
TechNet Magazine July 2007 69

Windows administration

Microsoft Group Policy
technology didn’t
catch on overnight
– it was somewhat
difficult to understand
and required that you
adopt Active Directory,
a strange, new service
that looked nothing like
the Account/Resource
domains that were the
standard at the time.
Today, Group Policy

Thorbjörn Sjövold

is the management backbone of nearly every
organisation with a Windows infrastructure.
I have a feeling this is exactly what will hap­
pen with Windows PowerShell™, the latest
management technology from Microsoft. In
fact, Windows PowerShell is likely to make
your job as a Group Policy administrator sig­
nificantly easier.

In this article, I show how the Micro­
soft Group Policy Management Console
(GPMC) APIs written for Windows Script­
ing Host languages like VBScript (and COM­
based scripting languages in general) can be
consumed directly from Windows Power­
Shell to simplify the way you manage Group
Policy in your environment.

Scripting Group Policy tasks
When Microsoft released GPMC a few years
ago, Group Policy administrators sudden­
ly had a number of handy features at their
disposal. In particular, the Group­Policy­fo­
cused MMC snap­in represented a huge step
forward for Group Policy management, es­
pecially compared to Active Directory Users

At a glance:
What is Windows
PowerShell?
How GPOs were managed
previously
Migrating scripts to
Windows PowerShell

Simplify Group Policy
administration with
Windows PowerShell

69_74_GPPowerShell_desfin.indd 69 8/6/07 11:22:14

70 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

Windows administration

and Computers. Moreover, there was a brand
new API that let administrators use COM­
based languages such as VBScript to perform
Group Policy administration of tasks, such
as backing up and restoring Group Policy
Objects (GPOs), migrating GPOs between

domains, configuring security settings on
GPOs and links, and reporting.

Unfortunately, GPMC did not provide the
ability to edit the actual configured settings
inside the GPOs. In other words, you could
perform operations on the GPO container,
such as reading GPO versions, reading mod­
ify dates, creating brand new GPOs, backing
up and restoring/importing GPOs from dif­
ferent domains, and so forth, but you couldn’t
programmatically add or change the content
of the GPO, for example adding a new redi­
rected folder or a new software installation.
What you generally did instead was create
the GPO and configure all settings manu­
ally using the Group Policy Object Editor,
then back it up and import it into a test
environment. When everything was verified
and working properly, you would import
it into the live environment. Despite the
missing feature, the use of scripts instead
of manual interaction with the GPMC API
resulted in a tremendous amount of time,
effort and error saved in day­to­day Group
Policy administration.

The next level
How is Windows PowerShell different from
scripting languages like VBScript? For start­
ers, Windows PowerShell is a shell and, at
least for our purposes, you can think of a
shell as a command­line interpreter. Though
VBScript can be run from the command line,
a VBScript file cannot be run line by line. A
Windows PowerShell script, in contrast, can
be created on the fly as a series of individual

commands. In addition, Windows PowerShell
has functions that work much like subrou­
tines in VBScript, and that can be created in
real time at the Windows PowerShell com­
mand prompt.

Even better, Windows PowerShell is built
on the Microsoft .NET Framework, while
VBScript relies on older COM technology.
This means that the vast amount of .NET
code being produced today can be used di­
rectly from within Windows PowerShell.

What it comes down to is that with Win­
dows PowerShell, you get full scripting sup­
port and interactive mode, all in one package.
The examples I provide here will all be com­
mand­line input so you can type as you read;
however, they’ll work equally well if you put
them in a Windows PowerShell script file
and run it.

Recreate old scripts using Windows
PowerShell
The last thing you want to do when you start
with a new technology is toss out all your
previous work. There are three approach­
es you can use to access COM objects from
the GPMC API, or basically to reuse any old
VBScript out there. You can select one of
these three options:

• Create a Windows PowerShell cmdlet us­
ing a programming language like C# or
managed C++.

• Use Windows PowerShell to access the
ScriptControl in MSScript.ocx to wrap
old scripts.

• Wrap the COM calls in reusable Windows
PowerShell functions or else call the COM
objects directly.

I’m going to focus mainly on the third op­
tion, but let’s have a quick look at all the op­
tions first.

Creating a Windows PowerShell Cmdlet
Microsoft included a large number of cmd­
lets with Windows PowerShell, allowing you
to copy files, format output, retrieve the date
and time, and so on, but you can create your
own cmdlets as well. The process is fully doc­
umented at www.microsoft.com/uk/tech­
netmagazine/cmdlet. Here are the steps:

• Create a class library DLL in a .NET pro­
gramming language such as C#.

The vast amount of .NET
code being produced today
can be used directly from
within Windows PowerShell

69_74_GPPowerShell_desfin.indd 70 8/6/07 11:22:15

TechNet Magazine July 2007 71

• Create a new class and inherit from the
base class cmdlet.

• Set attributes that determine the name,
usage, input parameters, and so forth, and
add your code.

Because Windows PowerShell is built on
the .NET Framework, any types, such as a
string, object, and so forth, that are being re­
turned or passed as parameters are exactly the
same in the code as in Windows PowerShell;
no special type conversion is needed.

The real power of this solution is that you
have a complete programming language at
your disposal.

Wrapping old scripts using the
ScriptControl object in MSScript.ocx
Obviously, you need the VBScript engine to
run a VBScript file. What is not so obvious is
that this engine is a COM object and, since
you can use COM objects from Windows
PowerShell, you can invoke the VBScript en­
gine. Here’s how this could look:

$scriptControl = New-Object -ComObject ScriptControl
$scriptControl.Language = ‘VBScript’
$scriptControl.AddCode(
 ‘Function ShowMessage(messageToDisplay)
 MsgBox messageToDisplay
 End Function’)
$scriptControl.ExecuteStatement(‘ShowMessage
 “Hello World”’)

If you enter this code in the Windows
PowerShell Command Line Interface (CLI),
the VBScript function ShowMessage is
called and executed with a parameter, result­
ing in a Message Box displayed with the text
Hello World.

Now some of you might think, “Great!
I’ve mastered the art of using COM from
Windows PowerShell and I can stop reading
this article and start filling the ScriptControl
object with my collection of old GPMC
scripts.” Unfortunately, that’s not the case.
This technique quickly becomes very com­
plex and tough to debug as soon as the scripts
get larger.

Wrapping COM objects
So the best option is the third: wrapping
the COM calls in reusable Windows Power­
Shell functions, which lets you consume the
COM objects in the GPMC API. The line be­
low shows how to create a .NET object di­
rectly in Windows PowerShell. In this case,

it’s a FileInfo object that can be used to get
the size of the file:

$netObject = New-Object System.IO.FileInfo(
“C:\boot.ini”) # Create an instance of FileInfo
 # representing c:\boot.ini

Note that # is used in Windows PowerShell
for inline comments. Using this newly in­
stantiated FileInfo object, you can easily get
the size of boot.ini by simply typing the fol­
lowing code:

$netObject.Length # Display the size in bytes of the
 # file in the command line interface

Wait, weren’t we supposed to talk about
COM objects and VBScript conversion? Yes,
but look at the following command:

$comFileSystemObject = New-Object –ComObject
Scripting.FileSystemObject

You’ll notice that the syntax is basically the
same as I used previously to create native ob­
jects from the .NET Framework, with two
differences. First, I added the –ComObject
switch that points Windows PowerShell to­
ward the COM world instead of the .NET
world. Second, I use a COM ProgID instead

Figure 1 Custom functions in the download

Function Name Description

BackupAllGpos Backs up all GPOs in a domain

BackupGpo Backs up a single GPO

RestoreAllGpos Restores all GPOs from a backup to a domain

RestoreGpo Restores a single GPO from a backup

GetAllBackedUpGpos Retrieves the latest version of GPO backups from
a given path

CopyGpo Copies the settings in a GPO to another GPO

CreateGpo Creates a new empty GPO

DeleteGpo Deletes a GPO

FindDisabledGpos Returns all GPOs where both the user and com-
puter part are disabled

FindUnlinkedGpos Returns all GPOs that have no links

CreateReportForGpo Creates an XML report for a single GPO in a
domain

CreateReportForAllGpos Creates a separate XML report for each GPO in a
domain

GetGpoByNameOrID Finds a GPO by its display name or GPO ID

GetBackupByNameOrId Finds a GPO backup by its display name or GPO
ID

GetAllGposInDomain Returns all GPOs in a domain

69_74_GPPowerShell_desfin.indd 71 8/6/07 11:22:15

72 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

Windows administration

of a .NET constructor, in this case Scripting.
FileSystemObject. The ProgID is the same
name you’ve always used. In VBScript, the
equivalent would be:

Set comFileSystemObject = CreateObject(
 “Scripting.FileSystemObject”)

To get the file size using VBScript, add the
line above to a file, together with the follow­
ing code:

Set comFileObject = comFileSystemObject.GetFile(
 “C:\Boot.ini”)
WScript.Echo comFileObject.Size

Then run it using Cscript.exe, for example.
In Windows PowerShell, you would do it like
this (directly from the Windows PowerShell
command line if you like):

$comFileObject = $comFileSystemObject.GetFile(
 “C:\boot.ini”)
$comFileObject.Size

Of course, to convert a VBScript that reads
the size of a file, I could have used the Win­
dows PowerShell cmdlet that manages ob­
jects in drives, but I wanted to show you how
easy it is to access COM from Windows Pow­
erShell. Note that though I tell Windows
PowerShell to create a COM object, the ob­
ject that actually gets created, $comFileSys­
temObject here, is a .NET object that wraps
the COM object and exposes its interface.
In the scope of this article, however, that
doesn’t really matter.

Windows PowerShell in action
Now that you’ve seen how to access COM
from Windows PowerShell, let’s focus on
Group Policy. The examples here will show
short code snippets to give you an idea of
how to use the GPMC APIs from Windows

Figure 2 Get-Member output

Wrap the
COM calls
in reusable
Windows
PowerShell
functions

PowerShell, but you’ll find a full set of Win­
dows PowerShell functions to manage
Group Policy in the code download related
to this article, online at technetmagazine.
com/code07.aspx. Figure 1 lists the func­
tions included in the download.

As you read this section, feel free to start
the Windows PowerShell command line
and type in the commands. Remember that
some commands are dependent on previ­
ous commands, however. In other words,
some of the objects created initially will be
used later on, so stay in the same Windows
PowerShell session. If you close the session,
you’ll have to start again from the begin­
ning, retyping all the commands.

So, let’s create a new GPO using Windows
PowerShell. The Group Policy team at Mi­
crosoft included a number of fully work­
ing VBScript samples with GPMC that you
can take advantage of to speed things up.
They’re in the %ProgramFiles%\GPMC\
Scripts directory, where you’ll also find a file
called gpmc.chm that contains the GPMC
API documentation. Let’s have a look at the
CreateGPO.wsf script and dissect it to see
what makes it tick.

Near the top you’ll see this line:
Dim GPM
Set GPM = CreateObject(“GPMgmt.GPM”)

This is basically the starting point of any
Group Policy management session or script
because it instantiates the GPMgmt.GPM
class that allows access to most of the GPMC
functionality. Let’s go ahead and do this from
Windows PowerShell instead:

$gpm = New-Object -ComObject GPMgmt.GPM

69_74_GPPowerShell_desfin.indd 72 8/6/07 11:22:15

TechNet Magazine July 2007 73

Now that you have the starting point for
Group Policy management, the next step
is to figure out what you can do with it.
Normally, you’d turn to the documentation
for this type of information, but Windows
PowerShell has a really cool feature. If you
type the following line, you get the output
shown in Figure 2:

$gpm | gm

Pretty cool if you ask me. Note how the
Get­Member (or gm) cmdlet lets you see the
properties and methods the object supports
right from the command line. Of course it’s
not the same as reading the documentation,
but it makes it easy to use objects you’re al­
ready familiar with when you don’t remem­
ber the exact number of parameters, the
exact name, and so forth. One important
point to note is that when you look at the
GPMC documentation node listings, it looks
like the GPM object and all the other classes
are prefixed with the letter I; this is due to
the internal workings of COM and doesn’t
really concern us here; it is intended for C++
programmers writing native COM code and
denotes the difference between an interface
and the class that implements it. Also note
that when using the GPMC APIs, there is
only one object you need created this way,
and that is GPMgmt.GPM; all other objects

are created using methods that start with
this GPM object.

Let’s continue now with the creation of a
new GPO.

Figure 3 illustrates how simple it is to cre­
ate a GPO. Note that I’ve left out some code,
including error handling (for example, what
will happen if you are not allowed to create
GPOs), and I’ve hardcoded a domain name,
but you should get the idea.

Now that you know how to create a GPO,
let’s open an existing one instead. You still have
the reference to the domain, $gpmDomain, so
type in the following:

$gpmExistingGpo = $gpmDomain.GetGPO(
 “{31B2F340-016D-11D2-945F-00C04FB984F9}”)
Open an existing GPO based on its GUID,
in this case the Default Domain Policy.
$gpmExistingGpo.DisplayName
Show the display name of the GPO, it
should say Default Domain Policy
$gpmExistingGpo.GenerateReportToFile($gpmConstants.
ReportHTML, “.\DefaultDomainPolicyReport.html”

This gives you a full HTML report of the
settings in the Default Domain Policy, but
you can obviously use any of the meth­
ods and properties, like ModificationTime,
which tells you when the GPO was last mod­
ified, to figure out when any of the settings
in the GPO changed.

This is extremely useful. Most likely you’ve
been in a situation where the phones start
ringing like crazy with users complaining
that their computers are acting weird. You
suspect this is related to a changed, added
or deleted GPO setting, but you don’t have
a clue which GPO to look in. Windows
PowerShell to the rescue! If you enter the
script shown in Figure 4 at the Windows
PowerShell command line, you get all GPOs
that have been changed in the last 24 hours.

Note the –ge operator, which means great­
er than or equal to. It might look strange if
you’re used to the < and > operators in oth­
er scripting or programming languages. But
those operators are used for redirection, for
example to redirect the output to file, and
thus could not be used as comparison opera­
tors in Windows PowerShell.

Wrapping up
The code in Figure 5 lists the full script for
copying the settings in one GPO to anoth­
er GPO. You should now have a good idea
of how you can use this new technology

$gpmConstants = $gpm.GetConstants()
This is the GPMC way to retrieve all
constants
$gpmDomain =$gpm.GetDomain(“Mydomain.local”, “”, $gpmConstants.UseAnyDC)
Connects to the domain where the GPO should
be created, replace Mydomain.local with the
name of the domain to connect to.
$gpmNewGpo = $gpmDomain.CreateGPO()
Create the GPO
$gpmNewGpo.DisplayName = “My New Windows PowerShell GPO”
Set the name of the GPO

Figure 3 Create a GPO

$gpmSearchCriteria = $gpm.CreateSearchCriteria()
We want all GPOs so no search criteria will be specified
$gpmAllGpos = $gpmDomain.SearchGPOs($gpmSearchCriteria)
Find all GPOs in the domain
foreach ($gpmGpo in $gpmAllGpos)
{
if ($gpmGpo.ModificationTime -ge (get-date).AddDays(-1)) {$gpmGpo.DisplayName}
Check if the GPO has been modified less than 24 hours from now
}

Figure 4 Discovering modified GPOs

69_74_GPPowerShell_desfin.indd 73 8/6/07 11:22:16

74 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

Windows administration

with Group Policy and how you can reuse
any COM object or VBScript code that con­
sumes a COM object.

Windows PowerShell will be, just as Group
Policy already is, a natural part of any Win­
dows management environment. But there
are millions of lines of VBScript out there
that will have to be migrated or maintained,
and hopefully this tutorial will help.

There are a number of sources you can
use to enhance your Group Policy adminis­
tration and other areas where you’ve previ­
ously used VBScript, including the Windows
PowerShell functions in the download, and a
great VBScript­to­Windows PowerShell con­
version guide on the TechNet Web site that
provides hints on how to do common tasks
in Windows PowerShell when you know

###
Function : CopyGpo
Description: Copies the settings in a GPO to another GPO
Parameters : $sourceGpo - The GPO name or GPO ID of the GPO to copy
: $sourceDomain - The dns name, such as microsoft.com, of the domain where the original GPO is located
: $targetGpo - The GPO name of the GPO to add
: $targetDomain - The dns name, such as microsoft.com, of the domain where the copy should be put
: $migrationTable - The path to an optional Migration table to use when copying the GPO
Returns : N/A
Dependencies: Uses GetGpoByNameOrID, found in article download
###
function CopyGpo(
 [string] $sourceGpo=$(throw ‘$sourceGpo is required’),
 [string] $sourceDomain=$(throw ‘$sourceDomain is required’),
 [string] $targetGpo=$(throw ‘$targetGpo is required’),
 [string] $targetDomain=$(throw ‘$targetDomain is required’),
 [string] $migrationTable=$(“”),
 [switch] $copyAcl)
{

 $gpm = New-Object -ComObject GPMgmt.GPM # Create the GPMC Main object
 $gpmConstants = $gpm.GetConstants() # Load the GPMC constants
 $gpmSourceDomain = $gpm.GetDomain($sourceDomain, “”, $gpmConstants.UseAnyDC) # Connect to the domain passed
 # using any DC
 $gpmSourceGpo = GetGpoByNameOrID $sourceGpo $gpmSourceDomain
 # Handle situations where no or multiple GPOs was found
 switch ($gpmSourceGpo.Count)
 {
 {$_ -eq 0} {throw ‘No GPO named $gpoName found’; return}
 {$_ -gt 1} {throw ‘More than one GPO named $gpoName found’; return}
 }
 if ($migrationTable)
 {
 $gpmMigrationTable = $gpm.GetMigrationTable($migrationTable)
 }

 $gpmTargetDomain = $gpm.GetDomain($targetDomain, “”, $gpmConstants.UseAnyDC) # Connect to the domain passed
 # using any DC

 $copyFlags = 0
 if ($copyAcl)
 {
 $copyFlags = Constants.ProcessSecurity
 }
 $gpmResult = $gpmSourceGpo.CopyTo($copyFlags, $gpmTargetDomain, $targetGpo)
 [void] $gpmResult.OverallStatus

}

Figure 5 Copy the settings in one GPO to another GPO

the equivalent in VBScript. You’ll find it at
microsoft.com/technet/scriptcenter/topics/
winpsh/convert.

In addition, the GPMC API is fully docu­
mented; you can download the information
from the Group Policy site at microsoft.com/
grouppolicy.

Last but not least, if you haven’t already
installed Windows PowerShell, what are
you waiting for? Download it from micro­
soft.com/powershell. Have fun. ■

Thorbjörn Sjövold is the CTO and
founder of Special Operations Software
(www.specopssoft.com), a provider of Group
Policy based Systems Management and
Security extension products. Reach him at
thorbjorn.sjovold@specopssoft.com.

69_74_GPPowerShell_desfin.indd 74 8/6/07 11:22:16

