
Windows PowerShell 3.0 Examples
Created by http://powershellmagazine.com

Job scheduling allows you to schedule execution of a Windows PowerShell background
job for a later time. First thing you do is create a job trigger. This defines when the job
will execute. Then you use the Register-ScheduledJob cmdlet to actually register the
job on the system. In the following example, every day at 3am we back up our
important files:

$trigger = New-JobTrigger -Daily -At 3am
Register-ScheduledJob -Name DailyBackup -Trigger $trigger -ScriptBlock {Copy-Item
c:\ImportantFiles d:\Backup$((Get-Date).ToFileTime()) -Recurse -Force -PassThru}

Once the trigger has fired and the job has run, you can work with it the same way you
do with regular background jobs:

Import-Module PSScheduledJob
Get-Job -Name DailyBackup | Receive-Job

You can start a scheduled job manually, rather than waiting for the trigger to fire:

Start-Job -DefinitionName DailyBackup

By default, Get-WmiObject returns information about date properties in a format
that's not easy to read. ConvertToDateTime() method to the rescue! In the following
example you will see a lot of aliases-cn is an alias for ComputerName parameter,
foreach is an alias for ForEach-Object cmdlet, and $PSItem is a new automatic variable
and an alias for $_ automatic variable.

Get-WmiObject Win32_OperatingSystem -cn localhost |
 foreach {$PSItem.ConvertToDateTime($PSItem.LastBootUpTime)}

Get-CimInstance, a new CIM cmdlet similar to Get-WmiObject returns date properties
in a readable fomat:

Get-CimInstance -ClassName Win32_OperatingSystem | fl last*

How to schedule a job

There is no built-in cmdlet to generate a password, but we can leverage a vast number
of .NET Framework classes. System.Web.Security.Membership class has a static
method GeneratePassword(). First, we need to load an assembly containing this class,
and then we use GeneratePassword() to define password length and a number of non-
alphanumeric characters.

$Assembly = Add-Type -AssemblyName System.Web
[System.Web.Security.Membership]::GeneratePassword(8,3)

How we know all that? With a little help of Get-Member cmdlet (and simplified where
syntax):

[System.Web.Security.Membership] | Get-Member -MemberType method -Static|
where name -match password

How to generate complex password

How to convert WMI dates

Windows PowerShell Web Access is a new feature in Windows Server 2012. It acts as a
gateway, and from there you can run Windows PowerShell commands on any
machines in your environment. The webpage is entirely Javascript-based, so you can
access the console on almost any device with a web browser. You can install and
configure PSWA for testing purposes in three easy steps:

Install-WindowsFeature -Name WindowsPowerShellWebAccess -Verbose
Install-PswaWebApplication -UseTestCertificate
Add-PswaAuthorizationRule -UserName * -ComputerName * -ConfigurationName *

open the Windows PowerShell Web Access sign-in page in your default web browser
Start-Process https:/dc.contoso.com/pswa

How to install Windows PowerShell Web Access (PSWA)

Quite easy, with a one-liner. Windows Server 2012 provides Windows PowerShell
cmdlets and WMI objects to manage SMB file servers and SMB file shares. The SMB
cmdlets are packaged into two modules called SmbShare and SmbWitness. These
modules are automatically loaded (thanks to new module auto-loading feature)
whenever you refer to any of the cmdlets included. No upfront configuration is
required. Note: Check the output of Get-Module command before and after you run
the following one-liner to see that SmbShare module is loaded behind the scenes.)

New-SmbShare –Name MyShare –Path C:\Test –Description ‘Test Shared Folder’ –
FullAccess Administrator –ChangeAccess DouglasAdams -ReadAccess Everyone

How to create a share in Windows Server 2012

Windows PowerShell 3.0 Examples
Created by http://powershellmagazine.com

The Invoke-WebRequest cmdlet parses the response, exposing collections of forms,
links, images, and other significant HTML elements. The following example returns all
the URLs from a Web Page:

$iwr = Invoke-WebRequest http://blogs.msdn.com/b/powershell
$iwr.Links

The next example returns an RSS feed from Windows PowerShell team blog:

$irm = Invoke-RestMethod blogs.msdn.com/b/powershell/rss.aspx
$irm | Select-Object PubDate, Title

If you, for example, need to execute one of the -PSSession cmdlets using alternate
credentials you must specify the credentials for the Credential parameter every time
you call the command. In v3, we can supply alternate credentials by using new
$PSDefaultParameterValues preference variable. For more information, see
about_Parameters_Default_Values.

$PSDefaultParameterValues = @{'*-PSSession:Credential'=Get-Credential}

How to parse web page elements

New Invoke-RestMethod cmdlet sends an HTTP(S) request to a REST-compliant web
service. You can use it to consume data exposed by, for example, OData service for
TechEd North America 2012 content. Put information about TechEd NA 2012 sessions
into $sessions variable. Let's iterate through that collection of XML elements and create
custom Windows PowerShell objects using [PSCustomObject] (a new way to do it). Pipe
the output to Out-GridView command specifying PassThru parameter to send selected
items from the interactive window down the pipeline as input to Export-Csv command.
(While you are in Out-GridView window, try to filter only Windows PowerShell Hands-
on Labs, for example.) If you have Excel installed the last command will open CSV file in
Excel.
$sessions = Invoke-RestMethod http://odata.msteched.com/tena2012/sessions.svc/
Sessions

$sessions | ForEach-Object {
 $properties = $_.content.properties
 [PSCustomObject]@{
 Code = $properties.Code
 StartTime = $properties.StartTime.'#text'
 EndTime = $properties.EndTime.'#text'
 Title = $properties.Title
 Abstract = $properties.Abstract
 }
} | Out-GridView -PassThru | Export-Csv $env:TEMP\sessions.csv -
NoTypeInformation

Invoke-Item $env:TEMP\sessions.csv

How to fetch data exposed by OData services

How to set custom default values for the parameters

With the new enhancements to the Add-Member cmdlet we can now use a hash table
to add multiple note properties to an object:

New-Object -TypeName PSObject | Add-Member @{One=1; Two=2; Three=3} -
PassThru

How to easily add multiple note properties to an object

New "implicit foreach" feature allows you to access properties and methods on objects
inside of a collection.

In v2, the following would give no result:
(Get-Process).Name

In v3, Windows PowerShell returns all process names. We can also access "properties
of properties"
(Get-Process).StartTime.DayOfWeek

It works with methods too (remove all instances of Notepad):
(Get-Process notepad).Kill()

How to leverage "implicit foreach" feature

In v2, if you had some local variable that you wanted to use when executing a script
block remotely, you had to do something like:
$localVar = 42
Invoke-Command -ComputerName Server 1 { param($localVar) echo $localVar } -
ArgumentList $localVar

In v3, you can use Using scope (prefix variable name with $using:):
Invoke-Command -ComputerName Server1 { echo $using:localVar }

How to access local variables in a remote session

	PowerShell_Examples_v3.vsd
	Page-1
	Page-2

