this scenario precisely: a bulk insert, assuming good I/O, is

CPU bound and typically runs for a long time. If you execute more than one of them

concurrently, you can end up in a situation where two bulk inserts run on the same scheduler,

while another scheduler is idle.

If the above situation occurs, your wait stats will show signal waits, even though the system is

not actually under CPU pressure. If two CPU-bound queries share a scheduler, each one will

periodically yield to the other. These yields show up in sys.dm_os_wait_stats as waits for

SOS_SCHEDULER_YIELD.

Summing up, if you see the following pattern on your server:

Total CPU load less than 100%

More than one long-running, CPU-bound query is executing on the same scheduler

Your queries are individually CPU bound, but you are still not able to push CPU load to 100%

Many signal waits in sys.dm_os_wait_stats

Many waits for SOS_SCHEDULER_YIELD in sys.dm_os_wait_stats

… You may have less than optimal scheduler distribution.

The solution: terminate and reconnect

In a well-planned, long-running BULK INSERT workload you may be able to do better than the

SQL Server scheduler assignment method. You can actually leverage the fact that a task stays on

the same scheduler during its run. The DMV sys.dm_exec_requests contains information about

all sessions, including the scheduler that is currently executing your connection. Using this view,

you can check to see if the current scheduler is busy. If it is, you can have your client application

retry the connection.

Using this “terminate and reconnect” trick we were able to increase the throughput of a CPU-

bound batch run by more than 25% on a large 64-core computer. Before we applied this trick, we

might have 16 cores almost idle and still we observed SOS_SCHEDULER_YIELD waits. Your

mileage may vary depending on the type of work you do and how “lucky” you get with the

assignment of schedulers.

The following code snippet can be used to build a "terminate and reconnect" wrapper:

CREATE PROCEDURE Batch.Wrapper_DoWork

AS /* Get my scheduler */

DECLARE @my_scheduler_id INT

SELECT @my_scheduler_id = scheduler_id

FROM sys.dm_exec_requestsWHERE session_id = @@SPID

/* Check if someone else is doing long running work on my scheduler */

IF EXISTS (SELECT *

 FROM sys.dm_exec_requests

 WHERE scheduler_id <> @my_scheduler_id

 AND command LIKE 'BULK%' /* replace with your specific check for long running

query*/

)

BEGIN

 RETURN 0 /* Failed to get a non busy scheduler, let client try again */

END

ELSE BEGIN

 /* Do long running query here */

 RETURN 1

END

Remember that your client application must perform a reconnect if the wrapper returns 0.

The above stored procedure is subject to some race conditions. You can end up in a situation

where the scheduler check shows that your scheduler is not busy but in the meantime, before you

start your long-running query, another query connects to your scheduler and starts its long

running work.

One way to avoid this race condition is to add a semaphore to your batch control system. This

semaphore can then be used to ensure exclusive access to a scheduler.

An example of this implementation is:

/* Create table to act as semaphore */

CREATE TABLE Batch.ClaimedSchedulers(

 scheduler_id INT PRIMARY KEY

 , session_id INT

)

CREATE PROCEDURE Batch.DoWork_WithClaim

AS

/* Get my scheduler */

DECLARE @my_scheduler_id INT

SELECT @my_scheduler_id = scheduler_id

FROM sys.dm_exec_requests

WHERE session_id = @@SPID

DECLARE @RC INT /* hold the row count of inserted data */

/* Claim the scheduler as my own */

INSERT INTO Batch.ClaimedSchedulers (scheduler_id, session_id)

SELECT @my_scheduler_id, @@SPID

FROM sys.dm_os_schedulers s

LEFT JOIN Batch.ClaimedSchedulers cs WITH (TABLOCKX) /* ensure serialization */

 ON cs.scheduler_id = s.scheduler_id

WHERE cs.scheduler_id IS NULL

 AND s.status = 'VISIBLE ONLINE'

 AND s.scheduler_id = @my_scheduler_id

SET @RC = @@ROWCOUNT/* Did my scheduler claim fail? (no row will be inserted) */

IF @RC = 0 BEGIN

 RETURN 0 /* Could not get a non busy scheduler, let client try again */

END

ELSE BEGIN

 /* DO LONG RUNNING QUERY HERE */

 /* Release my scheduler again */

 DELETE FROM Batch.ClaimedSchedulers

 WHERE session_id = @@SPID

 RETURN 1

END

Response Time Analysis using Extended Events

This tool demonstrates response time analysis at the session or statement level including waitstats using the new

Extended Events infrastructure in SQL Server 2008. This tool is based on the simple principle:

Response time = service time + wait time

This tool allows you to drill down on the time spent in serving the user requests and the time spent in waiting for

resources.

Download the application and documentation from

http://sqlcat.codeplex.com/Wiki/View.aspx?title=ExtendedEventsWaitstats. Follow the User Guide to install and use

the tool. The download also contains the source code for the project.

http://sqlcat.codeplex.com/Wiki/View.aspx?title=ExtendedEventsWaitstats

Memory Error Recovery in SQL Server 2012

SQL Server 2012 has many hidden gems, one of them is the capability of recovering from memory

corruption error. We will tell you how it works in this article.

Contents

1. Memory Error Recovery in SQL Server 2012

2. Hardware errors and taxonomy

3. Soft error vs. hard error

4. Corrected error vs. uncorrected error

5. Fatal error vs. non-fatal error

6. What is memory scrubbing?

7. How To: Find if this feature is available

8. How To: Detect that a page has been repaired

9. How to: Detect uncorrected hardware memory corruption

10. How To: Monitor the system

SQL Server is able to recover from memory corruption when hardware support is available. Platforms that

support hardware memory scrubber can send notification to applications when memory corruption is

detected. SQL Server responds to these notifications and attempts to repair the memory. Clean database

pages in buffer pool are restored by reading the page again from disk. This new feature helps SQL Server

to remain running even when there are hardware memory errors.

Hardware errors and taxonomy

Please see the Hardware Errors and Error Sources on MSDN for an overview of hardware errors and their

definitions.

Soft error vs. hard error

A soft error is an error in a signal or datum which is wrong. After a soft error is observed , there is no

implication that the system is any less reliable than before. If detected, a soft error may be corrected by

rewriting correct data in place of erroneous data. An example of a soft error is a single bit flip.

Unlike soft error, a hard error is an error that occurs because of a physical hardware issue such as a defect,

a mistake in design or construction, or a broken component. These errors require that the hardware

causing the error be replaced. Rewriting the data does not correct the error.

Corrected error vs. uncorrected error

A corrected error is a hardware error condition that has been corrected by the hardware or the firmware

by the time that the operating system is notified about the presence of the error condition.

An uncorrected error is a hardware error condition that cannot be corrected by the hardware or the

firmware. Uncorrected errors are classified as either fatal or nonfatal.

http://msdn.microsoft.com/en-us/library/windows/hardware/ff559382(v=vs.85).aspx

Fatal error vs. non-fatal error

A fatal hardware error is an uncorrected or uncontained error condition that is determined to be

unrecoverable by the hardware. When a fatal uncorrected error occurs, the operating system generates a

bug check to contain the error.

A nonfatal hardware error is an uncorrected error condition from which the operating system can attempt

recovery by trying to correct the error. If the operating system cannot correct the error, it generates a bug

check to contain the error.

What is memory scrubbing?

Memory scrubbing is the process of detecting and correcting bit errors in computer memory by using

error-detecting codes like ECC. Memory scrubbing can detect and correct soft, correctable errors. For

certain soft, uncorrected non-fatal errors, SQL Server captures of this information and checks whether the

corrupted memory is part of a clean database page that is in Buffer Pool. If that is the case, this page is

tossed and the memory is de-allocated. If corruption is in another region of memory that can not be

repaired, only logging is done to notify of the event and no action is taken.

How To: Find if this feature is available

If the memory error recovery feature is available, you will be able to see the following by looking at SQL

errorlog.

Machine supports memory error recovery. SQL memory protection is enabled to recover
from memory corruption.

How To: Detect that a page has been repaired

If the memory corruption is associated with a clean page in Buffer Pool, SQL Server is able to recover from

it and the following message will be logged in the errorlog.

SQL Server has detected hardware memory corruption in database '%ls', file ID: %u,
page ID; %u, memory address: 0x%x and has successfully recovered the page.

Also you can monitor the detection and repair of the memory corruption with the following Extended

Events (XEvents):

- bad_memory_detected: corrupted memory has been detected and reported to SQL. The memory may or

may not belong to a database page.

- bad_memory_fixed: memory corruption has been detected and fixed. Fields of then event contain more

details regarding the exact page affected

http://en.wikipedia.org/wiki/Memory_scrubbing

How to: Detect uncorrected hardware memory corruption

SQL Server is able to recover from memory corruption of clean pages in buffer pool. It cannot recover

from memory errors associated with dirty pages or outside Buffer Pool. Upon detection of such

uncorrectable hardware errors, the following entry can be observed from errorlog.

Uncorrectable hardware memory corruption detected. Your system may become unstable.
Please check the Windows event log for more details.

How To: Monitor the system

The user can monitor the detection of memory corruption using sp_server_diagnostics. The system

component state will be set to warning upon detection of a memory corruption. In addition, the data

column logs information about count of bad page detected, count of bad page fixed as well as the virtual

address of the bad page last encountered.

Section 9: SQL Top 10

Storage Top 10 Best Practices

Proper configuration of IO subsystems is critical to the optimal performance and operation of SQL Server systems.

Below are some of the most common best practices that the SQL Server team recommends with respect to storage

configuration for SQL Server.

1 - Understand the IO characteristics of SQL Server and the specific IO requirements / characteristics

of your application.

In order to be successful in designing and deploying storage for your SQL Server application, you need to have an

understanding of your application’s IO characteristics and a basic understanding of SQL Server IO patterns.

Performance monitor is the best place to capture this information for an existing application. Some of the questions

you should ask yourself here are:

 What is the read vs. write ratio of the application?

 What are the typical IO rates (IO per second, MB/s & size of the IOs)? Monitor the perfmon counters:

1. Average read bytes/sec, average write bytes/sec

2. Reads/sec, writes/sec

3. Disk read bytes/sec, disk write bytes/sec

4. Average disk sec/read, average disk sec/write

5. Average disk queue length

 How much IO is sequential in nature, and how much IO is random in nature? Is this primarily an OLTP

application or a Relational Data Warehouse application?

To understand the core characteristics of SQL Server IO, refer to SQL Server 2000 I/O Basics.

2 - More / faster spindles are better for performance

 Ensure that you have an adequate number of spindles to support your IO requirements with an acceptable

latency.

 Use filegroups for administration requirements such as backup / restore, partial database availability, etc.

 Use data files to “stripe” the database across your specific IO configuration (physical disks, LUNs, etc.).

3 - Try not to “over” optimize the design of the storage; simpler designs generally offer good

performance and more flexibility.

 Unless you understand the application very well avoid trying to over optimize the IO by selectively placing

objects on separate spindles.

 Make sure to give thought to the growth strategy up front. As your data size grows, how will you manage

growth of data files / LUNs / RAID groups? It is much better to design for this up front than to rebalance

data files or LUN(s) later in a production deployment.

http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/sqliobasics.mspx

4 - Validate configurations prior to deployment

 Do basic throughput testing of the IO subsystem prior to deploying SQL Server. Make sure these tests are

able to achieve your IO requirements with an acceptable latency. SQLIO is one such tool which can be used

for this. A document is included with the tool with basics of testing an IO subsystem. Download the SQLIO

Disk Subsystem Benchmark Tool.

 Understand that the of purpose running the SQLIO tests is not to simulate SQL Server’s exact IO

characteristics but rather to test maximum throughput achievable by the IO subsystem for common SQL

Server IO types.

 IOMETER can be used as an alternative to SQLIO.

5 - Always place log files on RAID 1+0 (or RAID 1) disks. This provides:

 Better protection from hardware failure, and

 Better write performance.

Note: In general RAID 1+0 will provide better throughput for write-intensive applications. The amount of

performance gained will vary based on the HW vendor’s RAID implementations. Most common alternative to

RAID 1+0 is RAID 5. Generally, RAID 1+0 provides better write performance than any other RAID level

providing data protection, including RAID 5.

6 - Isolate log from data at the physical disk level

 When this is not possible (e.g., consolidated SQL environments) consider I/O characteristics and group

similar I/O characteristics (i.e. all logs) on common spindles.

 Combining heterogeneous workloads (workloads with very different IO and latency characteristics) can have

negative effects on overall performance (e.g., placing Exchange and SQL data on the same physical spindles).

7 - Consider configuration of TEMPDB database

 Make sure to move TEMPDB to adequate storage and pre-size after installing SQL Server.

 Performance may benefit if TEMPDB is placed on RAID 1+0 (dependent on TEMPDB usage).

 For the TEMPDB database, create 1 data file per CPU, as described in #8 below.

8 - Lining up the number of data files with CPU’s has scalability advantages for allocation intensive

workloads.

 It is recommended to have .25 to 1 data files (per filegroup) for each CPU on the host server.

 This is especially true for TEMPDB where the recommendation is 1 data file per CPU.

 Dual core counts as 2 CPUs; logical procs (hyperthreading) do not.

9 - Don’t overlook some of SQL Server basics

 Data files should be of equal size – SQL Server uses a proportional fill algorithm that favors allocations in

files with more free space.

 Pre-size data and log files.

 Do not rely on AUTOGROW, instead manage the growth of these files manually. You may leave AUTOGROW

ON for safety reasons, but you should proactively manage the growth of the data files.

http://www.microsoft.com/downloads/details.aspx?familyid=9a8b005b-84e4-4f24-8d65-cb53442d9e19&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=9a8b005b-84e4-4f24-8d65-cb53442d9e19&displaylang=en

10 - Don’t overlook storage configuration bases

 Use up-to-date HBA drivers recommended by the storage vendor

 Utilize storage vendor specific drivers from the HBA manufactures website

 Tune HBA driver settings as needed for your IO volumes. In general driver specific settings should come

from the storage vendor. However we have found that Queue Depth defaults are usually not deep enough

to support SQL Server IO volumes.

 Ensure that the storage array firmware is up to the latest recommended level.

 Use multipath software to achieve balancing across HBA’s and LUN’s and ensure this is functioning properly

 Simplifies configuration & offers advantages for availability

 Microsoft Multipath I/O (MPIO): Vendors build Device Specific Modules (DSM) on top of Driver Development

Kit provided by Microsoft.

Top 10 Hidden Gems in SQL Server 2005

By Cihan Biyikoglu

Technical Reviewers: Lindsey Allen, Peter Scharlock, Burzin Patel, Eric Hanson, Mark Souza, Sanjay Mishra, Michael

Thomassy

SQL Server 2005 has hundreds of new and improved components. Some of these improvements get a lot of the

spotlight. However there is another set that are the hidden gems that help us improve performance, availability or

greatly simplify some challenging scenarios. This paper lists the top 10 such features in SQL Server 2005 that we have

discovered through the implementation with some of our top customers and partners.

The order in the list does not have much significance except the specific instances we used them and the impact we

saw. I will use a practical analogy; I started with the utility-knife size features that can help make life very easy at the

right moment and build up to chain-saw size features that can help you implement a full scenario.

TableDiff.exe

Table Difference tool allows you to discover and reconcile differences between a source and destination table or a

view. Tablediff Utility can report differences on schema and data. The most popular feature of tablediff is the fact that

it can generate a script that you can run on the destination that will reconcile differences between the tables.

TableDiff.exe takes 2 sets of input;

 Connectivity - Provide source and destination objects and connectivity information.

 Compare Options - Select one of the compare options

 Compare schemas: Regular or Strict

 Compare using Rowcounts, Hashes or Column comparisons

 Generate difference scripts with I/U/D statements to synchronize destination to the source.

TableDiff was intended for replication but can easily apply to any scenario where you need to compare data and

schema.

You can find more information about command line utilities and the Tablediff Utility in Books Online for SQL Server

2005.

Triggers for Logon Events (New in Service Pack 2)

 With SP2, triggers can now fire on Logon events as well as DML or DDL events.

 Logon triggers can help complement auditing and compliance. For example, logon events can be used for

enforcing rules on connections (for example limiting connection through a specific username or limiting

connections through a username to a specific time periods) or simply for tracking and recording general

connection activity. Just like in any trigger, ROLLBACK cancels the operation that is in execution. In the case

of logon event that means canceling the connection establishment. Logon events do not fire when the server

is started in the minimal configuration mode or when a connection is established through dedicated admin

connection (DAC).

 The following code snippet provides an example of a logon trigger that records the information about the

client connection.

CREATE TRIGGER connection_limit_trigger

 ON ALL SERVER FOR LOGON

 AS

 BEGIN

 INSERT INTO logon_info_tbl SELECT EVENTDATA()

 END;

You can find more information about this feature in updated Books Online for SQL Server Services Pack 2 un the

heading “Logon Triggers”.

Boosting performance with persisted-computed-columns (pcc).

 Btree Indexes provide great compromise for tuning queries vs redundant storage of data and added cost of

modifying data (insert/update/delete). A less known capability for tuning in SQL Server 2005 is persisted

computed columns (PCC). Computed columns can help you shift the runtime computation cost to data

modification phase. The computed column is stored with the rest of the row and is transparently utilized

when the expression on the computed columns and the query matches. You can also build indexes on the

PCC’s to speed up filtrations and range scans on the expression.

 The following sample can demonstrate the benefits of a persisted computed column applied to a complex

expression. The same TSQL query run against the following table schema with and without the DayType

column will demonstrate the effect of the transparent expression matching with persisted computed

columns. The output from the sys.dm_exec_query_stats DMV also shows the difference in the IO and CPU

characteristics of the query.

Query

SELECT [Ticker] ,[Date] , [DayHigh] ,[DayLow] ,[DayOpen] ,[Volume]

,[DayClose] ,[DayAdjustedClose],

CASE

WHEN volume > 200000000 and dayhigh-daylow /daylow > .05 THEN 'heavy

volatility'

WHEN volume > 100000000 and dayhigh-daylow /daylow > .03 THEN 'volatile'

WHEN volume > 50000000 and dayhigh-daylow /daylow > .01 THEN 'fair'

ELSE 'light'

END as [DayType]

FROM dbo.MarketData

WHERE

CASE

WHEN volume > 200000000 and dayhigh-daylow /daylow > .05 THEN 'heavy

volatility'

WHEN volume > 100000000 and dayhigh-daylow /daylow > .03 THEN 'volatile'

WHEN volume > 50000000 and dayhigh-daylow /daylow > .01 THEN 'fair'

ELSE 'light'

END = 'heavy volatility'

Table Schema

CREATE TABLE [dbo].[MarketData](

[ID] [bigint] IDENTITY(1,1) NOT NULL,

[Ticker] [nvarchar](5) NOT NULL,

[Date] [datetime] NOT NULL,

[DayHigh] [decimal](38, 6) NOT NULL,

[DayLow] [decimal](38, 6) NOT NULL,

[DayOpen] [decimal](38, 6) NOT NULL,

[Volume] [bigint] NOT NULL,

[DayClose] [decimal](38, 6) NOT NULL,

[DayAdjustedClose] [decimal](38, 6) NOT NULL,

-- PERSISTED COMPUTED COLUMN --

[DayType] AS (

CASE

WHEN volume > 200000000 and dayhigh-daylow /daylow > .05 THEN 'heavy

volatility'

WHEN volume > 100000000 and dayhigh-daylow /daylow > .03 THEN 'volatile'

WHEN volume > 50000000 and dayhigh-daylow /daylow > .01 THEN 'fair'

ELSE 'light'

END) PERSISTED NOT NULL

) ON [PRIMARY]

Output From The Sys.Dm_Exec_Query_Stats Dynamic Management View (DMV)

See full-sized image.

In the above picture, the output from sys.dm_exec_query_stats dynamic management view shows the difference in

CPU and IO statistics between the same query hitting MarketData_Computed and MarketData tables. Line 1

represents the query run against the table with the persisted computed column. Line 2 is the table without the

persisted computed column. With the complex expression pre-calculated in the DayType column, total worker time

and overall elapsed time is lower compared to the table without the DayType persisted computed column.

Another way to verify that the persisted computed column is utilized, is to use the execution plan and look at the scan

or the seek operator for the table with the computed column and check the output list, which should contain the

column. In the example below you can see the DayType, the name for the PCC, in the output list under #9.

http://www.microsoft.com/library/media/1033/technet/images/prodtechnol/sql/bestpractice/top10gems1.jpg

See full-sized image.

DEFAULT_SCHEMA setting in sys.database_principles

 SQL Server provides great flexibility with name resolution. However name resolution comes at a cost and can

get noticeably expensive in adhoc workloads that do not fully qualify object references. SQL Server 2005

allows a new setting of DEFEAULT_SCHEMA for each database principle (also known as “user”) which can

eliminate this overhead without changing your TSQL code. Here is an example:

In SQL Server 2005, the following query when executed by user1 that has a DEFAULT_SCHEMA of ‘dbo’ will directly

resolve to dbo.tab1, instead of the extra search for user1.tab1.

SELECT * FROM tab1

Whereas the same query will search for ‘user1.tab1’ in SQL Server 2000 and if that does not exist it will resolve to

‘dbo.tab1’.

 This setting can be especially useful for databases upgraded from SQL Server 2000 to SQL Server 2005. To

preserve the original behavior, databases upgraded from SQL Server 2000 will get the username as the

DEFAULT_SCHEMA for each database principle. That means, in a database upgraded from a previous version

to SQL Server 2005, ‘user1’ will get a DEFAULT_SCHEMA values of ‘user1’. To take advantage of the

performance benefits, administrators can set the DEFAULT_SCHEMA through ALTER USER command and

change it to the schema that most of the of the objects reside. Be aware this may break queries that may be

utilizing objects in other schemas than the one set in the DEFAULT_SCHEMA setting and has not qualified

the object names.

 DEFULT_SCHEMA is documented in Book Online under the “CREATE USER (Transact-SQL)” heading.

Forced Parameterization

 Parameterization allows SQL Server to take advantage of query plan reuse and avoid compilation and

optimization overheads on subsequent executions of similar queries. However there are many applications

out there that, for one reason or another, still suffer from ad-hoc query compilation overhead. For those

http://www.microsoft.com/library/media/1033/technet/images/prodtechnol/sql/bestpractice/top10gems2.jpg

cases with high number of query compilation and where lowering CPU utilization and response time is

critical for your workload, force parameterization can help.

 Force parameterization forces most queries to be parameterized and cached for reuse in subsequent

submissions. Forced parameterization will remove the literal values and replaces them with parameters. This

minimizes the compilation overhead for queries that are the same except the literal values in the query text.

Forced parameterization is typically enabled at the database level. However it is also possible to hint FORCED

PARAMETERIZATION on individual queries.

 In a number of cases, we have witnessed improvements in performance up to 30% due to forced

parameterization. However forced parameterization can cause inappropriate plan sharing in cases where a

single execution plan does not make sense. For those cases, you can utilize features like plan guides or query

hints.

 You can find more information on Forced Parameterization in Books Online.

Vardecimal Storage Format

 In Service Pack 2, SQL Server 2005 adds a new storage format for numeric and decimal datatypes called

vardecimal. Vardecimal is a variable-length representation for decimal types that can save unused bytes in

every instance of the row. The biggest amount of savings come from cases where the decimal definition is

large (like decimal(38,6)) but the values stored are small (like a value of 0.0) or there is a large number of

repeated values or data is sparsely populated.

 SQL Server 2005 also includes a stored procedure that can estimate the savings before you enable the new

storage format.

master.dbo.sp_estimate_rowsize_reduction_for_vardecimal ‘tablename’

 To enable vardecimal storage format, you need to first allow vardecimal storage on the database;

exec sys.sp_db_vardecimal_storage_format N'databasename', N'ON'

 Once the database option is enabled, you can then turn on vardecimal storage at a table level using the

following procedure;

exec sp_tableoption 'tablename', 'vardecimal storage format', 1

 Vardecimal storage format presents an overhead due to the complexity inherent in variable length data

processing. However in IO bound workloads, savings on IO bandwidth due to efficient storage can far

exceed this processing overhead.

 If you would like more information on this topic, updated SQL Server 2005 Books Online for Service Pack 2

contains extensive information on the new vardecimal format.

Indexing made easier with SQL Server 2005

 The new Dynamic Management Views have improved monitoring and trouble shooting greatly. A few of the

dynamic management views (DMVs) deserve special attention.

 Through sys.dm_index_usage_stats you can find out how much maintenance and traversal you have for each

index. Indexes with high maintenance numbers and low traversal numbers can be considered as good

candidates for dropping.

 Through sys.dm_db_missing_index_* collection of DMVs, you can get recommendations on what new

indexes could benefit the queries running on your server. The recommendations come with a estimate on

how much improvement you can expect from the new index.

 If you’d like to automate creation and dropping of indexes, SQL Server Query Optimization Team has

blogged about how to automate index recommendations into actions:

http://blogs.msdn.com/queryoptteam/archive/2006/06/01/613516.aspx

Figuring out the most popular queries in seconds

 Another great DMV that can help save you a lot of work is sys.dm_exec_query_stats. In previous version of

SQL Server to find out the highest impact queries on CPU or IO in system, you had to walk through a long

set of analyses steps including getting aggregated information out of the data you collected from profiler.

 With sys.dm_exec_query_stats, you can figure out many combinations of query analyses by a single query.

Here are some of the examples;

 Find queries suffering most from blocking –

(total_elapsed_time – total_worker_time)

 Find queries with most CPU cycles – (total_worker_time)

 Find queries with most IO cycles –

(total_physical_reads + total_logical_reads + total_logical_writes)

 Find most frequently executed queries –

(execution_count)

 You can find more information on how to use dynamic management views for performance troubleshooting

in the “SQL Server 2005 Waits and Queues” whitepaper located at:

http://www.microsoft.com/technet/prodtechnol/sql/bestpractice/performance_tuning_waits_queues.mspx

Scalable Shared Databases

 Scalable Shared Databases provide an alternative scale out mechanism for Read-Only environments.

Through Scalable Shared Databases one can mount the same physical drives on commodity machines and

allow multiple instances of SQL Server 2005 to work off of the same set of data files. The setup does not

require duplicate storage for every instance of SQL Server and allows additional processing power through

multiple SQL Server instances that have their own local resources like cpu, memory, tempdb and potentially

other local databases. However this type of setup does limit the IO bandwidth since all instances point to the

physical set of files.

http://blogs.msdn.com/queryoptteam/archive/2006/06/01/613516.aspx
http://www.microsoft.com/technet/prodtechnol/sql/bestpractice/performance_tuning_waits_queues.mspx

See full-sized image.

Book Online for SQL server 2005 contains details on Scalable Shared Databases.

Steps to setup:

http://support.microsoft.com/kb/910378

Soft-NUMA

 Highly concurrent workloads hit a contention point around global state they maintain at some point. That

point in many cases happen to be ‘8’. One way around this contention has been to eliminate the global state

and create hierarchies. NUMA architectures allow us to eliminate the contention around global resources by

moving main resources closer to each other and forming nodes. SQL Server 2005 recognizes the NUMA

architecture and self manages allocation of resources to adhere and take advantage of the hardware NUMA

setup at the time of startup. By aligning with the HW setup SQL Server partitions its internal management to

improve throughput.

 Some workloads benefit greatly from the partitioning concept, especially mixed workloads that have to run

varying characteristics of data access concurrently (example: OLTP and Reporting). Soft-NUMA allows

partitioning configuration to be extended into the software level and defined either on top of a NUMA

enabled environment to further divide the hardware partitions into smaller chunks or on a machine that does

not utilize NUMA concepts to enable partitioning for the configuration. By configuring partitions through

Soft-NUMA, the administrator can control the allocation of schedulers and memory managers for each node

and can configure specific TCP/IP ports for the nodes. Then, clients can be configured to connect using the

specific ports to access specific partitions.

http://www.microsoft.com/library/media/1033/technet/images/prodtechnol/sql/bestpractice/top10gems3.jpg
http://support.microsoft.com/kb/910378

See full-sized image.

 Soft-NUMA topic is extensively covered in Book Online. You can also read more about the details of Soft-

NUMA at Slava Oks’s Weblog at http://blogs.msdn.com/slavao/

http://www.microsoft.com/library/media/1033/technet/images/prodtechnol/sql/bestpractice/top10gems4.jpg
http://blogs.msdn.com/slavao/

Top 10 Hidden Gems in SQL 2008 R2

With all the new features in SQL 2008 R2, here are the major ones getting all the press:

PowerPivot
Parallel Data Warehouse

Application and Multi-Server Management
StreamInsight
256 core support

There is so much written on the ones above, I wanted to concentrate on talking about other new
features in SQL 2008 R2. So, in no particular order:

1. SMB support – SMB stands for Server Message Block and this protocol is now officially supported by
SQL Server 2008 R2 and beyond. This improvement has formalized the support status of placing SQL
database files on SMB network file shares. From Kevin Farlee, the owner of this feature in SQL
Server: “This presents a better-together story with the work that Windows has done in
Windows7/Server 2008 R2 to make the Windows SMB stack far more performant and resilient than
in the past. It is also a recognition that with the increasing acceptance of iSCSI, customers are
viewing Ethernet as a viable way to connect to their storage. Finally, it gives customers in
consolidation environments a very simple to manage method for moving databases between servers
without investing in a large SAN infrastructure.”

2. Increased Performance – there are very nice performance improvements, especially with the
combination of Windows 2008 R2 and SQL 2008 R2. The actual TPC-E measurements on have been
audited and published.

3. SYSPREP – Finally! We can now create Sysprep versions of SQL Server environments, starting with
SQL Server 2008 R2, but only for the relational engine. My favorite thing about this piece is that it
even works with HyperV images containing SQL Server 2008 R2.

4. Report Builder 3.0 and Reporting Services – Too many great new features to talk about in a blog
and the development team already has a great blog. But my favorite is the Report Part feature where
you can take an existing report and designate report items and data regions to save and reuse in other
reports. This can amount to a huge time savings for developing new reports. Other customers tell me
they like the improved Sharepoint integration and the performance improvements in Sharepoint. But
that is not all, there is Bing map support, spark lines, and shared data sets.

5. Master Data Services – for data consistency across heterogeneous applications. BOL link.
6. SSIS - Bulk Inserts with ADO.NET provider are now possible, which is extremely nice because it

used to do it a row at a time. Now, if you check the box to “Use Bulk Insert when possible” then you
can see vastly improved performance when it kicks in.

7. Setup – integrated Sharepoint mode setup is vastly improved for both Reporting Services and
Analysis Services. See the link for Powerpivot for Sharepoint to get the instructions.

8. Excel 2010 – new additions for databases: slicers, data cleansing, AJAX data feeds, Odata feeds and
named set improvements. To create a Named Set in Excel, once you’ve created a PivotTable against
an OLAP source go to the Options tab under PivotTable Tools, and select “Fields, Items, & Sets” à
“Manage Sets” à “New…” à “Create Set Using MDX…”. Another of my new favorites within
PowerPivot in Excel is the new Data Cleansing ribbon. This allows the users to do their own clean

http://www.powerpivot.com/
http://www.microsoft.com/sqlserver/2008/en/us/parallel-data-warehouse.aspx
http://www.microsoft.com/sqlserver/2008/en/us/R2-multi-server.aspx
http://www.microsoft.com/sqlserver/2008/en/us/R2-complex-event.aspx
http://www.microsoft.com/sqlserver/2008/en/us/performance-scale.aspx
http://msdn.microsoft.com/en-us/library/aa365233(VS.85).aspx
http://www.tpc.org/
http://msdn.microsoft.com/en-us/library/ee210754(SQL.105).aspx
http://technet.microsoft.com/en-us/library/dd220460(SQL.105).aspx
http://technet.microsoft.com/en-us/library/dd220460(SQL.105).aspx
http://www.microsoft.com/sqlserver/2008/en/us/MDS.aspx
http://msdn.microsoft.com/en-us/library/ee633763(SQL.105).aspx
http://blogs.msdn.com/mattm/archive/2009/11/12/something-new-for-ssis-in-sql-server-2008-r2-november-ctp.aspx
http://msdn.microsoft.com/en-us/library/bb500459(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ee210682(SQL.105).aspx
http://www.microsoft.com/office/2010/en

up, which will be essential when they combine data from disparate sources. And you can also get an
OData feed from a Reporting Services report.

9. Database Compression - now supports Unicode. If you have Unicode date types, like nchar and
nvarchar, but the data contained within is normally single byte character sets, you will see
significant space savings.

10. PHP 5 Driver – Version 1.1 of the PHP 5 driver has a list of new capabilities, allowing access to SQL
Server 2005 and SQL Server 2008.

New and changed Editions (more details and pricing)

 Data Center Edition – needed for machine with more than 8 physical CPU sockets plus other
improvements needed for the top SQL Server projects.

 Parallel Data Warehouse Edition – Massively Parallel Processing (MPP) Edition of SQL Server
targeted at data warehouses in the 10’s to 100’s of terabytes. It is an appliance where you
order the hardware and software together and it comes preinstalled and preconfigured. The
minimum installation is one rack so no, you cannot install it on your laptop to play with it.

 Standard Edition – now has the capability to do backup compression.

http://sqlcat.com/tiny_mce/jscripts/tiny_mce/(%20http:/msdn.microsoft.com/en-us/library/ee240835%28SQL.105%29.aspx
http://msdn.microsoft.com/en-us/library/cc296172(SQL.90).aspx
http://msdn.microsoft.com/en-us/library/ee376930(SQL.90).aspx
http://www.microsoft.com/sqlserver/2008/en/us/R2-editions.aspx
http://www.microsoft.com/sqlserver/2008/en/us/R2-editions.aspx
http://www.microsoft.com/sqlserver/2008/en/us/parallel-data-warehouse.aspx

Top 10 SQL Server 2008 Features for the Database

Administrator (DBA)

Microsoft SQL Server 2008 provides a number of enhancements and new functionality, building on previous versions.

Administration, database maintenance, manageability, availability, security, and performance, among others, all fall

into the roles and responsibilities of the database administrator. This article provides the top ten new features of SQL

Server 2008 (referenced in alphabetical order) that can help DBAs fulfill their responsibilities. In addition to a brief

description of each feature, we include how this feature can help and some important use considerations.

1 - Activity Monitor

When troubleshooting a performance issue or monitoring a server in real time, it is common for the DBA to execute a

number of scripts or check a number of sources to collect general information about what processes are executing

and where the problem may be. SQL Server 2008 Activity Monitor consolidates this information by detailing running

and recently executed processes, graphically. The display gives the DBA a high-level view and the ability to drill down

on processes and view wait statistics to help understand and resolve problems.

To open up Activity Monitor, just right-click on the registered server name in Object Explorer and then click Activity

Monitor, or utilize the standard toolbar icon in SQL Server Management Studio. Activity Monitor provides the DBA

with an overview section producing output similar to Windows Task Manager and drilldown components to look at

specific processes, resource waits, data file I/Os, and recent expensive queries, as noted in Figure 1.

Figure 1: Display of SQL Server 2008 Activity Monitor view from Management Studio

NOTE: There is a refresh interval setting accessed by right-clicking on the Activity Monitor. Setting this value to a low

threshold, under 10 seconds, in a high-volume production system can impact overall system performance.

DBAs can also use Activity Monitor to perform the following tasks:

 Pause and resume Activity Monitor with a simple right-click. This can help the DBA to “save” a particular

point-in-time for further investigation without it being refreshed or overwritten. However, be careful,

because if you manually refresh, expand, or collapse a section, the data will be refreshed.

http://sqlcat.com/blogs/top10lists/WindowsLiveWriter/Top10SQLServer2008FeaturesfortheDatabase_E515/image_2.png

 Right-click a line item to display the full query text or graphical execution plan via Recent Expensive Queries.

 Execute a Profiler trace or kill a process from the Processes view. Profiler events include RPC:Completed,

SQL:BatchStarting, and SQL:BatchCompleted events, and Audit Login and Audit Logout.

Activity Monitor also provides the ability to monitor activity on any SQL Server 2005 instance, local or remote,

registered in SQL Server Management Studio.

2- [SQL Server] Audit

Having the ability to monitor and log events, such as who is accessing objects, what changes occurred, and what time

changes occurred, can help the DBA to meet compliance standards for regulatory or organizational security

requirements. Gaining insight into the events occurring within their environment can also help the DBA in creating a

risk mitigation plan to keep the environment secure.

Within SQL Server 2008 (Enterprise and Developer editions only), SQL Server Audit provides automation that allows

the DBA and others to enable, store, and view audits on various server and database components. The feature allows

for auditing at a granularity of the server and/or database level.

There are server-level audit action groups, such as:

 FAILED_LOGIN_GROUP, which tracks failed logins.

 BACKUP_RESTORE_GROUP, which shows when a database was backed up or restored.

 DATABASE_CHANGE_GROUP, which audits when a database is created, altered, or dropped.

Database-level audit action groups include:

 DATABASE_OBJECT_ACCESS_GROUP, which is raised whenever a CREATE, ALTER, or DROP statement is

executed on database objects.

 DATABASE_OBJECT_PERMISSION_CHANGE_GROUP, which is raised when GRANT, REVOKE, or DENY is

utilized for database objects.

There are also audit actions, such as SELECT, DELETE, or EXECUTE. For more information, including a full list of the

audit groups and actions, see SQL Server Audit Action Groups and Actions.

Audit results can be sent to a file or event log (Windows Security or System) for viewing. Audit information is created

utilizing Extended Events, another new SQL Server 2008 feature.

By using SQL Server 2008 audits, the DBA can now answer questions that were previously very difficult to retroactively

determine, such as “Who dropped this index?”, “When was the stored procedure modified?”, “What changed which

might not be allowing this user to access this table?”, or even “Who ran SELECT or UPDATE statements against the

[dbo.Payroll] table?”

For more information about using SQL Server Audit and some examples of implementation, see the SQL Server 2008

Compliance Guide.

http://technet.microsoft.com/en-us/library/cc280663.aspx
http://msdn.microsoft.com/en-us/library/bb630354.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=6808
http://www.microsoft.com/en-us/download/details.aspx?id=6808

3 - Backup Compression

This feature has long been a popular request of DBAs for SQL Server. The wait is finally over, and just in time! Many

factors, including increased data retention periods and the need to physically store more data have contributed to the

recent explosion in database size. Backing up a large database can require a significant time window to be allotted to

backup operations and a large amount of disk space allocated for use by the backup file(s).

With SQL Server 2008 backup compression, the backup file is compressed as it is written out, thereby requiring less

storage, less disk I/O, and less time. In lab tests conducted with real customer data, we observed in many cases a

reduction in the backup file size between 70% and 85%. Testing also revealed around a 45% reduction in the backup

and restore time. It is important to note that the additional processing results in higher processor utilization. To help

segregate the CPU intensive backup and minimize its effect on other processes, one might consider utilizing another

feature mentioned in this paper, Resource Governor.

The compression is achieved by specifying the WITH COMPRESSION clause in the BACKUP command (for more

information, see SQL Server Books Online) or by selecting it in the Options page in the Back Up Database dialog

box. To prevent having to modify all existing backup scripts, there is also a global setting to enable compressing all

backups taken on a server instance by default. (This setting is accessed by using the Database Settings page of the

Server Properties dialog box or by running sp_configure with backup compression default set to 1.) While the

compression option on the backup command needs to be explicitly specified, the restore command automatically

detects that a backup is compressed and decompresses it during the restore operation.

Backup compression is a very useful feature that can help the DBA save space and time. For more information about

tuning backup compression, see the technical note on Tuning the Performance of Backup Compression in SQL Server

2008. NOTE: Creating compressed backups is only supported in SQL Server 2008 Enterprise and Developer editions;

however, every SQL Server 2008 edition allows for a compressed backup to be restored.

4 - Central Management Servers

DBAs are frequently responsible for managing not one but many SQL Server instances in their environment. Having

the ability to centralize the management and administration of a number of SQL Server instances from a single source

can allow the DBA to save significant time and effort. The Central Management Servers implementation, which is

accessed via the Registered Servers component in SQL Server Management Studio, allows the DBA to perform a

number of administrative tasks on SQL Servers within the environment, from a single management console.

Central Management Servers allow the DBA to register a group of servers and apply functionality to the servers, as a

group, such as:

 Multiserver query execution: A script can now be executed from one source, across multiple SQL Servers, and

be returned to that source, without the need to distinctly log into every server. This can be extremely helpful

in cases where data from tables on two or more SQL Servers needs to be viewed or compared without the

execution of a distributed query. Also, as long as the syntax is supported in earlier server versions, a query

executed from the Query Editor in SQL Server 2008 can run against SQL Server 2005 and SQL Server 2000

http://msdn.microsoft.com/en-us/library/ms186865.aspx

instances as well. For more information, see the SQL Server Manageability Team Blog, specifically Multiple

Server Query Execution in SQL Server 2008 .

 Import and evaluate policies across servers: As part of Policy-Based Management (another new SQL Server

2008 feature discussed in this article), SQL Server 2008 provides the ability to import policy files into

particular Central Management Server Groups and allows policies to be evaluated across all of the servers

registered in the group

 Control Services and bring up SQL Server Configuration Manager: Central Management Servers help provide

a central place where DBAs can view service status and even change status for the services, assuming they

have the appropriate permissions

 Import and export the registered servers: Servers within Central Management Servers can be exported and

imported for use between DBAs or different SQL Server Management Studio instance installations. This is an

alternative to DBAs importing or exporting into their own local groupings within SQL Server Management

Studio.

Be aware that permissions are enforced via Windows authentication, so a user might have different rights and

permissions depending on the server registered within the Central Management Server group. For more information,

see Administering Multiple Servers Using Central Management Servers and a Kimberly Tripp blog: SQL Server 2008

Central Management Servers-have you seen these?

5 - Data Collector and Management Data Warehouse

Performance tuning and troubleshooting are a time-consuming tasks that can require in-depth SQL Server skills and

an understanding of database internals. Windows System monitor (Perfmon), SQL Server Profiler, and dynamic

management views (DMVs) helped with some of this, but they were often intrusive, laborious to use, or the dispersed

data collection methods were cumbersome to easily summarize and interpret.

To provide actionable performance insight, SQL Server 2008 delivers a fully extensible performance data collection

and warehouse tool also known as the data collector. The tool includes several out-of-the-box data collection agents,

a centralized data repository for storing performance data called management data warehouse, and several

precanned reports to present the captured data. The data collector is a scalable tool that can collect and assimilate

data from multiple sources such as dynamic management views , Perfmon, Transact-SQL queries, by using a fully

customizable data collection frequency. The data collector can be extended to collect data for any measurable

attribute of an application.

Another helpful feature of the management data warehouse is that it can be installed on any SQL Server and then

collect data from one or more SQL Server instances within the environment. This can help minimize the performance

impact on production systems and improve the scalability in terms of monitoring and collecting data from a number

of servers. In lab testing we observed around a 4% reduction in throughput when running the agents and the

management data warehouse on a server running at capacity (via an OLTP workload). The impact can vary based on

the collection interval (as the test was over an extended workload with 15-minute-pulls into the warehouse), and it

can be exacerbated during intervals of data collection. Finally, some capacity should be considered, because the

DCExec.exe process will take up some memory and processor resources, and writes to the management data

warehouse will increase the I/O workload and space allocation needed where the data and log files are located.

The diagram (Figure 2) below depicts a typical data collector report.

http://blogs.msdn.com/sqlrem/archive/2008/02/04/multiple-server-query-execution-in-sql-server-2008.aspx
http://blogs.msdn.com/sqlrem/archive/2008/02/04/multiple-server-query-execution-in-sql-server-2008.aspx
http://msdn.microsoft.com/en-us/library/bb895144.aspx
http://www.sqlskills.com/BLOGS/KIMBERLY/post/SQL-Server-2008-Central-Management-Servers-have-you-seen-these.aspx
http://www.sqlskills.com/BLOGS/KIMBERLY/post/SQL-Server-2008-Central-Management-Servers-have-you-seen-these.aspx

Figure 2: Display of SQL Server 2008 Data Collector Report

This report shows SQL Server processing over the period of time data was collected. Events such as waits, CPU, I/O,

memory usage, and expensive query statistics are collected and displayed. A DBA can also drill down into the reports

to focus on a particular query or operation to further investigate, detect, and resolve performance problems. This data

collection, storage, and reporting can allow the DBA to establish proactive monitoring of the SQL Server(s) in the

http://sqlcat.com/blogs/top10lists/WindowsLiveWriter/Top10SQLServer2008FeaturesfortheDatabase_E515/image_4.png

environment and go back over time to understand and assess changes to performance over the time period

monitored. The data collector and management data warehouse feature is supported in all editions (except SQL

Server Express) of SQL Server 2008.

6 - Data Compression

The ability to easily manage a database can greatly enhance the opportunity for DBAs to accomplish their regular task

lists. As table, index, and file sizes grow and very large databases (VLDBs) become commonplace, the management of

data and unwieldy file sizes has become a growing pain point. Also, with more data being queried, the need for large

amounts of memory or the necessity to do physical I/O can place a larger burden on DBAs and their organizations.

Many times this results in DBAs and organizations securing servers with more memory and/or I/O bandwidth or

having to pay a performance penalty.

Data compression, introduced in SQL Server 2008, provides a resolution to help address these problems. Using this

feature, a DBA can selectively compress any table, table partition, or index, resulting in a smaller on-disk footprint,

smaller memory working-set size, and reduced I/O. The act of compression and decompression will impact CPU;

however, this impact is in many cases offset by the gains in I/O savings. Configurations that are bottlenecked on I/O

can also see an increase in performance due to compression.

In some lab tests, enabling data compression resulted in a 50-80% saving in disk space. The space savings did vary

significantly with minimal savings on data that did not contain many repeating values or where the values required all

the bytes allocated by the specified data type. There were also workloads that did not show any gains in performance.

However, on data that contained a lot of numeric data and many repeating values, we saw significant space savings

and observed performance increases from a few percentage points up to 40-60% on some sample query workloads.

SQL Server 2008 supports two types of compressions: row compression, which compresses the individual columns of

a table, and page compression, which compresses data pages using row, prefix, and dictionary compression. The

amount of compression achieved is highly dependent on the data types and data contained in the database. In

general we have observed that using row compression results in lower overhead on the application throughput but

saves less space. Page compression, on the other hand, has a higher impact on application throughput and processor

utilization, but it results in much larger space savings. Page compression is a superset of row compression, implying

that an object or partition of an object that is compressed using page compression also has row compression applied

to it. Also, SQL Server 2008 does support the vardecimal storage format of SQL Server 2005 SP2. However, because

this storage format is a subset of row compression, it is a depreciated feature and will be removed from future

product versions.

Both row and page compression can be applied to a table or index in an online mode that is without any interruption

to the application availability. However, a single partition of a partitioned table cannot be compressed or

uncompressed online. In our testing we found that using a hybrid approach, where only the largest few tables were

compressed, resulted in the best performance in terms of saving significant disk space while having a minimal

negative impact on performance. Because there are disk space requirements, similar to what would be needed to

create or rebuild an index, care should be taken in implementing compression as well. We also found that

compressing the smallest objects first, from the list of objects you desire to compress, minimized the need for

additional disk space during the compression process.

http://msdn.microsoft.com/en-us/library/cc280576.aspx
http://msdn.microsoft.com/en-us/library/cc280464.aspx

Data compression can be implemented via Transact-SQL or the Data Compression Wizard. To determine how

compressing an object will affect its size, you can use the sp_estimate_data_compression_savings system stored

procedure or the Data Compression Wizard to calculate the estimated space savings. Database compression is only

supported in SQL Server 2008 Enterprise and Developer editions. It is implemented entirely within the database and

does not require any application modification.

For more information about using compression, see Creating Compressed Tables and Indexes.

7 - Policy-Based Management

In a number of business scenarios, there is a need to maintain certain configurations or enforce policies either within

a specific SQL Server, or many times across a group of SQL Servers. A DBA or organization may require a particular

naming convention to be implemented on all user tables or stored procedures that are created, or a required

configuration change to be defined across a number of servers in the same manner.

Policy-Based Management (PBM) provides DBAs with a wide variety of options in managing their environment.

Policies can be created and checked for compliance. If a target (such as a SQL Server database engine, a database, a

table, or an index) is out of compliance, the administrator can automatically reconfigure it to be in compliance. There

are also a number of evaluation modes (of which many are automated) that can help the DBA check for policy

compliance, log and notify when a policy violation occurs, and even roll back the change to keep in compliance with

the policy. For more information about evaluation modes and how they are mapped to facets (a PBM term also

discussed in the blog), see the SQL Server Policy-Based Management blog.

The policies can be exported and imported as .xml files for evaluation and implementation across multiple server

instances. Also, in SQL Server Management Studio and the Registered Servers view, policies can be evaluated across

multiple servers if they are registered under a local server group or a Central Management Server group.

Not all of the functionality of Policy-Based Management can be implemented on earlier versions of SQL Server.

However, the policy reporting feature can be utilized on SQL Server 2005 and SQL Server 2000. For more information

about administering servers by using Policy-Based Management, see Administering Servers by Using Policy-Based

Management in SQL Server Books Online. For more information about the technology itself, including examples, see

the SQL Server 2008 Compliance Guide.

8 - Predictable Performance and Concurrency

A significant problem many DBAs face is trying to support SQL Servers with ever-changing workloads, and achieving

some level of predictable performance (or minimizing variance in plans and performance). Unexpected query

performance, plan changes, and/or general performance issues can come about due to a number of factors, including

increased application load running against SQL Server or version upgrades of the database itself. Getting predictable

performance from queries or operations run against SQL Server can greatly enhance the DBAs ability to meet and

maintain availability, performance, and/or business continuity goals (OLAs or SLAs).

http://msdn.microsoft.com/en-us/library/cc280449.aspx
http://blogs.msdn.com/sqlpbm/archive/2008/05/24/facets.aspx
http://technet.microsoft.com/en-us/library/bb510667.aspx
http://technet.microsoft.com/en-us/library/bb510667.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=6808

SQL Server 2008 provides a few feature changes that can help provide more predictable performance. In SQL Server

2008, there exist some enhancements to the SQL Server 2005 plan guides (or plan freezing) and a new option to

control lock escalation at a table level. Both of these enhancements can provide a more predictable and structured

interaction between the application and the database.

First, plan guides:

SQL Server 2005 enabled greater query performance stability and predictability by providing a new feature called plan

guides to enable specifying hints for queries that could not be modified directly in the application. For more

information, see the Forcing Query Plans white paper. While a very powerful feature, the USE PLAN query hint only

supported SELECT DML operations and were often cumbersome to use due to the sensitivity of the plan guides to the

formatting.

SQL Server 2008 builds on the plan guides mechanism in two ways: It expands the support for the USE PLAN query

hint to cover all DML statements (INSERT, UPDATE, DELETE, MERGE), and it introduces a new plan freezing feature that

can be used to directly create a plan guide (freeze) any query plan that exists in the SQL Server plan cache, as in the

following example.

sp_create_plan_guide_from_handle

@name = N'MyQueryPlan',

@plan_handle = @plan_handle,

@statement_start_offset = @offset;

A plan guide created by either means has a database scope and is stored in the sys.plan_guides table. Plan guides

are only used to influence the query plan selection process of the optimizer and do not eliminate the need for the

query to be compiled. A new function, sys.fn_validate_plan_guide, has also been introduced to validate existing SQL

Server 2005 plan guides and ensure their compatibility with SQL Server 2008. Plan freezing is available in the SQL

Server 2008 Standard, Enterprise, and Developer editions.

Next, lock escalation:

Lock escalation has often caused blocking and sometimes even deadlocking problems, which the DBA is forced to

troubleshoot and resolve. Previous versions of SQL Server permitted controlling lock escalation (trace flags 1211 and

1224), but this was only possible at an instance-level granularity. While this helped some applications work-around

the problem, it caused severe issues for others. Another problem with the SQL Server 2005 lock escalation algorithm

was that locks on partitioned tables were directly escalated to the table level, rather than the partition level.

SQL Server 2008 offers a solution for both of these problems. A new option has been introduced to control lock

escalation at a table level. By using an ALTER TABLE command, option locks can be specified to not escalate, or

escalate to the partition level for partitioned tables. Both these enhancements help improve the scalability and

performance without having negative side-effects on other objects in the instance. Lock escalation is specified at the

database-object level and does not require any application change. It is supported in all editions of SQL Server 2008.

http://www.microsoft.com/technet/prodtechnol/sql/2005/frcqupln.mspx

9 - Resource Governor

Maintaining a consistent level of service by preventing runaway queries and guaranteeing resources for mission-

critical workloads has been a challenge. In the past there was no way of guaranteeing a certain amount of resources

to a set of queries and prioritizing the access. All queries had equal access to all the available resources.

SQL Server 2008 introduces a new feature called Resource Governor, which helps address this issue by enabling users

to differentiate workloads and allocate resources as they are requested. Resource Governor limits can easily be

reconfigured in real time with minimal impact on the workloads that are executing. The allocation of the workload to

a resource pool is configurable at the connection level, and the process is completely transparent to the application.

The diagram below depicts the resource allocation process. In this scenario three workload pools (Admin Workload,

OLTP Workload, and Report Workload) are configured, and the OLTP Workload pool is assigned a high priority. In

parallel, two resource pools (Admin Pool and Application Pool) are configured with specific memory and processor

(CPU) limits as shown. As a final step the Admin Workload is assigned to the Admin Pool and the OLTP and Report

workloads are assigned to the Application Pool.

Below are some other points you need to consider when using Resource Governor.

 Resource Governor relies on login credentials, host name, or application name as a ‘resource pool identifier’,

so using a single login for an application, depending on the number of clients per server, might make

creating pools more difficult.

http://sqlcat.com/blogs/top10lists/WindowsLiveWriter/Top10SQLServer2008FeaturesfortheDatabase_E515/image_6.png

 Database-level object grouping, in which the resource governing is done based on the database objects

being referenced, is not supported.

 Resource Governor only allows resource management within a single SQL Server instance. For managing

multiple SQL Server instances or processes within a server from a single source, Windows System Resource

Manager should be considered.

 Only processor and memory resources can be configured. I/O resources cannot be controlled.

 Dynamically switching workloads between resource pools once a connection is made is not possible.

 Resource Governor is only supported in SQL Server 2008 Enterprise and Developer editions and can only be

used for the SQL Server database engine; SQL Server Analysis Services (SSAS), SQL Server Integration

Services (SSIS), and SQL Server Reporting Services (SSRS) cannot be controlled.

10 - Transparent Data Encryption (TDE)

Security is one of the top concerns of many organizations. There are many different layers to securing one of the

most important assets of an organization: its data. In most cases, organizations do well at securing their active data

via the use of physical security, firewalls, and tightly controlled access policies. However, when physical medium such

as the backup tape or disk on which the data resides is compromised, the above security measures are of no use,

because a rouge user can simply restore the database and get full access to the data.

SQL Server 2008 offers a solution to this problem by way of transparent data encryption (TDE). TDE performs real-

time I/O encryption and decryption of the data and log files by using a database encryption key (DEK). The DEK is a

symmetric key secured by using a certificate stored in the master database of the server, or an asymmetric key

protected by an Extensible Key Management (EKM) module.

TDE is designed to protect data ‘at rest’, which means the data stored in the .mdf, .ndf, and .ldf files cannot be viewed

using a hex editor or other means. However, data that is not at rest, such as the results of a SELECT statement in SQL

Server Management Studio, will continue to be visible to users who have rights to view the table. Also, because TDE is

implemented at the database level, the database can leverage indexes and keys for query optimization. TDE should

not be confused with column-level encryption, which is a separate feature that allows encryption of data even when it

is not at rest.

Encrypting a database is a one-time process that can be initiated via a Transact-SQL command or SQL Server

Management Studio, and it is executed as a background thread. You can monitor the encryption or decryption status

using the sys.dm_database_encryption_keys dynamic management view. In a lab test we conducted, we were able to

encrypt a 100 GB database using the AES_128 encryption algorithm in about an hour. While the overhead of using

TDE is largely dictated by the application workload, in some of the testing conducted that overhead was measured to

be less than 5%. One potential performance impact to be aware of is this: If any database within the instance does

have TDE applied, the tempDB system database is also encrypted. Finally, of note when combining features:

 When backup compression is used to compress an encrypted database, the size of the compressed backup

is larger than if the database were not encrypted, because encrypted data does not compress well.

 Encrypting the database does not affect data compression (row or page).

TDE enables organizations to meet the demands of regulatory compliance and overall concern for data privacy. TDE is

only supported in the SQL Server 2008 Enterprise and Developer editions and can be enabled without changing

http://www.microsoft.com/windowsserver2003/technologies/management/wsrm/default.mspx
http://www.microsoft.com/windowsserver2003/technologies/management/wsrm/default.mspx

existing applications. For more information, see Database Encryption in SQL Server 2008 Enterprise Edition or the SQL

Server 2008 Compliance Guide discussion on Using Transparent Data Encryption.

In conclusion, SQL Server 2008 offers features, enhancements, and functionality to help improve the Database

Administrator experience. While a Top 10 list was provided above, there are many more features included within SQL

Server 2008 that help improve the experience for DBA and other users alike. For a Top 10 feature set for other SQL

Server focus areas, see the other SQL Server 2008 Top 10 articles on this site. For a full list of features and detailed

descriptions, see SQL Server Books Online and the SQL Server 2008 Overview Web site.

http://msdn.microsoft.com/en-us/library/cc278098.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=6808
http://www.microsoft.com/en-us/download/details.aspx?id=6808
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://www.microsoft.com/sqlserver/2008/en/us/default.aspx

Top 10 SQL Server 2008 Features for ISV Applications

Microsoft® SQL Server® 2008 has hundreds of new and improved features, many of which are specifically designed

for large scale independent software vendor (ISV) applications, which need to leverage the power of the underlying

database while keeping their code database agnostic. This article presents details of the top 10 features that we

believe are most applicable to such applications based on our work with strategic ISV partners. Along with the

description of each feature, the main pain-points the feature helps resolve and some of the important limitations that

need to be considered are also presented. The features are grouped into two categories: ones that do not require any

application change (features 1-8) and those that require some application code change (features 9-10). The features

are not prioritized in any particular order.

1 - Data Compression

The disk I/O subsystem is the most common bottleneck for many database implementations. More disks
are needed to reduce the read/write latencies; but this is expensive, especially on high-performing
storage systems. At the same time, the need for storage space continues to increase due to rapid
growth of the data, and so does the cost of managing databases (backup, restore, transfer, etc.).

Data compression introduced in SQL Server 2008 provides a resolution to address all these problems.
Using this feature one can selectively compress any table, table partition, or index, resulting in a smaller
on-disk footprint, smaller memory working-set size, and reduced I/O. Configurations that are
bottlenecked on I/O may also see an increase in performance. In our lab test, enabling data compression
for some ISV applications resulted in a 50-80% saving in disk space.

SQL Server supports two types of compressions: ROW compression, which compresses the
individual columns of a table, and PAGE compression which compresses data pages using row,
prefix, and dictionary compression. The compression results are highly dependent on the data
types and data contained in the database; however, in general we’ve observed that using ROW
compression results in lower overhead on the application throughput but saves less space.
PAGE compression, on the other hand, has a higher impact on application throughput and
processor utilization, but it results in much larger space savings. PAGE compression is a
superset of ROW compression, implying that an object or partition of an object that is
compressed using PAGE compression also has ROW compression applied to it. Compressed
pages remain compressed in memory until rows/columns on the pages are accessed.

Both ROW and PAGE compression can be applied to a table or index in an online mode that is
without any interruption to the application availability. However, partitions of a partitioned
table cannot be compressed or uncompressed online. In our testing we found that using a
hybrid approach where only the largest few tables were compressed resulted in the best overall
performance, saving significant disk space while having a minimal negative impact on
performance. We also found that compressing the smallest objects first minimized the need for
additional disk space during the compression process.

To determine how compressing an object will affect its size you can use the
sp_estimate_data_compression_savings system stored procedure. Database compression is

http://msdn.microsoft.com/en-us/library/cc280576.aspx
http://msdn.microsoft.com/en-us/library/cc280464.aspx

only supported in SQL Server 2008 Enterprise and Developer editions. It is fully controlled at the
database level and does not require any application change.

2 - Backup Compression

The amount of data stored in databases has grown significantly in the last decade. resulting in larger
database sizes. At the same time the demands for applications to be available 24x7 have forced the
backup time-windows to shrink. In order to speed up the backup procedure, database backups are
usually first streamed to fast disk-based storage and moved out to slower media later. Keeping such
large disk-based backups online is expensive, and moving them around is time consuming.

With SQL Server 2008 backup compression, the backup file is compressed as it is written out, thereby
requiring less storage, less disk I/O, and less time, and utilizing less network bandwidth for backups that
are written out to a remote server. However, the additional processing results in higher processor
utilization. In a lab test conducted with an ISV workload we observed a 40% reduction in the backup file
size and a 43% reduction in the backup time.The compression is achieved by specifying the WITH
COMPRESSION clause in the backup command (for more information, see SQL Server Books Online).
To prevent having to modify all the existing backup scripts, there is also a global setting (using the
Database Settings page of the Server Properties dialog box) to enable compression of all backups taken
on that server instance by default; this eliminates the need to modify existing backup scripts. While the
compression option on the backup command needs to be explicitly specified, the restore command
automatically detects that a backup is compressed and decompresses it during the restore operation.
Overall, backup compression is a very useful feature that does not require any change to the ISV
application. For more information about tuning backup compression, see the technical note on Tuning
the Performance of Backup Compression in SQL Server 2008.

Note: Creating compressed backups is only supported in SQL Server 2008 Enterprise and Developer
editions; however, every SQL Server 2008 edition can restore a compressed backup.

3 - Transparent Data Encryption

In most cases, organizations do well at securing their active data via the use of firewalls, physical
security, and tightly controlled access policies. However, when the physical media such as the backup
tape or disk on which the data resides is compromised, the above security measures are of no use, since
a rogue user can simply restore the database and get full access to the data.

SQL Server 2008 offers a solution to this problem by way of Transparent Data Encryption (TDE). TDE
performs real-time I/O encryption and decryption of the data and log files using a database encryption
key (DEK). The DEK is a symmetric key secured by using a certificate stored in the master database of the
server, or an asymmetric key protected by an Extensible Key Management (EKM) module.TDE is
designed to protect data ‘at rest’; this means that the data stored in the .mdf, .ndf, and .ldf files cannot
be viewed using a hex editor or some other such means. However, data that is not at rest, such as the
results of a select statement in SQL Server Management Studio, continues to be visible to users who
have rights to view the table. TDE should not be confused with column-level encryption, which is a
separate feature that allows encryption of data even when it is not at rest.Encrypting a database is a
one-time process that can be initiated via a Transact-SQL command and is executed as a background

thread. You can monitor the encryption/decryption status using the
sys.dm_database_encryption_keys dynamic management view (DMV).

In a lab test we conducted we were able to encrypt a 100-gigabyte (GB) database using the AES_128
encryption algorithm in about one hour. While the overheads of using TDE are largely dictated by the
application workload, in some of the testing we conducted, the overhead was measured to be less than
5%.

One point worth mentioning is when backup compression is used to compress an encrypted database,
the size of the compressed backup is larger than if the database were not encrypted; this is because
encrypted data does not compress well.

TDE enables organizations to meet the demands of regulatory compliance and overall concern for data
privacy.

TDE is only supported in the SQL Server 2008 Enterprise and Developer editions, and it can be enabled
without changing an existing application.

4 - Data Collector and Management Data Warehouse

Performance tuning and troubleshooting is a time-consuming task that usually requires deep SQL Server
skills and an understanding of the database internals. Windows® System monitor (Perfmon), SQL Server
Profiler, and dynamic management views helped with some of this, but they were often too intrusive or
laborious to use, or the data was too difficult to interpret.

To provide actionable performance insights, SQL Server 2008 delivers a fully extensible performance
data collection and warehouse tool also known as the Data Collector. The tool includes several out-of-
the-box data collection agents, a centralized data repository for storing performance data called
management data warehouse (MDW), and several precanned reports to present the captured data. The
Data Collector is a scalable tool that can collect and assimilate data from multiple sources such as
dynamic management views, Perfmon, Transact-SQL queries, etc., using a fully customizable data
collection and assimilation frequency. The Data Collector can be extended to collect data for any
measurable attribute of an application. For example, in our lab test we wrote a custom Data Collector
agent job (40 lines of code) to measure the processing throughput of the workload.

The diagram below depicts a typical Data Collector report.

The Performance data collection and warehouse feature is supported in all editions of SQL Server 2008.

5 - Lock Escalation

Lock escalation has often caused blocking and sometimes even deadlocking problems for many
ISV applications. Previous versions of SQL Server permitted controlling lock escalation (trace
flags 1211 and 1224), but this was only possible at an instance-level granularity. While this
helped some applications work around the problem, it caused severe issues for others. Another
problem with the SQL Server 2005 lock escalation algorithm was that locks on partitioned
tables were directly escalated to the table level, rather than the partition level.

SQL Server 2008 offers a solution for both these issues. A new option has been introduced to control
lock escalation at a table level. If an ALTER TABLE command option is used, locks can be specified to not
escalate, or to escalate to the partition level for partitioned tables. Both these enhancements help
improve the scalability and performance without having negative side-effects on other objects in the
instance. Lock escalation is specified at the database-object level and does not require any application
change. It is supported in all editions of SQL Server 2008.

6 - Plan Freezing

SQL Server 2005 enabled greater query performance stability and predictability by providing a new
feature called plan guides to enable specifying hints for queries that could not be modified directly in

the application (for more information, see the white paper Forcing Query Plans). While a very
powerful feature, plan guides were often cumbersome to use due to the sensitivity of the plan guides to
the formatting, and only supported SELECT DML operations when used in conjunction the USE PLAN
query hint.

SQL Server 2008 builds on the plan guides mechanism in two ways: it expands the support for plan
guides to cover all DML statements (INSERT, UPDATE, DELETE, MERGE), and introduces a new feature,
Plan Freezing, that can be used to directly create a plan guide (freeze) for any query plan that exists in
the SQL Server plan cache, for example:

sp_create_plan_guide_from_handle

@name = N'MyQueryPlan',

@plan_handle = @plan_handle,

@statement_start_offset = @offset;

A plan guide created by either means have a database scope and are stored in the sys.plan_guides
table. Plan guides are only used to influence the query plan selection process of the optimizer and do
not eliminate the need for the query to be compiled. A new function sys.fn_validate_plan_guide has
also been introduced to validate existing SQL Server 2005 plan guides and ensure their compatibility
with SQL Server 2008. Plan freezing is available in the SQL Server 2008 Standard, Enterprise, and
Developer editions.

7 - Optimize for Ad hoc Workloads Option

Applications that execute many single use ad hoc batches (e.g., nonparameterized workloads)
can cause the plan cache to grow excessively large and result in reduced efficiency. SQL Server
2005 offered the Parameterization Forced database option to address such scenarios, but that
sometimes resulted in adverse side-effects on workloads that had a large skew in the data and
had queries that were very sensitive to the underlying data.

SQL Server 2008 introduces a new option, optimize for ad hoc workloads, which is used to
improve the efficiency of the plan cache. When this option is set to 1, the SQL Server engine
stores a small stub for the compiled ad hoc plan in the plan cache instead of the entire
compiled plan, when a batch is compiled for the first time. The compiled plan stub is used to
identify that the ad hoc batch has been compiled before but has only stored a compiled plan
stub, so that when this batch is invoked again the database engine compiles the batch, removes
the compiled plan stub from the plan cache, and replaces it with the full compiled plan.

This mechanism helps to relieve memory pressure by not allowing the plan cache to become filled with
large compiled plans that are not reused. Unlike the Forced Parameterization option, optimizing for ad
hoc workloads does not parameterize the query plan and therefore does not result in saving any
processor cycles by way of eliminating compilations. This option does not require any application change
and is available in all editions of SQL Server 2008.

http://www.microsoft.com/technet/prodtechnol/sql/2005/frcqupln.mspx

8 - Resource Governor

Maintaining a consistent level of service by preventing runaway queries and guaranteeing
resources for mission-critical workloads has been a challenge for SQL Server. In the past there
was no way of guaranteeing a certain amount of resources to a set of queries and prioritizing
the access; all queries had equal access to all the available resources.

SQL Server 2008 introduces a new feature, Resource Governor, which helps address this issue
by enabling users to differentiate workloads and allocate resources as they are requested. The
Resource Governor limits can easily be reconfigured in real time with minimal impact on the
workloads that are executing. The allocation of the workload to a resource pool is configurable
at the connection level, and the process is completely transparent to the application.

The diagram below depicts the resource allocation process. In this scenario three workload pools (Admin
workload, OLTP workload, and Report workload) are configured, and the OLTP workload pool is assigned
a high priority. In parallel two resource pools (Admin pool and Application pool) are configured with
specific memory and processor (CPU) limits as shown. As final steps, the Admin workload is assigned to
the Admin pool, and the OLTP and Report workloads are assigned to the Application pool.

Below are some other points you need to consider when using resource governor:

 Since Resource Governor relies on login credentials, host name, or application name as a
resource pool identifier, most ISV applications that use a single login to connect multiple
application users to SQL Server will not be able to use Resource Governor without reworking the
application. This rework would require the application to utilize one of the resource identifiers
from within the application to help differentiate the workload.

 Database-level object grouping, in which the resource governing is done based on the database
objects being referenced, is not supported.

 Resource Governor only allows resource management within a single SQL Server instance. For
multiple instances. Windows System Resource Manager should be considered.

http://www.microsoft.com/windowsserver2003/technologies/management/wsrm/default.mspx

 Only processor and memory resources can be configured. I/O resource cannot be controlled.
 Dynamically switching workloads between resource pools once a connection is made is not

possible.
 Resource Governor is only supported in SQL Server 2008 Enterprise and Developer editions and

can only be used for the SQL Server database engine; SQL Server Analysis Services (SSAS), SQL
Server Integration Services (SSIS), and SQL Server Reporting Services (SSRS) cannot be
controlled.

9 - Table-Valued Parameters

Often one of the biggest problems ISVs encountered while developing applications on earlier
versions of SQL Server was the lack of an easy way to execute a set of UPDATE, DELETE, INSERT
operations from a client as a single batch on the server. Executing the set of statements as
singleton operations resulted in a round trip from the client to the server for each operation
and could result in as much as a 3x slowdown in performance.

SQL Server 2008 introduces the table-valued parameter (TVP) feature, which helps resolve this
problem. Using the new TVP data type, a client application can pass a potentially unlimited
sized array of data directly from the client to the server in a single-batch operation. TVPs are
first-class data types and are fully supported by the SQL Server tools and SQL Server 2008 client
libraries (SNAC 10 or later). TVPs are read-only, implying that they can only be used to pass
array-type data into SQL Server; they cannot be used to return array-type data.

The graph below plots the performance of executing a batch of insert statements using a
parameter array (sequence of singleton operations) vs. executing the same batch using a TVP.
For batches of 10 statements or less, parameter arrays perform better than TVPs. This is due to
the one-time overhead associated with initiating the TVP, which outweighs the benefits of
transferring and executing the inserts as a single batch on the server.

However, for batches larger than 10 statements, TVPs outperform parameter arrays, because the entire
batch is transferred to the server and executed as a single operation. As can be seen in the graph for a
batch of 250 inserts the amount of time taken to execute the batch is 2.5 times more when the
operations are performed using a parameter array versus a TVP. The performance benefits scale almost
linearly and when the size of the batch increases to 2,000 insert statements, executing the batch using a
parameter array takes more than four times longer than using a TVP.

TVPs can also be used to perform other functions such as passing a large batch of parameters to a
stored procedure. TVPs are supported in all editions of SQL Server 2008 and require the application to
be modified.

10 - Filestream

In recent years there has been an increase in the amount of unstructured data (e-mail messages,
documents, images, videos, etc.) created. This unstructured data is often stored outside the database,
separate from its structured metadata. This separation can cause challenges and complexities in keeping
the data consistent, managing the data, and performing backup/restores.

The new Filestream data type in SQL Server 2008 allows large unstructured data to be stored as files on
the file system. Transact-SQL statements can be used to read, insert, update and manage the Filestream
data, while Win32® file system interfaces can be used to provide streaming access to the data. Using the
NTFS streaming APIs allows efficient performance of common file operations while providing all of the
rich database services, including security and backup. In our lab tests we observed the biggest
performance advantage of streaming access when the size of binary large objects (BLOBs) was greater
than 256 kilobytes (KB). The Filestream feature is initially targeted to objects that do not need to be
updated in place, as that is not yet supported.

Filestream is not automatically enabled when you install or upgrade SQL Server 2008. You need to
enable it by using SQL Server Configuration Manager and SQL Server Management Studio. Filestream
requires a special dedicated filegroup to be created to store the Filestream (varbinary(max)) data that
has been qualified with the Filestream attribute. This filegroup points to an NTFS directory on a file
system and is created similar to all the other filegroups. The Filestream feature is supported in all
editions of SQL Server 2008, and it requires the application to be modified to leverage the Win32 APIs (if
required) and to migrate the existing varbinary data.

SQL Server 2008 is a significant release that delivers many new features and key improvements, many of
which have been designed specifically for ISV workloads and require zero or minimal application change.

This article presented an overview of only the top-10 features that are most applicable to ISV
applications and help resolve key ISV problems that couldn’t easily be addressed in the past. For more
information, including a full list of features and detailed descriptions, see SQL Server Books Online and
the SQL Server web site.

http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://www.microsoft.com/sqlserver

Top 10 Best Practices for Building a Large Scale Relational

Data Warehouse

Building a large scale relational data warehouse is a complex task. This article describes some design techniques that

can help in architecting an efficient large scale relational data warehouse with SQL Server. Most large scale data

warehouses use table and index partitioning, and therefore, many of the recommendations here involve partitioning.

Most of these tips are based on experiences building large data warehouses on SQL Server 2005.

1 - Consider partitioning large fact tables

 Consider partitioning fact tables that are 50 to 100GB or larger.

 Partitioning can provide manageability and often performance benefits.

o Faster, more granular index maintenance.

o More flexible backup / restore options.

o Faster data loading and deleting

 Faster queries when restricted to a single partition..

 Typically partition the fact table on the date key.

o Enables sliding window.

 Enables partition elimination.

2- Build clustered index on the date key of the fact table

 This supports efficient queries to populate cubes or retrieve a historical data slice.

 If you load data in a batch window then use the options ALLOW_ROW_LOCKS = OFF and

ALLOW_PAGE_LOCKS = OFF for the clustered index on the fact table. This helps speed up table scan

operations during query time and helps avoid excessive locking activity during large updates.

 Build nonclustered indexes for each foreign key. This helps ‘pinpoint queries' to extract rows based on a

selective dimension predicate.Use filegroups for administration requirements such as backup / restore,

partial database availability, etc.

3 - Choose partition grain carefully

 Most customers use month, quarter, or year.

 For efficient deletes, you must delete one full partition at a time.

 It is faster to load a complete partition at a time.

o Daily partitions for daily loads may be an attractive option.

o However, keep in mind that a table can have a maximum of 1000 partitions.

 Partition grain affects query parallelism.

o For SQL Server 2005:

 Queries touching a single partition can parallelize up to MAXDOP (maximum degree of

parallelism).

 Queries touching multiple partitions use one thread per partition up to MAXDOP.

o For SQL Server 2008:

 Parallel threads up to MAXDOP are distributed proportionally to scan partitions, and

multiple threads per partition may be used even when several partitions must be scanned.

 Avoid a partition design where only 2 or 3 partitions are touched by frequent queries, if you need MAXDOP

parallelism (assuming MAXDOP =4 or larger).

4 - Design dimension tables appropriately

 Use integer surrogate keys for all dimensions, other than the Date dimension. Use the smallest possible

integer for the dimension surrogate keys. This helps to keep fact table narrow.

 Use a meaningful date key of integer type derivable from the DATETIME data type (for example: 20060215).

o Don't use a surrogate Key for the Date dimension

o Easy to write queries that put a WHERE clause on this column, which will allow partition elimination

of the fact table.

 Build a clustered index on the surrogate key for each dimension table, and build a non-clustered index on

the Business Key (potentially combined with a row-effective-date) to support surrogate key lookups during

loads.

 Build nonclustered indexes on other frequently searched dimension columns.

 Avoid partitioning dimension tables.

 Avoid enforcing foreign key relationships between the fact and the dimension tables, to allow faster data

loads. You can create foreign key constraints with NOCHECK to document the relationships; but don’t

enforce them. Ensure data integrity though Transform Lookups, or perform the data integrity checks at the

source of the data.

5 - Write effective queries for partition elimination

 Whenever possible, place a query predicate (WHERE condition) directly on the partitioning key (Date

dimension key) of the fact table.

6 - Use Sliding Window technique to maintain data

 Maintain a rolling time window for online access to the fact tables. Load newest data, unload oldest data.

 Always keep empty partitions at both ends of the partition range to guarantee that the partition split (before

loading new data) and partition merge (after unloading old data) do not incur any data movement.

 Avoid split or merge of populated partitions. Splitting or merging populated partitions can be extremely

inefficient, as this may cause as much as 4 times more log generation, and also cause severe locking.

 Create the load staging table in the same filegroup as the partition you are loading.

 Create the unload staging table in the same filegroup as the partition you are deleteing.

 It is fastest to load newest full partition at one time, but only possible when partition size is equal to the data

load frequency (for example, you have one partition per day, and you load data once per day).

 If the partition size doesn't match the data load frequency, incrementally load the latest partition.

 Various options for loading bulk data into a partitioned table are discussed in the whitepaper

http://www.microsoft.com/technet/prodtechnol/sql/bestpractice/loading_bulk_data_partitioned_table.mspx.

 Always unload one partition at a time.

7- Efficiently load the initial data

 Use SIMPLE or BULK LOGGED recovery model during the initial data load.

 Create the partitioned fact table with the Clustered index.

http://www.microsoft.com/technet/prodtechnol/sql/bestpractice/loading_bulk_data_partitioned_table.mspx

 Create non-indexed staging tables for each partition, and separate source data files for populating each

partition.

 Populate the staging tables in parallel.

o Use multiple BULK INSERT, BCP or SSIS tasks.

 Create as many load scripts to run in parallel as there are CPUs, if there is no IO

bottleneck. If IO bandwidth is limited, use fewer scripts in parallel.

 Use 0 batch size in the load.

 Use 0 commit size in the load.

 Use TABLOCK.

 Use BULK INSERT if the sources are flat files on the same server. Use BCP or SSIS if data is

being pushed from remote machines.

 Build a clustered index on each staging table, then create appropriate CHECK constraints.

 SWITCH all partitions into the partitioned table.

 Build nonclustered indexes on the partitioned table.

 Possible to load 1 TB in under an hour on a 64-CPU server with a SAN capable of 14 GB/Sec throughput

(non-indexed table). Refer to SQLCAT blog entry

http://blogs.msdn.com/sqlcat/archive/2006/05/19/602142.aspx for details.

8 - Efficiently delete old data

 Use partition switching whenever possible.

 To delete millions of rows from nonpartitioned, indexed tables

o Avoid DELETE FROM ...WHERE ...

 Huge locking and logging issues

 Long rollback if the delete is canceled

o Usually faster to

 INSERT the records to keep into a non-indexed table

 Create index(es) on the table

 Rename the new table to replace the original

 As an alternative, ‘trickle' deletes using the following repeatedly in a loop

DELETE TOP (1000) ... ;

COMMIT

 Another alternative is to update the row to mark as deleted, then delete later during non critical time.

9 - Manage statistics manually

 Statistics on partitioned tables are maintained for the table as a whole.

 Manually update statistics on large fact tables after loading new data.

 Manually update statistics after rebuilding index on a partition.

 If you regularly update statistics after periodic loads, you may turn off autostats on that table.

 This is important for optimizing queries that may need to read only the newest data.

 Updating statistics on small dimension tables after incremental loads may also help performance. Use

FULLSCAN option on update statistics on dimension tables for more accurate query plans.

http://blogs.msdn.com/sqlcat/archive/2006/05/19/602142.aspx

10 - Consider efficient backup strategies

 Backing up the entire database may take significant amount of time for a very large database.

o For example, backing up a 2 TB database to a 10-spindle RAID-5 disk on a SAN may take 2 hours

(at the rate 275 MB/sec).

 Snapshot backup using SAN technology is a very good option.

 Reduce the volume of data to backup regularly.

o The filegroups for the historical partitions can be marked as READ ONLY.

o Perform a filegroup backup once when a filegroup becomes read-only.

o Perform regular backups only on the read / write filegroups.

 Note that RESTOREs of the read-only filegroups cannot be performed in parallel.

Top 10 Best Practices for SQL Server Maintenance for SAP

SQL Server provides an excellent database platform for SAP applications. The following recommendations provide an

outline of best practices for maintaining SQL Server database for an SAP implementation.

Perform a full database backup daily

 Technically there are no problems to backing up SAP databases online. This means that end users or

nightly batch jobs can continue to use SAP applications without problems. SQL Server Backup consumes

few CPU resources. However, SQL Server Backup does require I/O bandwidth because SQL Server will try to

read every used extent to the backup device. Everything that is required for SAP (business data, metadata

and ABAP applications etc) is included in one database named “<SID>”. Sometimes the time needed to

take a full backup (generally a few hours) might become a problem, especially in SQL Server 2000 where

no transaction log backups can be made while an Online Database Backup was performed. SQL Server

2005 does not have this issue.

 To create faster online backups using SAN Technology, SQL Server offers interfaces for SAN vendors to

perform a Snapshot Backup or to create clones of a SQL Server database. However, backing up terabytes

of data every night may overload the backup infrastructure. Another possibility would be to do differential

backups of the SAP database on a daily basis and do a full database backup on the weekend only.

Perform transaction log backup Every 10 to 30 minutes

 In case of a disaster happening on the production server, it is vital that the most recent status can be

restored using online or differential database backups plus a series of transaction log backups which

ideally cover as close as possible to the time of the disaster. For this purpose it is vital to perform

transaction log backups on a regular basis. If you only create a transaction log backup every two hours, the

in the case of a disaster, up to two hours of committed business transactions would not be able to be

restored. Therefore it is vital to do transaction log backups often enough to reduce the risk of losing a

large number of committed business transactions in case of a disaster. In many productive customer

scenarios, a time frame of 10-30 minutes proved to be an acceptable frequency. However, in combination

with SQL Server log shipping, you can create SQL Server transaction log backups even every two or five

minutes. The finest granularity achievable is to perform SQL Server transaction log backups scheduled by

SQL Agent every minute. Besides reducing the risk of losing business transactions, transaction log backups

also truncate log data in the SQL Server transaction log, and reducing the possibility of the transaction log

becoming full.

Back up system partition in case of configuration changes

 Back up the system partition after any configuration changes. Use Windows Server 2003 Automated

System Recovery (ASR), or other tools such as Symantec Ghost or SAN boot to restore the system

partitions.

Back up system databases in case of configuration changes

http://technet2.microsoft.com/windowsserver/en/library/6e21609e-6994-494b-8998-ea1e6d34392f1033.mspx?mfr=true
http://technet2.microsoft.com/windowsserver/en/library/6e21609e-6994-494b-8998-ea1e6d34392f1033.mspx?mfr=true

 Back up the system databases (master, msdb, model) after any configuration changes. In SQL Server 2005,

the resource database does not need to be backed up because it does not experience any changes and is

installed with the SQL Server 2005 installation.

Run DBCC CHECKDB periodically (ideally before the full database backup)

 Ideally, a consistency check using DBCC CHECKDB sould be run before performing an online database

backup. However, please note that DBCC CHECKDB is a very time and resource consuming activity that

puts heavy workload on SAP production systems, especially on databases over one terabyte. On

commodity hardware with a good I/O subsystem, I/O throughputs in the range of 100-150 GB/h can be

achieved. Given such I/O throughputs, and the fact that there are many SAP databases up to 10 terabytes

or more, it is clear that running a DBCC CHECKDB on a production system is not always practical.

Therefore, many people choose not to run DBCC CHECKDB. Although all components of hardware and

software have become more reliable over the last decade, physical corruptions can still happen. One

reason for physical corruptions is a catastrophic power outage without having battery backup for hardware

components. Another reason could be physical damage to connections or hardware components. In

massive cases there is no other way than to go back to a backup and restore the SAP database and then

apply all the transaction logs up to the most recent. However, to detect physical inconsistencies at an early

state, or to know that the backup method is reliable, or to minimize impact of physical corruptions, the

following three major measures should be considered:

o Consider running DBCC CHECKDB on a regular basis. This could be on a sandbox system that

runs a restored image of the production environment. On such a system, time and resource

consumption of DBCC CHECKDB would not be a concern and would not affect production users.

o Test actually restoring the SAP database from an online or differential and transaction log backup.

The fact that a backup is on tape does not necessarily mean that it is consistent on tape or that it

can be read from tape. Tape hardware or tape cassettes may fail over the years, and you do not

want to be in a position where you have tapes that cannot be read anymore. Having a backup in a

vault does not say anything about the ability to be able to restore in case of a disaster. The

backup must also be proven to be readable.

o For databases with terabytes of volume, maintain a second copy of the database at the most

recent status, using either log shipping or database mirroring. Both of these high-availability

methods will de-couple hardware components and hence may provide a physical consistent

image of the production database at a secondary site.

Evaluate security patches monthly (and install them if they are necessary)

 For most of SAP customers, availability is the most important requirement. Especially if they need to serve

a single SAP instance globally, they don’t want to stop and restart the SAP servers to apply security

patches. Plus, some testing in these environments is definitely necessary before installing the security

patches. Therefore one of realistic scenarios for SAP customers is carefully evaluating patches and reducing

the frequency of patch installations, hopefully almost to zero. Filtering unnecessary packets, disabling

unnecessary services, and so forth are good security measures.

 If you have real time anti-virus monitoring, it is recommended that you exclude the SQL Server database

files (including data files, transaction log files, tempdb and other system database files) from real time

monitoring. If you perform backups to disks, exclude database backup files as well as transaction log

backup files.

Evaluate update modules of hardware drivers and firmwares and install if necessary

 There have been critical issues due to bugs in hardware drivers and firmwares within the commodity

servers. It is sometimes difficult to find this kind of issue within Microsoft, and furthermore hardware

companies sometimes don’t provide enough support services to commodity server customers. So it is a

customer’s responsibility to manage updates on drivers and firmwares regularly. Before updating the

drivers on production commodity servers, thorough tests must be conducted on test and sandbox

systems. Like nearly no other software component, a little flaw in a driver of an Host Bus Adapter (HBA) or

SCSI card can be responsible for physical inconsistency within a database.

Update statistics on the largest tables weekly or monthly

 SQL Server provides two options to keep the statistics current: auto create statistics and auto update

statistics. These two options are ON by default. SAP recommends keeping them ON. There may be some

cases where auto update statistics may not be able to provide satisfactory performance. A specific case

came up in SAP BW. The issue was resolved by the functionality in SAP BW that is documented in SAP OSS

note #849062. Please keep in mind that auto update statistics is run only on tables with more than 500

rows. In some very specific cases of data developing into one direction, it is recommended to explicitly run

update statistics on specific columns of the table on a scheduled basis. However, you should not perform a

general manual update statistics. If performance problems are analyzed and the root cause is found in an

index, or some column statistics not being recent enough, then the solution often is simply to have a

certain column or index statistics updated on a more frequent basis.

Rebuild or defrag the most important indexes

 The impact of reorganizing tables and indexes on performance is highly dependent on the type of query

that is executed and the I/O bandwidth that is available on the system. Simply going along measures like

(1) Average page density < 80 percent or (2) Logical scan fragmentation > 40 percent as thresholds to

start reorganizing are a waste of time and resources. Reasons are:

o Some SAP queuing tables will always show up as being highly fragmented

o A query reading a single row or a small number of rows which represents the majority of SAP

queries do not benefit from reorganizing a table.

o If there is enough I/O bandwidth and memory for SQL Server on the database server, the impact

of table fragmentation might be limited.

 Many people never reorganize tables to speed up query performance. However, there are also people who

reorganize tables to compress them after they archived SAP data. Not all the tables are organized or

sorted according to the archiving criteria. Hence it can happen that despite deleting 25 percent of a table,

the table only decreased its volume by 10 percent. To maximize space reduction after archiving, you can

run DBCC INDEXDEFRAG on the affected tables. DBCC INDEXDEFRAG will compress the data content on

the pages of a table. DBCC INDEXDEFRAG treats every move of a bunch of rows to one page as a single

transaction. Hence DBCC INDEXDEFRAG will result in many small transactions as opposed to creating an

index which treats the entire index creation task as one large transaction. DBCC INDEXDEFRAG does not

consume much CPU resources, but it does create significant I/O traffic. Therefore do not run too many

DBCC INDEXDEFRAG commands in parallel. Completely reorganizing tables by re-creating their clustered

indexes should not be done on large tables because this will generate huge amount of transaction log.

Use a health check monitoring tool for performance, availability, and so forth

 Unplanned downtime depends on how quickly system failures are notified to administrators and how soon

they can start the recovery process. For availability, SAP administrators should be aware that automatic

failover mechanism of Microsoft Clustering Services (MSCS) or database mirroring (DBM) is able to provide

continuous availability of the system. However, a failover itself will cause rollback of open transactions on

the database side which again will cause rollbacks on business transactions on the SAP side. The impact of

these batch processes breaking and data not being available might be serious (for example, with a payroll

calculation). Therefore monitoring the system and notification after failovers can be vital to having

interrupted SAP Business processes restarted as quickly as possible.

The document SAP with Microsoft SQL Server 2005: Best Practices for High Availability, Performance, and Scalability

(5.5 MB) describes best practices for tuning and configuring SAP on SQL Server 2005 in more detail.

-

http://download.microsoft.com/download/d/9/4/d948f981-926e-40fa-a026-5bfcf076d9b9/sap_sql2005_best%20practices.doc

