@Xamarin == Microsoft
Creating

Mobile Apps

with Xamarin.Forms

'd N\
(—> O \ :&O

= / | d

Cross-platform C# programming
for 10S, Android, and Windows

CHARLES PETZOLD

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2016 Xamarin, Inc.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-1-5093-0297-0

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related to
this book, email Microsoft Press Support at mspinput@microsoft.com. Please tell us what you think of this book at
http://aka.ms/tellpress.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information
expressed in this book, including URL and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connec-
tion is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks of
the Microsoft group of companies. All other marks are property of their respective owners.

Acquisitions and Project Editor: Devon Musgrave
Editorial production: John Pierce, Flying Squirrel Press
Cover illustration: Serena Zhang

Contents

Foreword Xv
Introduction XVi
Chapter 1 How does Xamarin.Forms fit in? 1
Cross-platform mobile development 2
The mobile landscape 2
Problem 1: Different user-interface paradigms 2
Problem 2: Different development environments 3
Problem 3: Different programming interfaces 3
Problem 4: Different programming languages 3

The C# and .NET solution 4
A single language for all platforms 5
Sharing code 6
Introducing Xamarin.Forms 8
The Xamarin.Forms option 8
XAML support 13
Platform specificity 14

A cross-platform panacea? 15
Your development environment 15
Machines and IDEs 16
Devices and emulators 16
Installation 17
Creating an iOS app 17
Creating an Android app 18
Creating a Windows app 18

All ready? 19

Contents

Chapter 2 Anatomy of an app

Say hello

20
20

Inside the files

24

26

The iOS project
The Android project

27

The Universal Windows Platform project

28

Nothing special!

28

PCL or SAP?

29

Labels for text

31

Solution 1. Include padding on the page

35

Solution 2. Include padding just for iOS (SAP only)

36

Solution 3. Include padding just for iOS (PCL or SAP)

37

39

Solution 4. Center the label within the page

Solution 5. Center the text within the label

41

Chapter 3 Deeper into text

Wrapping paragraphs

42
42

Text and background colors

44

The Color structure

46

Changing the application color scheme

Font sizes and attributes

50
51

Formatted text

53

Chapter 4 Scrolling the stack

Stacks of views

60
60

Scrolling content

64

The Expands option

70

Frame and BoxView

74

A ScrollView in a StackLayout?

82

Chapter 5 Dealing with sizes

Pixels, points, dps, DIPs, and DIUs

87
87

Metrical sizes

96

Contents

Estimated font sizes

97

Fitting text to available size

99

A fit-to-size clock

Accessibility issues

Empirically fitting text

Chapter 6 Button clicks

Processing the click

Sharing button clicks

Anonymous event handlers

Distinguishing views with IDs

Saving transient data

Chapter 7 XAML vs. code

Properties and attributes

Property-element syntax

Adding a XAML page to your project
The XAML compiler

Platform specificity in the XAML file

The content property attribute

Formatted text

Chapter 8 Code and XAML in harmony

Passing arguments

Constructors with arguments

Can | call methods from XAML?

The x:Name attribute

Custom XAML-based views

Events and handlers

Tap gestures

Chapter 9 Platform-specific API calls

Preprocessing in the Shared Asset Project

Parallel classes and the Shared Asset Project

103
105
108
113
113
116
119
121
124
131
132
136
140
145
146
150
152
156
156
156
159
161
167
172
175
182
182
185

Contents

DependencyService and the Portable Class Library

Platform-specific sound generation

Chapter 10 XAML markup extensions

The code infrastructure

Accessing static members

Resource dictionaries

StaticResource for most purposes

A tree of dictionaries

DynamicResource for special purposes

Lesser-used markup extensions

A custom markup extension

Chapter 11 The bindable infrastructure

The Xamarin.Forms class hierarchy
A peek into BindableObject and BindableProperty
Defining bindable properties

The read-only bindable property

Chapter 12 Styles

The basic Style

Styles in code

Style inheritance

Implicit styles

Dynamic styles

Device styles

Chapter 13 Bitmaps

Platform-independent bitmaps

Fit and fill

Embedded resources

More on sizing

Browsing and waiting

Streaming bitmaps

vi

187
191
198
198
200
206
207
214
218
221
222
227
228
235
241
246
252
252
259
261
265
270
278
283
284
287
289
295
307
311

Contents vii

Accessing the streams 311
Generating bitmaps at run time 314
Platform-specific bitmaps 318
Bitmap resolutions 320
Device-independent bitmaps for iOS 322
Device-independent bitmaps for Android 322
Device-independent bitmaps for Windows Runtime platforms 323
Toolbars and their icons 327
Icons for Android 329
Icons for Windows Runtime platforms 330
Icons for iOS devices 331
Button images 335
Chapter 14 Absolute layout 338
AbsoluteLayout in code 339
Attached bindable properties 344
Proportional sizing and positioning 348
Working with proportional coordinates 350
AbsoluteLayout and XAML 355
Overlays 359
Some fun 362
Chapter 15 The interactive interface 371
View overview 371
Slider and Stepper 372
Slider basics 372
Common pitfalls 375
Slider color selection 377
The Stepper difference 382
Switch and CheckBox 384
Switch basics 384

A traditional CheckBox 387

Contents viii

Typing text 392
Keyboard and focus 392
Choosing the keyboard 393
Entry properties and events 396
The Editor difference 402
The SearchBar 405

Date and time selection 410
The DatePicker 410
The TimePicker (or is it a TimeSpanPicker?) 414

Chapter 16 Data binding 418

Binding basics 418

Code and XAML 420

Source and BindingContext 423

The binding mode 430

String formatting 437

Why is it called “Path"? 440

Binding value converters 443

Bindings and custom views 451

Chapter 17 Mastering the Grid 458

The basic Grid 458
The Grid in XAML 458
The Grid in code 464
The Grid bar chart 467
Alignment in the Grid 471
Cell dividers and borders 475

Almost real-life Grid examples 481
Responding to orientation changes 484

Chapter 18 MVVM 491

MVVM interrelationships 491

ViewModels and data binding 493

Contents ix

A ViewModel clock 494
Interactive properties in a ViewModel 500

A Color ViewModel 507
Streamlining the ViewModel 513
The Command interface 517
Simple method executions 519

A calculator, almost 523
ViewModels and the application lifecycle 531
Chapter 19 Collection views 535
Program options with Picker 536
The Picker and event handling 536
Data binding the Picker 540
Rendering data with ListView 543
Collections and selections 544
The row separator 545
Data binding the selected item 547
The ObservableCollection difference 551
Templates and cells 553
Custom cells 561
Grouping the ListView items 565
Custom group headers 569
ListView and interactivity 570
ListView and MVVM 574
A collection of ViewModels 574
Selection and the binding context 586
Context menus 590
Varying the visuals 595
Refreshing the content 597
The TableView and its intents 604

Properties and hierarchies 604

Contents

A prosaic form

Custom cells

Conditional sections

A TableView menu

Chapter 20 Async and file I/0

From callbacks to await

An alert with callbacks

An alert with lambdas

An alert with await

An alert with nothing

Saving program settings asynchronously

A platform-independent timer

File input/output

Good news and bad news

A first shot at cross-platform file 1/O

Accommodating Windows Runtime file I/0

Platform-specific libraries

Keeping it in the background

Don't block the Ul thread!

Your own awaitable methods

The basic Mandelbrot set

Marking progress

Cancelling the job

An MVVM Mandelbrot

Back to the web

Chapter 21 Transforms

The translation transform

Text effects

Jumps and animations

The scale transform

606
610
616
620
624
625
626
630
630
632
635
639
641
641
643
650
651
662
664
664
666
673
676
680
701
704
705
708
711
715

Contents

Anchoring the scale

The rotation transform

Rotated text effects

An analog clock

Vertical sliders?

3D-ish rotations

Chapter 22 Animation

Exploring basic animations

Setting the animation duration

Relative animations

Awaiting animations

Composite animations

Task.WhenAll and Task.WhenAny

Rotation and anchors

Easing functions

Your own easing functions

Entrance animations

Forever animations

Animating the Bounds property

Your own awaitable animations

Deeper into animation

Sorting out the classes

ViewExtensions class

The Animation class

AnimationExtensions class

Working with the Animation class

Child animations

Beyond the high-level animation methods

More of your own awaitable methods

Implementing a Bezier animation

Xi

723
726
727
734
742
743
748
748
750
751
751
754
756
756
759
763
773
778
793
805
808
808
809
810
811
812
815
818
819
823

Contents i

Working with AnimationExtensions 828
Structuring your animations 834
Chapter 23 Triggers and behaviors 835
Triggers 836
The simplest trigger 836
Trigger actions and animations 841
More event triggers 847
Data triggers 853
Combining conditions in the MultiTrigger 858
Behaviors 868
Behaviors with properties 871
Toggles and check boxes 876
Responding to taps 889
Radio buttons 893
Fades and orientation 908
Chapter 24 Page navigation 920
Modal pages and modeless pages 921
Animated page transitions 930
Visual and functional variations 931
Exploring the mechanics 937
Enforcing modality 947
Navigation variations 955
Making a navigation menu 957
Manipulating the navigation stack 963
Dynamic page generation 965
Patterns of data transfer 969
Constructor arguments 970
Properties and method calls 974
The messaging center 981

Events 984

Contents

The App class intermediary

Xiii

987

Switching to a ViewModel

990

Saving and restoring page state

995

Saving and restoring the navigation stack

Something like a real-life app

999

1006

Chapter 25 Page varieties

Master and Detail

1020
1020

Exploring the behaviors

1021

Back to school

1029

Your own user interface

1034

TabbedPage

1042

Discrete tab pages

1043

1050

Using an ItemTemplate

Chapter 26 Custom layouts

An overview of layout

1054
1054

Parents and children

1055

Sizing and positioning

1056

1060

Constraints and size requests

Infinite constraints

Peeking inside the process

1064
1066

Deriving from Layout<View>

1074

An easy example

1075

Vertical and horizontal positioning simplified

Invalidation

1082

1084

Some rules for coding layouts

1087

A layout with properties

1088

No unconstrained dimensions allowed!

1099

1106

Overlapping children

More attached bindable properties

1117

Layout and LayoutTo

1122

Contents

Chapter 27 Custom renderers

The complete class hierarchy

Hello, custom renderers!

Renderers and properties

Renderers and events

Xiv

1127
1127
1130
1135
1149

Foreword

The idea for producing a book on Xamarin.Forms is one we've had for almost as long as we've been
working on the product. Of course, we didn’t know it would be written by such a talented and highly
regarded author. We couldn’t have asked for a better-qualified person, nor someone who would re-
quire so little of us to get inside our minds! Charles offers insights in such beautiful and simple ways, as
you'll soon discover.

This book distills more than three years of effort to create a modern, cross-platform toolkit as an easy
to understand, organized progression of ideas. The examples contained within this book are simple
enough to be understood without the need for a fancy IDE or compiler, yet they retain the complexity
required to be applicable to problems faced by real applications. Better, the following chapters don't
focus on a single platform but take a holistic approach to understanding mobile development for all
platforms, not just iOS or Android or Windows.

We wanted to avoid the pitfalls commonly associated with cross-platform toolkits: either they have an
alien-feeling user experience, or they are limited to the lowest common denominator across all the tar-
get platforms. The pattern we fell in love with was to use native APIs, as is the traditional Xamarin way.
Xamarin.Forms offers the user the smallest usable subset of APIs that are required to write the majority
of an app in a unified codebase, and then gives access to the underlying toolkit for fit and finish. The
end result is that the user has the ability to express the majority of their app in unified code, without
losing the flexibility of per-platform implementation.

It works, too, by removing the need to provide every feature inside the abstraction. Instead, we allow
simple access down to the toolkit so that application developers are able to bring out those platform-
specific features that make their app shine. Ninety percent of what makes your app work is the same as
for every other app out there, but working across platforms shouldn't force you to give up the 10 per-
cent that makes your app unique.

Because of this, Xamarin.Forms is in many ways the “untoolkit,” a toolkit that isn't so much a toolkit as
it is a way to look at mobile development and use it as a pattern to create mobile apps. If the authors
of Xamarin.Forms can offer you anything to retain as you read this book, it is that toolkits, platforms,
and technologies change very rapidly, but patterns, especially good patterns, rarely die.

When | read the preview editions of this book, | was blown away. Charles understood what we were
trying to do better than anyone else ever had. This book is written knowing that Xamarin.Forms is
about the pattern of creating mobile apps. | believe that by the time you finish reading, you too will
understand what it is we set out to create.

Xamarin.Forms cocreator,
Jason Smith

Introduction

This is the third version of a book about writing applications with Xamarin.Forms, the exciting mobile
development platform for iOS, Android, and Windows unveiled by Xamarin in May 2014. (The first two
versions of this book were Preview Editions.) Xamarin.Forms lets you write shared user-interface code
in C# and XAML (the Extensible Application Markup Language) that maps to native controls on these
platforms.

The Windows support of Xamarin.Forms includes the Windows Runtime (WinRT) for targeting
Windows 8.1 and Windows Phone 8.1 devices, and the Universal Windows Platform (UWP), which is a
form of the Windows Runtime that targets Windows 10 and Windows 10 Mobile devices with a single
program.

The two previous versions of this book were called Preview Editions because they were not com-
plete. At 1200 pages, this is the first edition that can claim to be complete, even though several topics
are not included and Xamarin.Forms continues to be progressively enhanced with no sign of slowing
down.

All information about this book can be found on the book’s home page at:

https://developer.xamarin.com/r/xamarin-forms/book/

Who should read this book

This book is for C# programmers who want to write applications using a single code base that targets
the three most popular mobile platforms: iOS, Android, and Windows, encompassing the Universal
Windows Platform and Windows Phone.

Xamarin.Forms also has applicability for those programmers who eventually want to use C# and the
Xamarin.iOS and Xamarin.Android libraries to target the native application programming interfaces
(APIs) of these platforms. Xamarin.Forms can be a big help in getting programmers started with these
platforms or in constructing a prototype or proof-of-concept application.

This book assumes that you know C# and are familiar with the use of the .NET Framework. How-
ever, when | discuss some C# and .NET features that might be somewhat exotic or unfamiliar to recent
C# programmers, | adopt a somewhat slower pace.

https://developer.xamarin.com/r/xamarin-forms/book/

Introduction XVii

Conventions and features in this book

This book has just a few typographical conventions:

e All programming elements referenced in the text—including classes, methods, properties, varia-
ble names, etc.—are shown in a monospaced font, such as the stackLayout class.

e Items that appear in the user interface of Visual Studio or Xamarin Studio, or the applications
discussed in these chapters, appear in boldface, such as the Add New Project dialog.

e Application solutions and projects also appear in boldface, such as MonkeyTap.

The various editions of this book

This book is intended as a tutorial to learn Xamarin.Forms programming. It is not a replacement for the
online APl documentation, which can be found at the Xamarin.Forms Framework link on this page:

https://developer.xamarin.com/api/

The first Preview Edition of this book was published in October 2014 to coincide with the Xamarin
Evolve 2014 conference. It contained six chapters but no coverage of XAML.

This second Preview Edition was reconceived to contain shorter and more focused chapters. The
sixteen chapters of the second Preview Edition were published in April 2015 to coincide with the
Microsoft Build 2015 conference. Over the next six months, eight more chapters were published online,
bringing the total to 24.

This edition has 27 chapters and is being published to coincide with the Xamarin Evolve 2016 con-
ference taking place April 24-28, 2016. But the deadline for this book is about a month earlier than
Evolve, and several topics did not make it into this edition. These include maps, ControlTemplate,
DataTemplateSelector, the Margin property, and CarouselView. Of the classes that derive from
GestureRecognizer, only TapGestureRecognizer is covered, and not PanGestureRecognizer or
PinchGestureRecognizer. Although RelativeLayout dates from the very first release of Xama-
rin.Forms, somehow it never made it into this book.

Between the second Preview Edition and this edition, a big change occurred for the Windows plat-
forms: The sample programs no longer support the Silverlight API of Windows Phone 8.0. Instead, all
the sample programs support the Universal Windows Platform for targeting Windows 10 and Windows
10 Mobile, and the Windows Runtime for targeting Windows 8.1 and Windows Phone 8.1.

However, there was insufficient time to update this book’s sample programs and screenshots to re-
flect Android AppCompat and Material Design, which is expected to be supported in a forthcoming
Visual Studio and Xamarin Studio project template for Xamarin.Forms.

https://developer.xamarin.com/api/

Introduction Xviii

For updates and additions to this edition, check the Xamarin webpage devoted to this book.

System requirements

This book assumes that you'll be using Xamarin.Forms to write applications that simultaneously target
all the supported mobile platforms—iOS, Android, the Universal Windows Platform, and perhaps
Windows Phone 8.1 as well. However, it's possible that some readers will be targeting only one or two
platforms in their Xamarin.Forms solutions. The platforms you target govern your hardware and soft-
ware requirements. For targeting iOS devices, you'll need a Mac installed with Apple Xcode and the
Xamarin Platform, which includes Xamarin Studio. For targeting any of the Windows platforms, you'll
need Visual Studio 2015 on a PC, and you'll need to have installed the Xamarin Platform.

However, you can also use Visual Studio on the PC to target iOS devices through a Wi-Fi-accessible
Mac installed with Xcode and the Xamarin Platform. You can target Android devices from Visual Studio
on the PC or from Xamarin Studio on the Mac.

Chapter 1, “How does Xamarin.Forms fit in?" has more details on the various configurations you can
use and resources for additional information and support. My setup for creating this book consisted of
a Microsoft Surface Pro 2 (with external monitor, keyboard, and mouse) installed with Visual Studio
2015 and the Xamarin Platform, connected by Wi-Fi with a MacBook Pro installed with Xcode and the
Xamarin Platform.

Most of the screenshots in this book show an iPhone, an Android phone, and a Windows 10 Mobile
device in that order. The three devices shown in these screenshots reflect my setup and hardware:

e The iPhone 6 simulator on the MacBook Pro running iOS 8.2
e An LG Nexus 5 running Android 6.0.1
e A Nokia Lumia 925 running Windows 10 Mobile

Additional screenshots use an iPad Air 2 simulator, a Microsoft Surface Pro 3 running Windows 10 in
tablet mode, a Windows 10 Mobile phone running a program targeting Windows Phone 8.1, and the
Windows 10 desktop running a program targeting Windows 8.1.

Some of the early triple screenshots in this book used devices with somewhat earlier versions of the
operating systems, for example Android 5.0 or 5.1. Although | tried to use real devices for all the
Android and Windows screenshots, in the interests of expediency some Windows Phone and Windows
10 Mobile screenshots were taken with a Windows 10 Mobile emulator.

Introduction XiX

Downloads: Code samples

The sample programs shown in the pages of this book were compiled in late March 2016 with
Xamarin.Forms version 2.1.0. The source code of these samples is hosted on a repository on GitHub:

http://aka.ms/xamarinbook/codesamples

You can clone the directory structure to a local drive on your machine or download a big ZIP folder.
I'll try to keep the code updated with the latest release of Xamarin.Forms and to fix (and comment) any
errors that might have sneaked through.

You can report problems, bugs, or other kinds of feedback about the book or source code by click-
ing the Issues button on this GitHub page. You can search through existing issues or file a new one. To
file a new issue, you'll need to join GitHub (if you haven't already).

Use this GitHub page only for issues involving the book. For questions or discussions about
Xamarin.Forms itself, use the Xamarin.Forms forum:

http://forums.xamarin.com/categories/xamarin-forms

Updating the code samples

The libraries that make up Xamarin.Forms are distributed via the NuGet package manager. The
Xamarin.Forms package consists of a collection of dynamic-link libraries, the most significant of which
are:

e Xamarin.Forms.Core.dl|

e Xamarin.Forms.Xaml.dll

e Xamarin.Forms.Platform.dll

e Xamarin.Forms.Platform.iOS.dll

e Xamarin.Forms.Platform.Android.dlI

e Xamarin.Forms.Platform.WinRT.dlI

e Xamarin.Forms.Platform.WinRT.Phone.dll
e Xamarin.Forms.Platform.WinRT.Tablet.dll
e Xamarin.Forms.Platform.UAP.dII

The Xamarin.Forms package also requires five Android support libraries, currently identified with the
version number 23.0.1.3. These should be automatically included.

http://aka.ms/xamarinbook/codesamples
http://forums.xamarin.com/categories/xamarin-forms

Introduction XX

When you create a new Xamarin.Forms solution using Visual Studio or Xamarin Studio, a version of
the Xamarin.Forms package becomes part of that solution. However, that might not be the latest
Xamarin.Forms version available from NuGet. You'll probably want to update that package to the most
recent version.

Also, the source code for this book that is stored on GitHub does not include the actual NuGet
packages. Xamarin Studio will automatically download them when you load the solution, but by de-
fault Visual Studio will not.

In Visual Studio, you can handle both these jobs by right-clicking the solution name in the Solution
Explorer and selecting Manage NuGet Packages for Solution. The Manage Packages for Solution
dialog lets you download and restore the NuGet packages and to update them.

In Xamarin Studio, the process is somewhat more automatic, but you can also use the Update
NuGet Packages and Restore NuGet Packages options on the Project menu.

Some of the projects contain references to libraries in the Libraries folder of the sample code. You'll
want to load those library solutions into Visual Studio or Xamarin Studio separately and restore (or up-
date) the NuGet packages. Then load projects referencing these libraries.

Acknowledgments

It's always seemed peculiar to me that authors of programming books are sometimes better known to
programmers than the people who actually created the product that is the subject of the book! The
real brains behind Xamarin.Forms are Jason Smith, Eric Maupin, Stephane Delcroix, Seth Rosetter, Rui
Marinho, Chris King, E.Z. Hart, Samantha Houts, Paul DiPietro, and interim product manager Bryan
Hunter. Congratulations, guys! We've been enjoying the fruits of your labor!

Over the months that these various editions of the book were in progress, | have benefited from
valuable feedback, corrections, and edits from several people. This book wouldn't exist without the col-
laboration of Bryan Costanich at Xamarin and Devon Musgrave at Microsoft Press. Both Bryan and
Craig Dunn at Xamarin read some of my drafts of early chapters and managed to persuade me to take
a somewhat different approach to the material. Later on, Craig kept me on track and reviewed the
chapters while John Meade did the copyediting. For the first Preview Edition, Stephane Delcroix at
Xamarin and Andy Wigley with Microsoft offered essential technical reads and persistently prodded me
to make the book better. Rui Marinho was often willing to explore technical questions that | had.
Reader Albert Mata found a number of typos. Microsoft's copyeditor for the second Preview Edition
and this edition was John Pierce.

Almost nothing | do these days would be possible without the daily companionship and support of
my wife, Deirdre Sinnott.

Charles Petzold
March 21, 2016

Introduction XXi

Free ebooks from Microsoft Press

From technical overviews to in-depth information, the free ebooks from Microsoft Press cover a wide
range of topics. These ebooks are available in PDF, EPUB, and Mobi for Kindle formats, ready for you to
download at http://aka.ms/mspressfree.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority and your feedback our most valuable asset.
Please tell us what you think of this book at http://aka.ms/tellpress. Your feedback goes directly to the

editors at Microsoft Press. (No personal information will be requested.) Thanks in advance for your in-
put!

http://aka.ms/mspressfree
http://aka.ms/tellpress

Chapter 1
How does Xamarin.Forms fit in?

There is much joy in programming. There is joy in analyzing a problem, breaking it down into pieces,
formulating a solution, mapping out a strategy, approaching it from different directions, and crafting
the code. There is very much joy in seeing the program run for the first time, and then more joy in
eagerly diving back into the code to make it better and faster.

There is also often joy in hunting down bugs, in ensuring that the program runs smoothly and pre-
dictably. Few occasions are quite as joyful as finally identifying a particularly recalcitrant bug and defin-
itively stamping it out.

There is even joy in realizing that the original approach you took is not quite the best. Many devel-
opers discover that they've learned a lot while writing a program, including that there’s a better way to
structure the code. Sometimes, a partial or even a total rewrite can result in a much better application,
or simply one that is structurally more coherent and easier to maintain. The process is like standing on
one’s own shoulders, and there is much joy in attaining that perspective and knowledge.

However, not all aspects of programming are quite so joyful. One of the nastier programming jobs
is taking a working program and rewriting it in an entirely different programming language or porting
it to another operating system with an entirely different application programming interface (API).

A job like that can be a real grind. Yet, such a rewrite may very well be necessary: an application
that's been so popular on the iPhone might be even more popular on Android devices, and there’s
only one way to find out.

But here’s the problem: As you're going through the original source code and moving it to the new
platform, do you maintain the same program structure so that the two versions exist in parallel? Or do
you try to make improvements and enhancements?

The temptation, of course, is to entirely rethink the application and make the new version better.
But the further the two versions drift apart, the harder they will be to maintain in the future.

For this reason, a sense of dread pervades the forking of one application into two. With each line of
code that you write, you realize that all the future maintenance work, all the future revisions and en-
hancements, have become two jobs rather than one.

This is not a new problem. For over half a century, developers have craved the ability to write a sin-
gle program that runs on multiple machines. This is one of the reasons that high-level languages were
invented in the first place, and this is why the concept of “cross-platform development” continues to
exert such a powerful allure for programmers.

Chapter 1 How does Xamarin.Forms fit in? 2

Cross-platform mobile development

The personal computer industry has experienced a massive shift in recent years. Desktop computers
still exist, of course, and they remain vital for tasks that require keyboards and large screens: program-
ming, writing, spread-sheeting, data tracking. But much of personal computing now occurs on smaller
devices, particularly for quick information, media consumption, and social networking. Tablets and
smartphones have a fundamentally different user-interaction paradigm based primarily on touch, with
a keyboard that pops up only when necessary.

The mobile landscape

Although the mobile market has the potential for rapid change, currently two major phone and tablet
platforms dominate:

e The Apple family of iPhones and iPads, all of which run the iOS operating system.

e The Android operating system, developed by Google based on the Linux kernel, which runs on
a variety of phones and tablets.

How the world is divided between these two giants depends on how they are measured: there are
more Android devices currently in use, but iPhone and iPad users are more devoted and spend more
time with their devices.

There is also a third mobile development platform, which is not as popular as iOS and Android but
involves a company with a strong history in the personal computer industry:

e Microsoft's Windows Phone and Windows 10 Mobile.

In recent years, these platforms have become a more compelling alternative as Microsoft has been
merging the APIs of its mobile, tablet, and desktop platforms. Both Windows 8.1 and Windows Phone
8.1 are based on a single API called the Windows Runtime (or WinRT), which is based on

Microsoft .NET. This single APl means that applications targeted for desktop machines, laptops, tablets,
and phones can share very much of their code.

Even more compelling is the Universal Windows Platform (UWP), a version of the Windows Runtime
that forms the basis for Windows 10 and Windows 10 Mobile. A single UWP application can target
every form factor from the desktop to the phone.

For software developers, the optimum strategy is to target more than just one of these platforms.
But that's not easy. There are four big obstacles:

Problem 1: Different user-interface paradigms

All three platforms incorporate similar ways of presenting the graphical user interface (GUI) and inter-
action with the device through multitouch, but there are many differences in detail. Each platform has

Chapter 1 How does Xamarin.Form:s fit in? 3

different ways to navigate around applications and pages, different conventions for the presentation of
data, different ways to invoke and display menus, and even different approaches to touch.

Users become accustomed to interacting with applications on a particular platform and expect to
leverage that knowledge with future applications as well. Each platform acquires its own associated
culture, and these cultural conventions then influence developers.

Problem 2: Different development environments

Programmers today are accustomed to working in a sophisticated integrated development environ-
ment (IDE). Such IDEs exist for all three platforms, but of course they are different:

e For iOS development, Xcode on the Mac.
e For Android development, Android Studio on a variety of platforms.

e For Windows development, Visual Studio on the PC.

Problem 3: Different programming interfaces

All three of these platforms are based on different operating systems with different APIs. In many
cases, the three platforms all implement similar types of user-interface objects but with different
names.

For example, all three platforms have something that lets the user toggle a Boolean value:
e On the iPhone or iPad, it's a “view" called UISwitch.

e On Android devices, it's a "widget” called switch.

e In the Windows Runtime AP, it's a “control” called ToggleSwitch.

Of course, the differences go far beyond the names into the programming interfaces themselves.

Problem 4: Different programming languages

Developers have some flexibility in choosing a programming language for each of these three plat-
forms, but, in general, each platform is very closely associated with a particular programming lan-

guage:
e Objective-C for the iPhone and iPad
e Java for Android devices

e C# for Windows

Objective-C, Java, and C# are cousins of sorts because they are all object-oriented descendants of C,
but they have become rather distant cousins.

Chapter 1 How does Xamarin.Forms fit in? 4

For these reasons, a company that wants to target multiple platforms might very well employ three
different programmer teams, each team skilled and specialized in a particular language and API.

This language problem is particularly nasty, but it's the problem that is the most tempting to solve:
If you could use the same programming language for these three platforms, you could at least share
some code between the platforms. This shared code likely wouldn't be involved with the user interface
because each platform has different APIs, but there might well be application code that doesn’t touch
the user interface at all.

A single language for these three platforms would certainly be convenient. But what language
would that be?

The C# and .NET solution

A roomful of programmers would come up with a variety of answers to the question just posed, but a
good argument can be made in favor of C#. Unveiled by Microsoft in the year 2000, C# is a fairly new
programming language, at least when compared with Objective-C and Java. At first, C# seemed to be
a rather straightforward, strongly typed, imperative object-oriented language, certainly influenced by
C++ (and Java as well), but with a much cleaner syntax than C++ and none of the historical baggage.
In addition, the first version of C# had language-level support for properties and events, which turn
out to be member types that are particularly suited for programming graphical user interfaces.

But C# has continued to grow and get better over the years. The support of generics, lambda func-
tions, LINQ, and asynchronous operations has successfully transformed C# so that it is now properly
classified as a multiparadigm programming language. C# code can be traditionally imperative, or the
code can be flavored with declarative or functional programming paradigms.

Since its inception, C# has been closely associated with the Microsoft .NET Framework. At the lowest
level, .NET provides an infrastructure for the C# basic data types (int, double, string, and so forth).
But the extensive .NET Framework class library provides support for many common chores encoun-
tered in many different types of programming. These include:

e Math

e Debugging

e Reflection

e Collections

e Globalization
e Filel/O

e Networking

Chapter 1 How does Xamarin.Forms fit in? 5

e Security

e Threading

e Web services

e Data handling

e XML and JSON reading and writing

Here's another big reason for C# and .NET to be regarded as a compelling cross-platform solution:
It's not just hypothetical. It's a reality.

Soon after Microsoft's announcement of .NET way back in June 2000, the company Ximian
(founded by Miguel de Icaza and Nat Friedman) initiated an open-source project called Mono to cre-
ate an alternative implementation of the C# compiler and the .NET Framework that could run on Linux.

A decade later, in 2011, the founders of Ximian (which had been acquired by Novell) founded
Xamarin, which still contributes to the open-source version of Mono but which has also adapted Mono
to form the basis of cross-platform mobile solutions.

The year 2014 saw some developments in C# and .NET that bode well for its future. An open-source
version of the C# compiler, called the .NET Compiler Platform (formerly known by its code name
“Roslyn”) has been published. And the .NET Foundation was announced to serve as a steward for open-
source .NET technologies, in which Xamarin plays a major part.

In March 2016, Microsoft acquired Xamarin with the goal of bringing cross-platform mobile devel-
opment to the wider Microsoft developer community. Xamarin.Forms is now freely available to all
users of Visual Studio.

A single language for all platforms

For the first three years of its existence, Xamarin focused mainly on compiler technologies and three
basic sets of .NET libraries:

e Xamarin.Mac, which has evolved from the MonoMac project.
e Xamarin.iOS, which evolved from MonoTouch.
e Xamarin.Android, which evolved from Mono for Android or (more informally) MonoDroid.

Collectively, these libraries are known as the Xamarin platform. The libraries consist of .NET versions
of the native Mac, 10S, and Android APIs. Programmers using these libraries can write applications in
C# to target the native APIs of these three platforms, but also (as a bonus) with access to the .NET
Framework class library.

Chapter 1 How does Xamarin.Forms fit in? 6

Developers can use Visual Studio to build Xamarin applications, targeting iOS and Android as well
as all the various Windows platforms. However, iPhone and iPad development also requires a Mac con-
nected to the PC through a local network. This Mac must have Xcode installed as well as Xamarin Stu-
dio, an OS X-based integrated development environment that lets you develop iPhone, iPad, Mac OS
X, and Android applications on the Mac. Xamarin Studio does not allow you to target Windows plat-
forms.

Sharing code

The advantage of targeting multiple platforms with a single programming language comes from the
ability to share code among the applications.

Before code can be shared, an application must be structured for that purpose. Particularly since the
widespread use of graphical user interfaces, programmers have understood the importance of separat-
ing application code into functional layers. Perhaps the most useful division is between user-interface
code and the underlying data models and algorithms. The popular MVC (Model-View-Controller) ap-
plication architecture formalizes this code separation into a Model (the underlying data), the View (the
visual representation of the data), and the Controller (which handles input from the user).

MVC originated in the 1980s. More recently, the MVVM (Model-View-ViewModel) architecture has
effectively modernized MVC based on modern GUIs. MVVM separates code into the Model (the under-
lying data), the View (the user interface, including visuals and input), and the ViewModel (which man-
ages data passing between the Model and the View).

When a programmer develops an application that targets multiple mobile platforms, the MVVM
architecture helps guide the developer into separating code into the platform-specific View—the code
that requires interacting with the platform APIs—and the platform-independent Model and View-
Model.

Often this platform-independent code needs to access files or the network or use collections or
threading. Normally these jobs would be considered part of an operating system API, but they are also
jobs that can make use of the .NET Framework class library, and if .NET is available on each platform,
then this code is effectively platform independent.

The part of the application that is platform independent can then be isolated and—in the context of
Visual Studio or Xamarin Studio—put into a separate project. This can be either a Shared Asset Project
(SAP)—which simply consists of code and other asset files accessible from other projects—or a Portable
Class Library (PCL), which encloses all the common code in a dynamic-link library (DLL) that can then
be referenced from other projects.

Whichever method you use, this common code has access to the .NET Framework class library, so it
can perform file /O, handle globalization, access web services, decompose XML, and so forth.

Chapter 1 How does Xamarin.Form:s fit in? 7

This means that you can create a single Visual Studio solution that contains four C# projects to tar-
get the three major mobile platforms (all with access to a common PCL or SAP), or you can use
Xamarin Studio to target iPhone and Android devices.

The following diagram illustrates the interrelationships between the Visual Studio or Xamarin
Studio projects, the Xamarin libraries, and the platform APIs. The third column refers to any .NET-based
Windows Platform regardless of the device:

Portable Class Library (PCL) or Shared Asset Project (SAP)

}

Android App

{

Android API

ﬁ
{
Xamarin.Android

The boxes in the second row are the actual platform-specific applications. These apps make calls
into the common project and also (with the iPhone and Android) the Xamarin libraries that implement
the native platform APlIs.

But the diagram is not quite complete: it doesn’t show the SAP or PCL making calls to the .NET
Framework class library. Exactly what version of .NET this is depends on the common code: A PCL has
access to its own version of .NET, while an SAP uses the version of .NET incorporated into each particu-
lar platform.

In this diagram, the Xamarin.iOS and Xamarin.Android libraries seem to be substantial, and while
they are certainly important, they’re mostly just language bindings and do not significantly add any
overhead to API calls.

When the iOS app is built, the Xamarin C# compiler generates C# Intermediate Language (IL) as
usual, but it then makes use of the Apple compiler on the Mac to generate native iOS machine code
just like the Objective-C compiler. The calls from the app to the iOS APIs are the same as though the
application were written in Objective-C.

Chapter 1 How does Xamarin.Forms fit in?

For the Android app, the Xamarin C# compiler generates IL, which runs on a version of Mono on
the device alongside the Java engine, but the API calls from the app are pretty much the same as
though the app were written in Java.

For mobile applications that have very platform-specific needs, but also a potentially shareable
chunk of platform-independent code, Xamarin.iOS and Xamarin.Android provide excellent solutions.
You have access to the entire platform API, with all the power (and responsibility) that implies.

But for applications that might not need quite so much platform specificity, there is an alternative
that will simplify your life even more.

Introducing Xamarin.Forms

On May 28, 2014, Xamarin introduced Xamarin.Forms, which allows you to write user-interface code
that can be compiled for the iOS, Android, and Windows devices.

The Xamarin.Forms option

Xamarin.Forms supports five distinct application platforms:
e {OS for programs that run on the iPhone, iPad, and iPod Touch.
e Android for programs that run on Android phones and tablets.

e The Universal Windows Platform (UWP) for applications that runs under Windows 10 or
Windows 10 Mobile.

e The Windows Runtime API of Windows 8.1.
e The Windows Runtime APl of Windows Phone 8.1.

In this book, "Windows" or “Windows Phone” will generally be used as a generic term to describe all
three of the Microsoft platforms.

In the general case, a Xamarin.Forms application in Visual Studio consists of five separate projects
for each of these five platforms, with a sixth project containing common code. But the five platform
projects in a Xamarin.Forms application are typically quite small—often consisting of just stubs with a
little boilerplate startup code. The PCL or SAP contains the bulk of the application, including the user-
interface code. The following diagram shows just the iOS, Android, and Universal Windows Platform.
The other two Windows platforms are similar to UWP:

Chapter 1 How does Xamarin.Forms fit in? 9

{ \ \

Portable Class Library (PCL) or Shared Asset Project (SAP)

Xamarin.Forms.Core and Xamarin.Forms.Xaml

Xamarin.Android

Android API

Xamarin.Forms.
Platform.Android

The Xamarin.Forms.Core and Xamarin.Forms.Xaml libraries implement the Xamarin.Forms API.
Depending on the platform, Xamarin.Forms.Core then makes use of one of the Xamarin.Forms.Plat-
form libraries. These libraries are mostly a collection of classes called renderers that transform the
Xamarin.Forms user-interface objects into the platform-specific user interface.

The remainder of the diagram is the same as the one shown earlier.

For example, suppose you need the user-interface object discussed earlier that allows the user to
toggle a Boolean value. When programming for Xamarin.Forms, this is called a switch, and a class
named switch is implemented in the Xamarin.Forms.Core library. In the individual renderers for the
three platforms, this switch is mapped to a UTSwitch on the iPhone, a switch on Android, and a
ToggleSwitch on Windows Phone.

Xamarin.Forms.Core also contains a class named slider for displaying a horizontal bar that the
user manipulates to choose a numeric value. In the renderers in the platform-specific libraries, this is
mapped to a UTS1lider on the iPhone, a SeekBar on Android, and a S1ider on Windows Phone.

Chapter 1 How does Xamarin.Forms fit in? 10

This means that when you write a Xamarin.Forms program that has a Switch or a Slider, what's
actually displayed is the corresponding object implemented in each platform.

Here's a little Xamarin.Forms program containing a Label reading “Hello, Xamarin.Forms!”, a
Button saying “Click Me!”, a Switch, and a Slider. The program is running on (from left to right) the
iPhone, an Android phone, and a Windows 10 Mobile device:

30 Wl i 1:48

®
T8 P -) e
visuals [QO 0Vlsuals F oo

Hello, Xamarin.Forms!

Hello, Xamarin.Forms!

Hello, Xamarin.Forms!

Click Me!

CLICK ME!

The iPhone screenshot is of an iPhone 6 simulator running iOS 9.2. The Android phone is an LG
Nexus 5 running Android version 6. The Windows 10 Mobile device is a Nokia Lumia 935 running a
Windows 10 Technical Preview.

You'll encounter triple screenshots like this one throughout this book. They're always in the same
order—iPhone, Android, and Windows 10 Mobile—and they're always running the same program.

As you can see, the Button, Switch, and Slider all have different appearances on the three
phones because they are all rendered with the object specific to each platform.

What's even more interesting is the inclusion in this program of six Too1BarItem objects, three
identified as primary items with icons, and three as secondary items without icons. On the iPhone these
are rendered with UIBarButtonItem objects as the three icons and three buttons at the top of the
page. On the Android, the first three are rendered as items on an ActionBar, also at the top of the
page. On Windows 10 Mobile, they're realized as items on the CommandBar at the page’s bottom.

The Android ActionBar has a vertical ellipsis and the Universal Windows Platform CommandBar
has a horizontal ellipsis. Tapping this ellipsis causes the secondary items to be displayed in a manner
appropriate to these two platforms:

Chapter 1 How does Xamarin.Forms fit in?

b ch UTRET]

[]
a8 Pht - GV' : ‘
" isuals explore
visuals [QO

discover

Hello, Xai eyoive

Hello, Xamarin.Forms!

CLICK ME!

Hello, Xamarin.Forms!

Click Me!

explore
discover

evolve

» -]

search refresh

Xamarin.Forms was originally conceived as a platform-independent API for mobile devices. How-
ever, Xamarin.Forms is not limited to phones. Here's the same program running on an iPad Air 2

simulator:

228PM

Visuals

Hello, Xamarin.Forms!

Most of the programs in this book are fairly simple, and hence designed to look their best on a
phone screen in portrait mode. But they will also run in landscape mode and on tablets.

Here's the UWP project on a Microsoft Surface Pro 3 running Windows 10:

Chapter 1 How does Xamarin.Forms fit in? 12

Hello, Xamarin.Forms!

Notice the toolbar at the top of the screen. The ellipsis has already been pressed to reveal the three
secondary items.

The other two platforms supported by Xamarin.Forms are Windows 8.1 and Windows Phone 8.1.
Here's the Windows 8.1 program running in a window on the Windows 10 desktop, and the Windows
8.1 program running on the Windows 10 Mobile device:

| Visuals

Hello. X inF : Hello, Xamarin.Forms!
ello, Xamarin.Forms!

explore

discaver

evolve

Chapter 1 How does Xamarin.Form:s fit in? 13

The Windows 8.1 screen has been left-clicked with the mouse to reveal the toolbar items at the bot-
tom. On this screen, the secondary items are at the left, but the program neglectfully forgot to assign
them icons. On the Windows Phone 8.1 screen, the ellipsis at the bottom has been pressed.

The various implementations of the toolbar reveals that, in one sense, Xamarin.Forms is an API that
virtualizes not only the user-interface elements on each platform, but also the user-interface para-
digms.

XAML support

Xamarin.Forms also supports XAML (pronounced “zammel” to rhyme with “camel”), the XML-based
Extensible Application Markup Language developed at Microsoft as a general-purpose markup lan-
guage for instantiating and initializing objects. XAML isn’t limited to defining initial layouts of user
interfaces, but historically that's how it's been used the most, and that's what it's used for in Xamarin-
.Forms.

Here's the XAML file for the program whose screenshots you've just seen:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="PlatformVisuals.PlatformVisualsPage"
Title="Visuals">

<StackLayout Padding="10,0">
<Label Text="Hello, Xamarin.Forms!"
FontSize="Large"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center" />

<Button Text = "Click Me!"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center" />

<Switch VerticalOptions="CenterAndExpand"
HorizontalOptions="Center" />

<STider VerticalOptions="CenterAndExpand" />
</StackLayout>

<ContentPage.ToolbarItems>
<ToolbarItem Text="edit" Order="Primary">
<ToolbarItem.Icon>
<OnPTatform x:TypeArguments="FileImageSource"
i0S="edit.png"
Android="1ic_action_edit.png"
WinPhone="Images/edit.png" />
</ToolbarItem.Icon>
</ToolbarItem>

<ToolbarItem Text="search" Order="Primary">
<ToolbarItem.Icon>

Chapter 1 How does Xamarin.Forms fit in? 14

<OnPlatform x:TypeArguments="FileImageSource"
i0S="search.png"
Android="1c_action_search.png"
WinPhone="Images/feature.search.png" />
</ToolbarItem.Icon>
</ToolbarItem>

<ToolbarItem Text="refresh" Order="Primary">
<ToolbarItem.Icon>
<OnPlatform x:TypeArguments="FileImageSource"
i0S="reload.png"
Android="1ic_action_refresh.png"
WinPhone="Images/refresh.png" />
</ToolbarItem.Icon>
</ToolbarItem>

<ToolbarItem Text="explore" Order="Secondary" />
<ToolbarItem Text="discover" Order="Secondary" />
<ToolbarItem Text="evolve" Order="Secondary" />
</ContentPage.ToolbarItems>
</ContentPage>

Unless you have experience with XAML, some syntax details might be a little obscure. (Don't worry;
you'll learn all about them later on in this book.) But even so, you can see the Label, Button, Switch,
and slider tags. In a real program, the Button, Switch, and slider would probably have event
handlers attached that would be implemented in a C# code file. Here they do not. The verticalop-
tions and HorizontalOptions attributes assist in layout; they are discussed in the next chapter.

Platform specificity

In the section of that XAML file involving the ToolbarItem, you can also see a tag named OnPlat-
form. This is one of several techniques in Xamarin.Forms that allow introducing some platform speci-
ficity in otherwise platform-independent code or markup. It's used here because each of the separate
platforms has somewhat different image format and size requirements associated with these icons.

A similar facility exists in code with the Device class. It's possible to determine what platform the
code is running on and to choose values or objects based on the platform. For example, you can spec-
ify different font sizes for each platform or run different blocks of code based on the platform. You
might want to let the user manipulate a s1ider to select a value in one platform but pick a number
from a set of explicit values in another platform.

In some applications, deeper platform specificities might be desired. For example, suppose your ap-
plication requires the GPS coordinates of the user’s phone. This is not something that Xamarin.Forms
provides, so you'd need to write your own code specific to each platform to obtain this information.

The DependencyService class provides a way to do this in a structured manner. You define an in-
terface with the methods you need (for example, IGetCurrentLocation) and then implement that
interface with a class in each of the platform projects. You can then call the methods in that interface

Chapter 1 How does Xamarin.Form:s fit in? 15

from the Xamarin.Forms project almost as easily as if it were part of the API.

Each of the standard Xamarin.Forms visual objects—such as Label, Button, Switch, and
Slider—are supported by a renderer class in the various Xamarin.Forms.Platform libraries. Each
renderer class implements the platform-specific object that maps to the Xamarin.Forms object.

You can create your own custom visual objects with your own custom renderers. The custom visual
object goes in the common code project, and the custom renderers go in the individual platform pro-
jects. To make it a bit easier, generally you'll want to derive from an existing class. Within the individual
Xamarin.Forms platform libraries, all the corresponding renderers are public classes, and you can derive
from them as well.

Xamarin.Forms allows you to be as platform independent or as platform specific as you need to be.
Xamarin.Forms doesn't replace Xamarin.iOS and Xamarin.Android; rather, it integrates with them.

A cross-platform panacea?

For the most part, Xamarin.Forms defines its abstractions with a focus on areas of the mobile user in-
terface that are common to the iOS, Android, and Windows Runtime APIs. These Xamarin.Forms visual
objects are mapped to platform-specific objects, but Xamarin.Forms has tended to avoid implementing
anything that is unique to a particular platform.

For this reason, despite the enormous help that Xamarin.Forms can offer in creating platform-
independent applications, it is not a complete replacement for native APl programming. If your appli-
cation relies heavily on native API features such as particular types of controls or widgets, then you
might want to stick with Xamarin.iOS, Xamarin.Android, and the native Windows Phone API.

You'll probably also want to stick with the native APIs for applications that require vector graphics
or complex touch interaction. The current version of Xamarin.Forms is not quite ready for these
scenarios.

On the other hand, Xamarin.Forms is great for prototyping or making a quick proof-of-concept ap-
plication. And after you've done that, you might just find that you can continue using Xamarin.Forms
features to build the entire application. Xamarin.Forms is ideal for line-of-business applications.

Even if you begin building an application with Xamarin.Forms and then implement major parts of it
with platform APIs, you're doing so within a framework that allows you to share code and that offers
structured ways to make platform-specific visuals.

Your development environment

How you set up your hardware and software depends on what mobile platforms you're targeting and
what computing environments are most comfortable for you.

Chapter 1 How does Xamarin.Forms fit in? 16

The requirements for Xamarin.Forms are no different from the requirements for using Xamarin.iOS
or Xamarin.Android or for programming for Windows Runtime platforms.

This means that nothing in this section (and the remainder of this chapter) is specific to
Xamarin.Forms. There exists much documentation on the Xamarin website on setting up machines and
software for Xamarin.iOS and Xamarin.Android programming, and on the Microsoft website about
Windows Phone.

Machines and IDEs

If you want to target the iPhone, you're going to need a Mac. Apple requires that a Mac be used for
building iPhone and other iOS applications. You'll need to install Xcode on this machine and, of course,
the Xamarin platform that includes the necessary libraries and Xamarin Studio. You can then use
Xamarin Studio and Xamarin.Forms on the Mac for your iPhone development.

Once you have a Mac with Xcode and the Xamarin platform installed, you can also install the
Xamarin platform on a PC and program for the iPhone by using Visual Studio. The PC and Mac must
be connected via a network (such as Wi-Fi). Visual Studio communicates with the Mac through a
Secure Shell (SSH) interface, and uses the Mac to build the application and run the program on a de-
vice or simulator.

You can also do Android programming in Xamarin Studio on the Mac or in Visual Studio on the PC.

If you want to target the Windows platforms, you'll need Visual Studio 2015. You can target all the
platforms in a single IDE by running Visual Studio 2015 on a PC connected to the Mac via a network.
(That's how the sample programs in this book were created.) Another option is to run Visual Studio in a
virtual machine on the Mac.

Devices and emulators

You can test your programs on real phones connected to the machines via a USB cable, or you can test
your programs with onscreen emulators.

There are advantages and disadvantages to each approach. A real phone is essential for testing
complex touch interaction or when getting a feel for startup or response time. However, emulators al-
low you to see how your application adapts to a variety of sizes and form factors.

The iPhone and iPad emulators run on the Mac. However, because Mac desktop machines don’t
have touchscreens, you'll need to use the mouse or trackpad to simulate touch. The touch gestures on
the Mac touchpad do not translate to the emulator. You can also connect a real iPhone to the Mac,
but you'll need to provision it as a developer device.

Historically, Android emulators supplied by Google have tended to be slow and cranky, although
they are often extremely versatile in emulating a vast array of actual Android devices. Fortunately,
Visual Studio now has its own Android emulator that works rather better. It's also very easy to connect

Chapter 1 How does Xamarin.Form:s fit in? 17

a real Android phone to either a Mac or PC for testing. All you really need do is enable USB Debugging
on the device.

The Windows Phone emulators are capable of several different screen resolutions and also tend to
run fairly smoothly, albeit consuming lots of memory. If you run the Windows Phone emulator on a
touchscreen, you can use touch on the emulator screen. Connecting a real Windows Phone to the PC is
fairly easy but requires enabling the phone in the Settings section for developing. If you want to un-
lock more than one phone, you'll need a developer account.

Installation

Before writing applications for Xamarin.Forms, you'll need to install the Xamarin platform on your Mac,
PC, or both (if you're using that setup). See the articles on the Xamarin website at:

https://developer.xamarin.com/quides/cross-platform/getting_started/installation/

You're probably eager to create your first Xamarin.Forms application, but before you do, you'll want
to try creating normal Xamarin projects for the iPhone and Android and normal Windows, Windows
Phone, and Windows 10 Mobile projects.

This is important: if you're experiencing a problem using Xamarin.iOS, Xamarin.Android, or
Windows, that's not a problem with Xamarin.Forms, and you'll need to solve that problem before using
Xamarin.Forms.

Creating an iOS app

If you're interested in using Xamarin.Forms to target the iPhone, first become familiar with the appro-
priate Getting Started documents on the Xamarin website:

https://developer.xamarin.com/quides/ios/getting started/

This will give you guidance on using the Xamarin.iOS library to develop an iPhone application in C#. All
you really need to do is get to the point where you can build and deploy a simple iPhone application
on either a real iPhone or the iPhone simulator.

If you're using Visual Studio, and if everything is installed correctly, you should be able to select File
> New > Project from the menu, and in the New Project dialog, from the left, select Visual C# and
iOS and then Universal (which refers to targeting both iPhone and iPad), and from the template list in
the center, select Blank App (iOS).

If you're using Xamarin Studio, you should be able to select File > New > Solution from the menu,
and in the New Project dialog, from the left, select iOS and then App, and from the template list in
the center, select Single View App.

https://developer.xamarin.com/guides/cross-platform/getting_started/installation
https://developer.xamarin.com/guides/ios/getting_started/

Chapter 1 How does Xamarin.Forms fit in? 18

In either case, select a location and name for the solution. Build and deploy the skeleton application
created in the project. If you're having a problem with this, it's not a Xamarin.Forms issue. You might
want to check the Xamarin.iOS forums to see if anybody else has a similar problem:

http://forums.xamarin.com/categories/ios/

Creating an Android app

If you're interested in using Xamarin.Forms to target Android devices, first become familiar with the
Getting Started documents on the Xamarin website:

https://developer.xamarin.com/quides/android/getting started/

If you're using Visual Studio, and if everything is installed correctly, you should be able to select File
> New > Project from the menu, and in the New Project dialog, from the left, select Visual C# and
then Android, and from the template list in the center, select Blank App (Android).

If you're using Xamarin Studio, you should be able to select File > New > Solution from the menu,
and in the New Project dialog, from the left, select Android and App, and in the template list in the
center, select Android App.

Give it a location and a name; build and deploy. If you can't get this process to work, it's not a
Xamarin.Forms issue, and you might want to check the Xamarin.Android forums for a similar problem:

http://forums.xamarin.com/categories/android/

Creating a Windows app

If you're interested in using Xamarin.Forms to target Windows, Windows Phone, or Windows 10 Mo-
bile, you'll need to become familiar with at least the rudiments of using Visual Studio to develop
Windows applications:

http://dev.windows.com/

In Visual Studio 2015, if everything is installed correctly, you should be able select File > New >
Project from the menu, and in the New Project dialog, at the left, select Visual C# and Windows.
You'll see a hierarchy under the Windows heading something like this:

http://forums.xamarin.com/categories/ios
https://developer.xamarin.com/guides/android/getting_started/
http://forums.xamarin.com/categories/android/
http://dev.windows.com/

Chapter 1 How does Xamarin.Form:s fit in? 19

| Mew Project

P Recent

4 |nstalled

4 Templates
4 Visual C#
4 Windows
Universal
4 Windows 8
Universal
Windows
Windows Phone
Classic Desktop
Web
b Office/SharePoint

Android
Annls Wat-h

The first Universal heading under Windows is for creating a Universal Windows Platform applica-
tion that can target either Windows 10 or Windows 10 Mobile. Select that, and from the center area
select Blank App (Universal Windows) to create a UWP app.

The other two project types supported by Xamarin.Forms are under the Windows 8 header. The
Universal item actually creates two projects—a Windows desktop application and a Windows Phone
application with some shared code. For creating just a Windows application, choose Windows and
then from the center section Blank App (Windows 8.1). For a Windows Phone application, choose
Windows Phone and Blank App This creates a project that targets Windows Phone 8.1.

These are the three project types supported by Xamarin.Forms.

You should be able to build and deploy the skeleton application to the desktop or to a real phone
or an emulator. If not, search the Microsoft website or online forums such as Stack Overflow.

All ready?

If you can build Xamarin.iOS, Xamarin.Android, and Windows applications (or some subset of those),
then you're ready to create your first Xamarin.Forms application. It's time to say “Hello,
Xamarin.Forms"” to a new era in cross-platform mobile development.

Chapter 2
Anatomy of an app

The modern user interface is constructed from visual objects of various sorts. Depending on the oper-
ating system, these visual objects might go by different names—controls, elements, views, widgets—
but they are all devoted to the jobs of presentation or interaction or both.

In Xamarin.Forms, the objects that appear on the screen are collectively called visual elements. They
come in three main categories:

e page
e layout
e view

These are not abstract concepts! The Xamarin.Forms application programming interface (API) de-
fines classes named VisualElement, Page, Layout, and View. These classes and their descendants
form the backbone of the Xamarin.Forms user interface. visualElement is an exceptionally important
class in Xamarin.Forms. A visualElement object is anything that occupies space on the screen.

A Xamarin.Forms application consists of one or more pages. A page usually occupies all (or at least
a large area) of the screen. Some applications consist of only a single page, while others allow navi-
gating between multiple pages. In many of the early chapters in this book, you'll see just one type of
page, called a ContentPage.

On each page, the visual elements are organized in a parent-child hierarchy. The child of a con-
tentPage is generally a layout of some sort to organize the visuals. Some layouts have a single child,
but many layouts have multiple children that the layout arranges within itself. These children can be
other layouts or views. Different types of layouts arrange children in a stack, in a two-dimensional grid,
or in a more freeform manner. In this chapter, however, our pages will contain just a single child.

The term view in Xamarin.Forms denotes familiar types of presentation and interactive objects: text,
bitmaps, buttons, text-entry fields, sliders, switches, progress bars, date and time pickers, and others of
your own devising. These are often called controls or widgets in other programming environments.
This book refers to them as views or elements. In this chapter, you'll encounter the Label view for dis-
playing text.

Say hello

Using either Microsoft Visual Studio or Xamarin Studio, let’s create a new Xamarin.Forms application by
using a standard template. This process creates a solution that contains up to six projects: five platform

Chapter 2 Anatomy of an app 21

projects—for iOS, Android, the Universal Windows Platform (UWP), Windows 8.1, and Windows Phone
8.1—and a common project for the greater part of your application code.

In Visual Studio, select the menu option File > New > Project. At the left of the New Project dia-
log, select Visual C# and then Cross-Platform. In the center part of the dialog you'll see several avail-
able solution templates, including three for Xamarin.Forms:

e Blank App (Xamarin.Forms Portable)
e Blank App (Xamarin.Forms Shared)
e Class Library (Xamarin.Forms)
Now what? We definitely want to create a Blank App solution, but what kind?

Xamarin Studio presents a similar dilemma but in a different way. To create a new Xamarin.Forms
solution in Xamarin Studio, select File > New > Solution from the menu, and at the left of the New
Project dialog, under Multiplatform select App, pick Forms App, and press the Next button. Toward
the bottom of the next screen are a pair of radio buttons labeled Shared Code. These buttons allow
you to choose one of the following options:

e Use Portable Class Library
e Use Shared Library

The term "Portable” in this context refers to a Portable Class Library (PCL). All the common applica-
tion code becomes a dynamic-link library (DLL) that is referenced by all the individual platform pro-
jects.

The term “Shared” in this context means a Shared Asset Project (SAP) containing loose code files
(and perhaps other files) that are shared among the platform projects, essentially becoming part of
each platform project.

For now, pick the first one: Blank App (Xamarin.Forms Portable) in Visual Studio or Use Portable
Class Library in Xamarin Studio. Give the project a name—for example, Hello—and select a disk loca-
tion for it in that dialog (in Visual Studio) or in the dialog that appears after pressing the Next button
again in Xamarin Studio.

If you're running Visual Studio, six projects are created: one common project (the PCL project) and
five application projects. For a solution named Hello, these are:

e A Portable Class Library project named Hello that is referenced by all five application projects;
e An application project for Android, named Hello.Droid;
e An application project for iOS, named Hello.iOS;

e An application project for the Universal Windows Platform of Windows 10 and Windows Mobile
10, named Hello.UWP;

Chapter 2 Anatomy of an app 22

e An application project for Windows 8.1, named Hello.Windows; and
e An application project for Windows Phone 8.1, named Hello.WinPhone.

If you're running Xamarin Studio on the Mac, the Windows and Windows Phone projects are not
created.

When you create a new Xamarin.Forms solution, the Xamarin.Forms libraries (and various support
libraries) are automatically downloaded from the NuGet package manager. Visual Studio and Xamarin
Studio store these libraries in a directory named packages in the solution directory. However, the par-
ticular version of the Xamarin.Forms library that is downloaded is specified within the solution tem-
plate, and a newer version might be available.

In Visual Studio, in the Solution Explorer at the far right of the screen, right-click the solution name
and select Manage NuGet Packages for Solution. The dialog that appears contains selectable items
at the upper left that let you see what NuGet packages are installed in the solution and let you install
others. You can also select the Update item to update the Xamarin.Forms library.

In Xamarin.Studio, you can select the tool icon to the right of the solution name in the Solution list
and select Update NuGet Packages.

Before continuing, check to be sure that the project configurations are okay. In Visual Studio, select
the Build > Configuration Manager menu item. In the Configuration Manager dialog, you'll see the
PCL project and the five application projects. Make sure the Build box is checked for all the projects
and the Deploy box is checked for all the application projects (unless the box is grayed out). Take note
of the Platform column: If the Hello project is listed, it should be flagged as Any CPU. The
Hello.Droid project should also be flagged as Any CPU. (For those two project types, Any CPU is the
only option.) For the Hello.iOS project, choose either iPhone or iPhoneSimulator depending on how
you'll be testing the program.

For the Hello.UWP project, the project configuration must be x86 for deploying to the Windows
desktop or an on-screen emulator, and ARM for deploying to a phone.

For the Hello.WinPhone project, you can select x86 if you'll be using an on-screen emulator, ARM
if you'll be deploying to a real phone, or Any CPU for deploying to either. Regardless of your choice,
Visual Studio generates the same code.

If a project doesn't seem to be compiling or deploying in Visual Studio, recheck the settings in the
Configuration Manager dialog. Sometimes a different configuration becomes active and might not
include the PCL project.

In Xamarin Studio on the Mac, you can switch between deploying to the iPhone and iPhone simula-
tor through the Project > Active Configuration menu item.

In Visual Studio, you'll probably want to display the iOS and Android toolbars. These toolbars let
you choose among emulators and devices and allow you to manage the emulators. From the main
menu, make sure the View > Toolbars > iOS and View > Toolbars > Android items are checked.

Chapter 2 Anatomy of an app 23

Because the solution contains anywhere from two to six projects, you must designate which pro-
gram starts up when you elect to run or debug an application.

In the Solution Explorer of Visual Studio, right-click any of the five application projects and select
the Set As StartUp Project item from the menu. You can then select to deploy to either an emulator
or a real device. To build and run the program, select the menu item Debug > Start Debugging.

In the Solution list in Xamarin Studio, click the little tool icon that appears to the right of a selected
project and select Set As Startup Project from the menu. You can then pick Run > Start Debugging
from the main menu.

If all goes well, the skeleton application created by the template will run and you'll see a short
message:

Welcome to Xamarin Forms! Welcome to Xamarin Forms!

As you can see, these platforms have different color schemes. The iOS and Windows 10 Mobile
screens display dark text on a light background, while the Android device displays light text on a black
background. By default, the Windows 8.1 and Windows Phone 8.1 platforms are like Android in dis-
playing light text on a black background.

By default, all the platforms are enabled for orientation changes. Turn the phone sideways, and
you'll see the text adjust to the new center.

The app is not only run on the device or emulator but deployed. It appears with the other apps on
the phone or emulator and can be run from there. If you don't like the application icon or how the app
name displays, you can change that in the individual platform projects.

Chapter 2 Anatomy of an app 24

Inside the files

Clearly, the program created by the Xamarin.Forms template is very simple, so this is an excellent op-
portunity to examine the generated code files and figure out their interrelationships and how they
work.

Let's begin with the code that's responsible for drawing the text that you see on the screen. This is
the app class in the Hello project. In a project created by Visual Studio, the app class is defined in the
App.cs file, but in Xamarin Studio, the file is Hello.cs. If the project template hasn’t changed too much
since this chapter was written, it probably looks something like this:
using System;
using System.Collections.Generic;

using System.Linq;
using System.Text;

using Xamarin.Forms;

namespace Hello

{
public class App : Application
{
public AppQO
{
// The root page of your application
MainPage = new ContentPage
{
Content = new StacklLayout
{
VerticalOptions = LayoutOptions.Center,
Children = {
new Label {
HorizontalTextAlignment = TextAlignment.Center,
Text = "Welcome to Xamarin Forms!"
}
}
}
1
}
protected override void OnStart()
{
// Handle when your app starts
}
protected override void OnSleep()
{
// Handle when your app sleeps
}

protected override void OnResume()

Chapter 2 Anatomy of an app 25

// Handle when your app resumes

Notice that the namespace is the same as the project name. This App class is defined as public and
derives from the Xamarin.Forms Application class. The constructor really has just one responsibility:
to set the MainPage property of the Application class to an object of type page.

The code that the Xamarin.Forms template has generated here shows one very simple approach to
defining this constructor: The ContentPage class derives from page and is very common in single-
page Xamarin.Forms applications. (You'll see a lot of ContentPage throughout this book.) It occupies
most of the phone’s screen with the exception of the status bar at the top of the Android screen, the
buttons on the bottom of the Android screen, and the status bar at the top of the Windows Phone
screen. (As you'll discover, the iOS status bar is actually part of the ContentPage in single-page
applications.)

The ContentPage class defines a property named Content that you set to the content of the page.
Generally this content is a layout that in turn contains a bunch of views, and in this case it's set to a
StackLayout, which arranges its children in a stack.

This stackLayout has only one child, which is a Label. The Label class derives from view and is
used in Xamarin.Forms applications to display up to a paragraph of text. The verticalOptions and
HorizontalTextAlignment properties are discussed in more detail later in this chapter.

For your own single-page Xamarin.Forms applications, you'll generally be defining your own class
that derives from ContentPage. The constructor of the App class then sets an instance of the class that
you define to its MainPage property. You'll see how this works shortly.

In the Hello solution, you'll also see an AssemblyInfo.cs file for creating the PCL and a pack-
ages.config file that contains the NuGet packages required by the program. In the References section
under Hello in the solution list, you'll see at least the four libraries this PCL requires:

e .NET (displayed as .NET Portable Subset in Xamarin Studio)
¢ Xamarin.Forms.Core

¢ Xamarin.Forms.Xaml

¢ Xamarin.Forms.Platform

It is this PCL project that will receive the bulk of your attention as you're writing a Xamarin.Forms
application. In some circumstances the code in this project might require some tailoring for the various
platforms, and you'll see shortly how to do that. You can also include platform-specific code in the five
application projects.

Chapter 2 Anatomy of an app 26

The five application projects have their own assets in the form of icons and metadata, and you must
pay particular attention to these assets if you intend to bring the application to market. But during the
time that you're learning how to develop applications using Xamarin.Forms, these assets can generally
be ignored. You'll probably want to keep these application projects collapsed in the solution list be-
cause you don't need to bother much with their contents.

But you really should know what's in these application projects, so let's take a closer look.

In the References section of each application project, you'll see references to the common PCL pro-
ject (Hello in this case), as well as various .NET assemblies, the Xamarin.Forms assembles listed above,
and additional Xamarin.Forms assemblies applicable to each platform:

e Xamarin.Forms.Platform.Android

e Xamarin.Forms.Platform.iOS

e Xamarin.Forms.Platform.UAP (not explicitly displayed in the UWP project)
e Xamarin.Forms.Platform.WinRT

e Xamarin.Forms.Platform.WinRT.Tablet

e Xamarin.Forms.Platform.WinRT.Phone

Each of these libraries defines a static Forms. Init method in the xamarin.Forms namespace that
initializes the Xamarin.Forms system for that particular platform. The startup code in each platform
must make a call to this method.

You've also just seen that the PCL project derives a public class named app that derives from
Application. The startup code in each platform must also instantiate this app class.

If you're familiar with iOS, Android, or Windows Phone development, you might be curious to see
how the platform startup code handles these jobs.

The iOS project

An iOS project typically contains a class that derives from UIApplicationDelegate. However, the
Xamarin.Forms.Platform.iOS library defines an alternative base class named FormsApplicationDele-
gate. In the Hello.iOS project, you'll see this AppDelegate.cs file, here stripped of all extraneous
using directives and comments:

using Foundation;
using UIKit;

namespace Hello.i0S
{
[Register("AppDelegate™)]
public partial class AppDelegate :
global::Xamarin.Forms.Platform.i0S.FormsApplicationDelegate

Chapter 2 Anatomy of an app 27

{
public override bool FinishedLaunching(UIApplication app, NSDictionary options)
{
global::Xamarin.Forms.Forms.Init();
LoadApplication(new App(Q);
return base.FinishedLaunching(app, options);
}
}

The FinishedLaunching override begins by calling the Forms . Init method defined in the
Xamarin.Forms.Platform.iOS assembly. It then calls a LoadApplication method (defined by the
FormsApplicationDelegate), passing to it a new instance of the App class defined in the Hello
namespace in the shared PCL. The page object set to the MainPage property of this App object can
then be used to create an object of type UIViewController, which is responsible for rendering the
page'’s contents.

The Android project

In the Android application, the typical MainActivity class must be derived from a Xamarin.Forms
class named FormsApplicationActivity, defined in the Xamarin.Forms.Platform.Android assem-
bly, and the Forms.Init call requires some additional information:

using Android.App;

using Android.Content.PM;
using Android.0S;

namespace Hello.Droid

{
[Activity(Label = "Hello", Icon = "@drawable/icon", MainLauncher = true,
ConfigurationChanges = ConfigChanges.ScreenSize | ConfigChanges.Orientation)]
public class MainActivity : global::Xamarin.Forms.Platform.Android.FormsApplicationActivity
{
protected override void OnCreate(Bundle bundle)
{
base.OnCreate(bundle);
global::Xamarin.Forms.Forms.Init(this, bundle);
LoadAppTication(new App());
}
}
}

The new instance of the app class in the He110 namespace is then passed to a LoadApplication
method defined by FormsapplicationActivity. The attribute set on the Mainactivity class indi-
cates that the activity is not re-created when the phone changes orientation (from portrait to land-
scape or back) or the screen changes size.

Chapter 2 Anatomy of an app 28

The Universal Windows Platform project

In the UWP project (or either of the two Windows projects), look first in the App.xaml.cs file tucked un-
derneath the App.xaml file in the project file list. In the onLaunched method you will see the call to
Forms.Init using the event arguments:

Xamarin.Forms.Forms.Init(e);
Now look at the MainPage.xaml.cs file tucked underneath the MainPage.xaml file in the project file list.
This file defines the customary MainPage class, but it actually derives from a Xamarin.Forms class spec-

ified as the root element in the MainPage.xaml file. A newly instantiated aApp class is passed to the
LoadApplication method defined by this base class:

namespace Hello.UWP

{
public sealed partial class MainPage
{
public MainPage()
{
this.InitializeComponent();
LoadAppTication(new Hello.App());
}
}
}

Nothing special!
If you've created a Xamarin.Forms solution under Visual Studio and don’t want to target one or more
platforms, simply delete those projects.

If you later change your mind about those projects—or you originally created the solution in
Xamarin Studio and want to move it to Visual Studio to target one of the Windows platforms—you can
add new platform projects to the Xamarin.Forms solution. In the Add New Project dialog, you can
create a Unified API (not Classic API) Xamarin.iOS project by selecting the iOS project Universal type
and Blank App template. Create a Xamarin.Android project with the Android Blank App template,
or a Windows project by selecting Universal under the Windows heading (for a UWP project), or
Windows or Windows Phone under the Windows 8 heading, and then Blank App.

For these new projects, you can get the correct references and boilerplate code by consulting the
projects generated by the standard Xamarin.Forms template.

To summarize: there's really nothing all that special in a Xamarin.Forms app compared with normal
Xamarin or Windows Phone projects—except the Xamarin.Forms libraries.

Chapter 2 Anatomy of an app 29

PCL or SAP?

When you first created the Hello solution in Visual Studio, you had a choice of two application tem-
plates:

e Blank App (Xamarin.Forms Portable)
e Blank App (Xamarin.Forms Shared)
In Xamarin Studio, the choice is embodied in a pair of radio buttons:
e Use Portable Class Library
e Use Shared Library

The first option creates a Portable Class Library (PCL), whereas the second creates a Shared Asset Pro-
ject (SAP) consisting only of shared code files. The original Hello solution used the PCL template. Now
let's create a second solution named HelloSap with the SAP template.

As you'll see, everything looks pretty much the same, except that the HelloSap project itself con-
tains only one item: the App.cs file.

With both the PCL and SAP approaches, code is shared among the five applications, but in decid-
edly different ways: With the PCL approach, all the common code is bundled into a dynamic-link li-
brary that each application project references and binds to at run time. With the SAP approach, the
common code files are effectively included with each of the five application projects at build time. By
default, the SAP has only a single file named App.cs, but effectively it's as if this HelloSap project did
not exist and instead there were five different copies of this file in the five application projects.

Some subtle (and not-so-subtle) problems can manifest themselves with the shared library
approach:

The iOS and Android projects have access to pretty much the same version of .NET, but it is not the
same version of .NET that the Windows projects use. This means that any .NET classes accessed by the
shared code might be somewhat different depending on the platform. As you'll discover later in this
book, this is the case for some file I/O classes in the System.T0 namespace.

You can compensate for these differences by using C# preprocessor directives, particularly #1if and
#elif. In the projects generated by the Xamarin.Forms template, the various application projects de-
fine symbols that you can use with these directives.

What are these symbols?

In Visual Studio, right-click the project name in the Solution Explorer and select Properties. At the
left of the properties screen, select Build, and look for the Conditional compilation symbols field.

In Xamarin Studio, select an application project in the Solution list, invoke the drop-down tools

Chapter 2 Anatomy of an app 30

menu, and select Options. In the left of the Project Options dialog, select Build > Compiler, and look
for the Define Symbols field.

Here are the symbols that you can use:

iOS project: You'll see the symbol _10s__ (that's two underscores before and after)

e Android project: You won't see any symbols defined for indicating the platform, but the identi-
fier ANDROID is defined anyway, as well as multiple ANDROID nn_identifiers, where nn
is each Android API level supported.

e UWP project: The symbol WINDOWS UWP
e Windows project: The symbol WINDOWS APP
¢ Windows Phone project: The symbol WINDOWS PHONE APP

Your shared code file can include blocks like this:

#if _I0S__

// i0S specific code
#elif _ANDROID__

// Android specific code
#e1if WINDOWS_UWP

// Universal Windows Platform specific code
#e1if WINDOWS_APP

// Windows 8.1 specific code
#e1if WINDOWS__PHONE_APP

// Windows Phone 8.1 specific code
#endif

This allows your shared code files to run platform-specific code or access platform-specific classes, in-
cluding classes in the individual platform projects. You can also define your own conditional compila-
tion symbols if you'd like.

These preprocessor directives make no sense in a Portable Class Library project. The PCL is entirely
independent of the five platforms, and these identifiers in the platform projects are not present when
the PCL is compiled.

The concept of the PCL originally arose because every platform that uses .NET actually uses a some-
what different subset of .NET. If you want to create a library that can be used among multiple .NET
platforms, you need to use only the common parts of those .NET subsets.

The PCL is intended to help by containing code that is usable on multiple (but specific) .NET plat-
forms. Consequently, any particular PCL contains some embedded flags that indicate what platforms it
supports. A PCL used in a Xamarin.Forms application must support the following platforms:

e .NET Framework 4.5

e Windows 8

Chapter 2 Anatomy of an app 31

e Windows Phone 8.1

e Xamarin.Android

e Xamarin.iOS

e Xamarin.iOS (Classic)
This is known as PCL Profile 111.

If you need platform-specific behavior in the PCL, you can't use the C# preprocessor directives be-
cause those work only at build time. You need something that works at run time, such as the Xamarin-
.Forms Device class. You'll see an example shortly.

The Xamarin.Forms PCL can access other PCLs supporting the same platforms, but it cannot directly
access classes defined in the individual application projects. However, if that's something you need to
do—and you'll see an example in Chapter 9, "Platform-specific API calls"—Xamarin.Forms provides a
class named DependencyService that allows you to access platform-specific code from the PCL in a
methodical manner.

Most of the programs in this book use the PCL approach. This is the recommended approach for
Xamarin.Forms and is preferred by many programmers who have been working with Xamarin.Forms
for a while. However, the SAP approach is also supported and definitely has its advocates as well. Pro-
grams within these pages that demonstrate the SAP approach always contain the letters Sap at the end
of their names, such as the HelloSap program.

But why choose? You can have both in the same solution. If you've created a Xamarin.Forms solu-
tion with a Shared Asset Project, you can add a new PCL project to the solution by selecting the Class
Library (Xamarin.Forms Portable) template. The application projects can access both the SAP and
PCL, and the SAP can access the PCL as well.

Labels for text

Let's create a new Xamarin.Forms PCL solution, named Greetings, using the same process described
above for creating the Hello solution. This new solution will be structured more like a typical
Xamarin.Forms program, which means that it will define a new class that derives from ContentPage.
Most of the time in this book, every class and structure defined by a program will get its own file. This
means that a new file must be added to the Greetings project:

In Visual Studio, you can right-click the Greetings project in the Solution Explorer and select Add
> New Item from the menu. At the left of the Add New Item dialog, select Visual C# and Cross-
Platform, and in the center area, select Forms ContentPage. (Watch out: There's also a Forms
ContentView option. Don't pick that one!)

In Xamarin Studio, from the tool icon on the Greetings project, select Add > New File from the

Chapter 2 Anatomy of an app 32

menu. In the left of the New File dialog, select Forms, and in the central area, select Forms
ContentPage. (Watch out: There are also Forms ContentView and Forms ContentPage Xaml op-
tions. Don't pick those!)

In either case, give the new file a name of GreetingsPage.cs.

The GreetingsPage.cs file will be initialized with some skeleton code for a class named Greet-
ingsPage that derives from ContentPage. Because ContentPage is in the Xamarin.Forms
namespace, a using directive includes that namespace. The class is defined as public, but it need not
be because it won't be directly accessed from outside the Greetings project.

Let's delete all the code in the GreetingsPage constructor and most of the using directives, so
the file looks something like this:

using System;
using Xamarin.Forms;

namespace Greetings

{
public class GreetingsPage : ContentPage
{
public GreetingsPage()
{
}
}
}

In the constructor of the GreetingsPage class, instantiate a Label view, set its Text property, and
set that Label instance to the Content property that GreetingsPage inherits from ContentPage:

using System;
using Xamarin.Forms;

namespace Greetings

{
public class GreetingsPage : ContentPage
{
public GreetingsPage()
{
Label Tabel = new Label(Q);
label.Text = "Greetings, Xamarin.Forms!";
this.Content = Tlabel;
}
}
}

Now change the app class in App.cs to set the MainPage property to an instance of this Greet-
ingsPage class:

using System;
using Xamarin.Forms;

Chapter 2 Anatomy of an app 33

namespace Greetings

{
public class App : Application
{
public AppQ
{
MainPage = new GreetingsPage();
}
protected override void OnStart()
{
// Handle when your app starts
}
protected override void OnSleep()
{
// Handle when your app sleeps
}
protected override void OnResume()
{
// Handle when your app resumes
}
}
}

It's easy to forget this step, and you'll be puzzled that your program seems to completely ignore your
page class and still says "Welcome to Xamarin Forms!"

Itis in the GreetingsPage class (and others like it) where you'll be spending most of your time in
early Xamarin.Forms programming. For some single-page, Ul-intensive programs, this class might con-
tain the only application code that you'll need to write. Of course, you can add additional classes to the
project if you need them.

In many of the single-page sample programs in this book, the class that derives from ContentPage
will have a name that is the same as the application but with Page appended. That naming convention
should help you identify the code listings in this book from just the class or constructor name without
seeing the entire file. In most cases, the code snippets in the pages of this book won't include the us-
ing directives or the namespace definition.

Many Xamarin.Forms programmers prefer to use the C# 3.0 style of object creation and property
initialization in their page constructors. You can do this for the Label object. Following the Label
constructor, a pair of curly braces enclose one or more property settings separated by commas. Here's
an alternative (but functionally equivalent) GreetingsPage definition:

public class CreetingsPage : ContentPage

{
public GreetingsPage()

{
Label Tabel = new Label

Chapter 2 Anatomy of an app 34

{

Text = "Greetings, Xamarin.Forms!"
1
this.Content = label;

This style of property initialization allows the Labe1 instance to be set to the Content property di-
rectly, so that the Label doesn’t require a name, like so:

public class GreetingsPage : ContentPage

{
public GreetingsPage()
{
Content = new Label
{
Text = "Greetings, Xamarin.Forms!"
};
}
}

For more complex page layouts, this style of instantiation and initialization provides a better visual
analogue of the organization of layouts and views on the page. However, it's not always as simple as
this example might indicate if you need to call methods on these objects or set event handlers.

Whichever way you do it, if you can successfully compile and run the program on the iOS, Android,
and Windows 10 Mobile platforms on either an emulator or a device, here’s what you'll see:

all 7

reetings, Xamarin.Forms!

The most disappointing version of this Greetings program is definitely the iPhone: Beginning in iOS
7, a single-page application shares the screen with the status bar at the top. Anything the application

Chapter 2 Anatomy of an app 35

displays at the top of its page will occupy the same space as the status bar unless the application com-
pensates for it.

This problem disappears in multipage-navigation applications discussed later in this book, but until
that time, here are four ways (or five ways if you're using an SAP) to solve this problem right away.

Solution 1. Include padding on the page

The page class defines a property named padding that marks an area around the interior perimeter of
the page into which content cannot intrude. The Padding property is of type Thickness, a structure
that defines four properties named Left, Top, Right, Bottom. (You might want to memorize that or-
der because that's the order you'll define the properties in the Thickness constructor as well as in
XAML.) The Thickness structure also defines constructors for setting the same amount of padding on
all four sides or for setting the same amount on the left and right and on the top and bottom.

A little research in your favorite search engine will reveal that the iOS status bar has a height of 20.
(Twenty what? you might ask. Twenty pixels? Actually, no. For now, just think of them as 20 "units.” For
much of your Xamarin.Forms programming, you shouldn’t need to bother with numeric sizes, but
Chapter 5, “Dealing with sizes,” will provide some guidance when you need to get down to the pixel
level.)

You can accommodate the status bar like so:

namespace Greetings

{
public class GreetingsPage : ContentPage
{
public GreetingsPage ()
{
Content = new Label
{
Text = "Greetings, Xamarin.Forms!"
};
Padding = new Thickness(0, 20, 0, 0);
}
}
}

Now the greeting appears 20 units from the top of the page:

Chapter 2 Anatomy of an app 36

Corier 1416 PM

=
reetings, Xamarin Forms!

Setting the Padding property on the ContentPage solves the problem of the text overwriting the
iOS status bar, but it also sets the same padding on the Android and Windows Phone, where it's not
required. Is there a way to set this padding only on the iPhone?

Solution 2. Include padding just for iOS (SAP only)
One of the advantages of the Shared Asset Project (SAP) approach is that the classes in the project are

extensions of the application projects, so you can use conditional compilation directives.

Let's try this out. We'll need a new solution named GreetingsSap based on the SAP template, and a
new page class in the GreetingsSap project named GreetingsSapPage. To set the Padding in iOS
only, that class looks like this:

namespace GreetingsSap

{
public class GreetingsSapPage : ContentPage
{
public GreetingsSapPage ()
{
Content = new Label
{
Text = "Greetings, Xamarin.Forms!"
1
#if _I0S__

Padding = new Thickness(0, 20, 0, 0);

#endif

Chapter 2 Anatomy of an app 37

}

The #if directive references the conditional compilation symbol 105, so the Padding property is
set only for the iOS project. The results look like this:

Carior 7 17 PM
reetings, Xamarin.Forms!

However, these conditional compilation symbols affect only the compilation of the program, so they
have no effect in a PCL. Is there a way for a PCL project to include different padding for different plat-
forms?

Solution 3. Include padding just for iOS (PCL or SAP)

Yes! The static Device class includes several properties and methods that allow your code to deal with
device differences at run time in a very simple and straightforward manner:

e The Device.Os property returns a member of the TargetPlatform enumeration: 10s,
Android, WinPhone, or Other. The WinPhone member refers to all the Windows and Windows
Phone platforms.

e The Device.Idiom property returns a member of the TargetIdiom enumeration: Phone,
Tablet, Desktop, Or Unsupported.

You can use these two properties in i f and else statements, or a switch and case block, to execute
code specific to a particular platform.

Two methods named onPlatform provide even more elegant solutions:

Chapter 2 Anatomy of an app 38

e The static generic method OnPlatform<T> takes three arguments of type T—the first for iOS,
the second for Android, and the third for Windows Phone (encompassing all the Windows plat-
forms)—and returns the argument for the running platform.

e The static method onPlatform has four arguments of type Action (the .NET function delegate
that has no arguments and returns void), also in the order iOS, Android, and Windows Phone,
with a fourth for a default, and executes the argument for the running platform.

Rather than setting the same pPadding property on all three platforms, you can restrict the Padding
to just the iPhone by using the Device.oOnPlatform generic method:
Padding = Device.OnPlatform<Thickness>(new Thickness(0, 20, 0, 0),

new Thickness(0),
new Thickness(0));

The first Thickness argument is for iOS, the second is for Android, and the third is for Windows
Phone. Explicitly specifying the type of the Device.OnPlatform arguments within the angle brackets
isn't required if the compiler can figure it out from the arguments, so this works as well:

Padding = Device.OnPlatform(new Thickness(0, 20, 0, 0),

new Thickness(0),
new Thickness(0));

Or, you can have just one Thickness constructor and use Device.OnPlatform for the second
argument:
Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);
This is how the Padding will usually be set in the programs that follow when it's required. Of course,

you can substitute some other numbers for the zeroes if you want some additional padding on the
page. Sometimes a little padding on the sides makes for a more attractive display.

However, if you just need to set Padding for iOS, you can use the version of Device.OnPlatform
with Action arguments. These arguments are null by default, so you can just set the first for an ac-
tion to be performed on iOS:

public class CreetingsPage : ContentPage

{
public GreetingsPage()
{
Content = new Label
{
Text = "Greetings, Xamarin.Forms!"
1
Device.OnPlatform((Q) =>
{
Padding = new Thickness(0, 20, 0, 0);
s
}

Chapter 2 Anatomy of an app 39

Now the statement to set the padding is executed only when the program is running on iOS. Of
course, with just that one argument to Device.oOnPlatform, it could be a little obscure to people
who need to read your code, so you might want to include the parameter name preceding the argu-
ment to make it explicit that this statement executes just for iOS:

Device.OnPlatform(i0OS: () =>
{

Padding = new Thickness(0, 20, 0, 0);
s
Naming the argument like that is a feature introduced in C# 4.0.

The Device.oOnPlatform method is very handy and has the advantage of working in both PCL and
SAP projects. However, it can't access APIs within the individual platforms. For that you'll need
DependencyService, which is discussed in Chapter 9.

Solution 4. Center the label within the page

The problem with the text overlapping the iOS status bar occurs only because the default display of the
text is at the upper-left corner. Is it possible to center the text on the page?

Xamarin.Forms supports a number of facilities to ease layout without requiring the program to per-
form calculations involving sizes and coordinates. The view class defines two properties, named
HorizontalOptions and VerticalOptions, that specify how a view is to be positioned relative to
its parent (in this case the ContentPage). These two properties are of type LayoutOptions, an excep-
tionally important structure in Xamarin.Forms.

Generally you'll use the LayoutOptions structure by specifying one of the eight public static read-
only fields that it defines that return LayoutOptions values:

. Start

° Center

. End

° Fill

J StartAndExpand
. CenterAndExpand
o EndAndExpand

. FillAndExpand

However, you can also create a LayoutOptions value yourself. The LayoutOptions structure also
defines two instance properties that let you create a value with these same combinations:

e AnAlignment property of type LayoutAlignment, an enumeration with four members:

Chapter 2 Anatomy of an app 40

Start, Center, End, and Fil1l
e An Expands property of type bool.

A fuller explanation of all these options awaits you in Chapter 4, “Scrolling the stack,” but for now
you can set the HorizontalOptions and VerticalOptions properties of the Label to one of the
static fields defined by LayoutOptions values. For HorizontalOptions, the word start means left
and End means right; for verticalOptions, Start means top and End means bottom.

Mastering the use of the HorizontalOptions and VerticalOptions properties is a major part of
acquiring skill in the Xamarin.Forms layout system, but here's a simple example that positions the
Label in the center of the page:

public class GreetingsPage : ContentPage

{
public GreetingsPage()
{
Content = new Label
{
Text = "Greetings, Xamarin.Forms!",
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center
b
}
}

Here's how it looks:

Greetings, Xamarin.Forms! Greetings, Xamarin.Forms!

Chapter 2 Anatomy of an app 41

This is the version of the Greetings program that is included in the sample code for this chapter.
You can use various combinations of HorizontalOptions and VerticalOptions to position the
text in any of nine places relative to the page.

Solution 5. Center the text within the label

The Label is intended to display text up to a paragraph in length. It is often desirable to control how
the lines of text are horizontally aligned: left justified, right justified, or centered.

The Label view defines a HorizontalTextAlignment property for that purpose and also a ver-
ticalTextAlignment property for positioning text vertically. Both properties are set to a member of
the TextAlignment enumeration, which has members named start, Center, and End to be versatile
enough for text that runs from right to left or from top to bottom. For English and other European lan-
guages, Start means left or top and End means right or bottom.

For this final solution to the iOS status bar problem, set HorizontalTextAlignment and Verti-
calTextAlignment tO TextAlignment.Center:

public class CreetingsPage : ContentPage

{
public GreetingsPage()
{
Content = new Label
{
Text = "Greetings, Xamarin.Forms!",
HorizontalTextAlignment = TextAlignment.Center,
VerticalTextAlignment = TextAlignment.Center
};
}
}

Visually, the result with this single line of text is the same as setting HorizontalOptions and
VerticalOptions to Center, and you can also use various combinations of these properties to posi-
tion the text in one of nine different locations around the page.

However, these two techniques to center the text are actually quite different, as you'll see in the
next chapter.

Chapter 3
Deeper into text

Despite how sophisticated graphical user interfaces have become, text remains the backbone of most
applications. Yet text is potentially one of the most complex visual objects because it carries baggage
of hundreds of years of typography. The primary consideration is that text must be readable. This re-
quires that text not be too small, yet text mustn't be so large that it hogs a lot of space on the screen.

For these reasons, the subject of text is continued in several subsequent chapters, most notably
Chapter 5, “Dealing with sizes.” Very often, Xamarin.Forms programmers define font characteristics in
styles, which are the subject of Chapter 12.

Wrapping paragraphs

Displaying a paragraph of text is as easy as displaying a single line of text. Just make the text long
enough to wrap into multiple lines:

public class BaskervillesPage : ContentPage
{
public BaskervillesPage()
{
Content = new Label
{
VerticalOptions = LayoutOptions.Center,
Text =
"Mr. Sherlock Holmes, who was usually very late in " +
"the mornings, save upon those not infrequent " +
"occasions when he was up all night, was seated at " +

"the breakfast table. I stood upon the hearth-rug " +
"and picked up the stick which our visitor had left " +
"behind him the night before. It was a fine, thick " +
"piece of wood, bulbous-headed, of the sort which " +
"is known as a \u201CPenang lawyer.\u201D Just " +
"under the head was a broad silver band, nearly an " +
"inch across, \u201CTo James Mortimer, M.R.C.S., " +
"from his friends of the C.C.H.,\u201D was engraved " +
"upon it, with the date \u201C1884.\u201D It was " +

"

"just such a stick as the old-fashioned family " +
"practitioner used to carry\u20l4dignified, solid, " +
"and reassuring."

};

Padding = new Thickness(5, Device.OnPlatform(20, 5, 5), 5, 5);

Chapter 3 Deeper into text 43

Notice the use of embedded Unicode codes for opened and closed “smart quotes” (\u201C and
\u201D) and the em dash (\u2014). padding has been set for 5 units around the page to avoid the text
butting up against the edges of the screen, but the verticaloptions property has been used as well
to vertically center the entire paragraph on the page:

Mr. Sherlock Holmes, who was usually very late
in the mornings, save upon those not
infrequent occasions when he was up all night,

was seated at the breakfast table. | stood upon
the hearth-rug and picked up the stick which
our visitor had left behind him the night before.
It was a fine, thick piece of wood, bulbous-

headed, of the sort which is known as a
“Penang lawyer.” Just under the head was a
broad silver band, nearly an inch across, “To
James Mortimer, M.R.C.S., from his friends of
the C.C.H.," was engraved upon it, with the
date “1884." It was just such a stick as the old-
fashioned family practitioner used to carry—
dignified, salid, and reassuring.

Mr. Sherlock Holmes, who was usually very late in
the mornings, save upon those not infrequent
occasions when he was up all night, was seated at
the breakfast table. | stood upon the hearth-rug
and picked up the stick which our visitor had left
behind him the night before. It was a fine, thick
piece of wood, bulbous-headed, of the sort which

is known as a “Penang lawyer.” Just under the
head was a broad silver band, nearly an inch
across, "To James Mortimer, MR.CS., from his
friends of the C.CH.” was engraved upon it, with
the date "1884." It was just such a stick as the old-
fashioned family practitioner used to carry—
dignified, solid, and reassuring.

For this paragraph of text, setting HorizontalOptions to Start, Center, or End on iOS or
Windows Phone will shift the entire paragraph horizontally slightly to the left, center, or right. (Android
works a little differently for multiple lines of text.) The shifting is only slight because the width of the
paragraph is the width of the longest line of text. Since word wrapping is governed by the page width
(minus the padding), the paragraph likely occupies just slightly less width than the width available for it
on the page.

But setting the HorizontalTextAlignment property of the Label has a much more profound
effect: Setting this property affects the alignment of the individual lines. A setting of Textalign-
ment.Center will center all the lines of the paragraph, and TextAlignment.Right aligns them all at
the right. You can use HorizontalOptions in addition to HorizontalTextAlignment to shift the
entire paragraph slightly to the center or the right.

However, after you've set VerticalOptions to Start, Center, Or End, any setting of vertical-
TextAlignment has no effect.

Label defines a LineBreakMode property that you can set to a member of the LineBreakMode
enumeration if you don't want the text to wrap or to select truncation options.

There is no property to specify a first-line indent for the paragraph, but you can add one of your
own with space characters of various types, such as the em space (Unicode \u2003).

Chapter 3 Deeper into text 44

You can display multiple paragraphs with a single Label view by ending each paragraph with one
or more line feed characters (\n). However, a better approach is to use the string returned from the
Environment.NewLine static property. This property returns “\n” on iOS and Android devices and
“\r\n" on all Windows and Windows Phone devices. But rather than embedding line feed characters to
create paragraphs, it makes more sense to use a separate Label view for each paragraph, as will be
demonstrated in Chapter 4, “Scrolling the stack.”

The Label class has lots of formatting flexibility. As you'll see shortly, properties defined by Label
allow you to specify a font size or bold or italic text, and you can also specify different text formatting
within a single paragraph.

Label also allows specifying color, and a little experimentation with color will demonstrate the pro-
found difference between the HorizontalOptions and VerticalOptions properties and the Hori-
zontalTextAlignment and VerticalTextAlignment properties.

Text and background colors

As you've seen, the Label view displays text in a color appropriate for the device. You can override
that behavior by setting two properties, named TextColor and BackgroundColor. Label itself de-
fines TextColor, but it inherits BackgroundColor from VisualElement, which means that Page
and Layout also have a BackgroundColor property.

You set TextColor and BackgroundColor to a value of type Color, which is a structure that de-
fines 17 static fields for obtaining common colors. You can experiment with these properties with the
Greetings program from the previous chapter. Here are two of these colors used in conjunction with
HorizontalTextAlignment and VerticalTextAlignment to center the text:

public class CreetingsPage : ContentPage

{
public GreetingsPage()
{
Content = new Label
{
Text = "Greetings, Xamarin.Forms!",
HorizontalTextAlignment = TextAlignment.Center,
VerticalTextAlignment = TextAlignment.Center,
BackgroundColor = Color.Yellow,
TextColor = Color.Blue
};
}
}

The result might surprise you. As these screenshots illustrate, the Label actually occupies the entire
area of the page (including underneath the iOS status bar), and the HorizontalTextAlignment and
VerticalTextAlignment properties position the text within that area:

Chapter 3 Deeper into text 45

Greetings, Xamarin Forms!

' i |
Greetings, Xamarin Forms! Greetings, Xamarin.Forms!

In contrast, here’s some code that colors the text the same but instead centers the text using the
HorizontalOptions and VerticalOptions properties:

public class GreetingsPage : ContentPage

{
public GreetingsPage()
{
Content = new Label
{
Text = "Greetings, Xamarin.Forms!",
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center,
BackgroundColor = Color.Yellow,
TextColor = Color.Blue
b
}
}

Now the Label occupies only as much space as required for the text, and that's what's positioned in
the center of the page:

Chapter 3 Deeper into text 46

[Greetings, Xamarin Forms

Greetings, Xamarin.Forms!

Greetings, Xamarin.Forms!

The default value of HorizontalOptions and VerticalOptions is not LayoutOptions.Start,
as the default appearance of the text might suggest. The default value is instead LayoutOp-
tions.Fill. This is the setting that causes the Label to fill the page. The default Horizontal-
TextAlignment and VerticalTextAlignment value of TextAlignment.Start is what caused the
text to be positioned at the upper-left in the first version of the Greetings program in the previous
chapter.

You can combine various settings of HorizontalOptions, VerticalOptions, HorizontalText-
Alignment, and VerticalTextAlignment for different effects.

You might wonder: What are the default values of the TextColor and BackgroundColor proper-
ties, because the default values result in different colors for the different platforms?

The default value of TextColor and BackgroundColor is actually a special color value named
Color.Default, which does not represent a real color but instead is used to reference the text and
background colors appropriate for the particular platform.

Let's explore color in more detail.

The Color structure

Internally, the color structure stores colors in two different ways:

e Asred, green, and blue (RGB) values of type double that range from 0 to 1. Read-only proper-
ties named R, G, and B expose these values.

Chapter 3 Deeper into text 47

e As hue, saturation, and luminosity values of type double, which also range from 0 to 1. These
values are exposed with read-only properties named Hue, Saturation, and Luminosity.

The Color structure also supports an alpha channel for indicating degrees of opacity. A read-only
property named A exposes this value, which ranges from 0 for transparent to 1 for opaque.

All the properties that define a color are read-only. In other words, once a Color value is created, it
is immutable.

You can create a Color value in one of several ways. The three constructors are the easiest:

. new Color (double grayShade)

(] new Color (double r, double g, double b)

. new Color (double r, double g, double b, double a)

Arguments can range from 0 to 1. Color also defines several static creation methods, including:
(] Color.FromRgb (double r, double g, double Db)

. Color.FromRgb (int r, int g, int Db)

. Color.FromRgba (double r, double g, double b, double a)

° Color.FromRgba (int r, int g, int b, int a)

. Color.FromHsla (double h, double s, double 1, double a)

The two static methods with integer arguments assume that the values range from 0 to 255, which
is the customary representation of RGB colors. Internally, the constructor simply divides the integer val-
ues by 255.0 to convert to double.

Watch out! You might think that you're creating a red color with this call:

Color.FromRgb (1, 0, 0)

However, the C# compiler will assume that these arguments are integers. The integer FromkRgb method
will be invoked, and the first argument will be divided by 255.0, with a result that is nearly zero. If you
want to invoke the method that has double arguments, be explicit:

Color.FromRgb (1.0, 0, 0)

Color also defines static creation methods for a packed uint format and a hexadecimal format in a
string, but these are used less frequently.

The Ccolor structure also defines 17 public static read-only fields of type Color. In the table below,
the integer RGB values that the Color structure uses internally to define these fields are shown to-
gether with the corresponding Hue, Saturation, and Luminosity values, somewhat rounded for
purposes of clarity:

Chapter 3 Deeper into text 48
Color Fields Color Red Green Blue Hue Saturation Luminosity
White 255 255 255 0 0 1.00
Silver 192 192 192 0 0 0.75
Gray [] 128 128 128 0 0 0.50
Black [] 0 0 0 0 0 0
Red [] 255 0 0 1.00 1 0.50
Maroon [] 128 0 0 1.00 1 0.25
Yellow 255 255 0 0.17 1 0.50
Olive [] 128 128 0 0.17 1 0.25
Lime 0 255 0 0.33 1 0.50
Green [] 0 128 0 0.33 1 0.25
Aqua 0 255 255 0.50 1 0.50
Teal [] 0 128 128 0.50 1 0.25
Blue [] 0 0 255 0.67 1 0.50
Navy [] 0 0 128 0.67 1 0.25
Pink 255 102 255 0.83 1 0.70
Fuchsia [] 255 0 255 0.83 1 0.50
Purple [] 128 0 128 0.83 1 0.25

With the exception of Pink, you might recognize these as the color names supported in HTML. An
18th public static read-only field is named Transparent, which has R, G, B, and a properties all set to

Zero.

When people are given an opportunity to interactively formulate a color, the HSL color model is of-
ten more intuitive than RGB. The Hue cycles through the colors of the visible spectrum (and the rain-

bow) beginning with red at 0, green at 0.33, blue at 0.67, and back to red at 1.

The saturation indicates the degree of the hue in the color, ranging from 0, which is no hue at all

and results in a gray shade, to 1 for full saturation.

The Luminosity is a measure of lightness, ranging from 0 for black to 1 for white.

Color-selection programs in Chapter 15, “The interactive interface,” let you explore the RGB and HSL

models more interactively.

The color structure includes several interesting instance methods that allow creating new colors

that are modifications of existing colors:
. AddLuminosity (double delta)
. MultiplyAlpha (double alpha)
o WithHue (double newHue)
. WithLuminosity (double newLuminosity)

. WithSaturation (double newSaturation)

Finally, color defines two special static read-only properties of type Color:

. Color.Default

. Color.Accent

Chapter 3 Deeper into text 49

The Color.Default property is used extensively within Xamarin.Forms to define the default color of
views. The VisualElement class initializes its BackgroundColor property to Color.Default, and
the Label class initializes its TextColor property as Color.Default.

However, Color.Default is a Color value with its R, G, B, and A properties all set to -1, which
means that it's a special “mock” value that means nothing in itself but indicates that the actual value is
platform specific.

For Label and ContentPage (and most classes that derive from visualElement), the
BackgroundColor setting of Color.Default means transparent. The background color you see on
the screen is the background color of the page. The BackgroundColor property of the page has a de-
fault setting of Color.Default, but that value means something different on the various platforms.
The meaning of Color.Default for the TextColor property of Label is also device dependent.

Here are the default color schemes implied by the BackgroundColor of the page and the
TextColor of the Label:

Platform Color Scheme

iOS Dark text on a light background
Android Light text on a dark background
Uwp Dark text on a light background
Windows 8.1 Light text on a dark background
Windows Phone 8.1 Light text on a dark background

On Android, Windows, and Windows Phone devices, you can change this color scheme for your appli-
cation. See the next section.

You have a couple of possible strategies for working with color: You can choose to do your
Xamarin.Forms programming in a very platform-independent manner and avoid making any assump-
tions about the default color scheme of any phone. Or, you can use your knowledge about the color
schemes of the various platforms and use Device.OnPlatform to specify platform-specific colors.

But don't try to just ignore all the platform defaults and explicitly set all the colors in your applica-
tion to your own color scheme. This probably won't work as well as you hope because many views use
other colors that relate to the color theme of the operating system but that are not exposed through
Xamarin.Forms properties.

One straightforward option is to use the Color.Accent property for an alternative text color. On
the iPhone and Android platforms, this is a color that is visible against the default background but is
not the default text color. On the Windows platforms, it's a color selected by the user as part of the
color theme.

You can make text semitransparent by setting TextColor to a Color value with an A property less
than 1. However, if you want a semitransparent version of the default text color, use the opacity
property of the Label instead. This property is defined by the VvisualElement class and has a default
value of 1. Set it to values less than 1 for various degrees of transparency.

Chapter 3 Deeper into text 50

Changing the application color scheme

When targeting your application for Android, Windows, and Windows Phone, it is possible to change
the color scheme for the application. In this case, the settings of Color.Default for the Back-
groundColor of the ContentPage and the TextColor property of the Label will have different
meanings.

There are several ways to set color schemes in Android, but the simplest requires only a single at-
tribute setting in the AndroidManifest.xml file in the Properties folder of the Android project. That file
normally looks like this:
<manifest xmlns:android="http://schemas.android.com/apk/res/android">

<uses-sdk android:minSdkVersion="15" />

<application>

</application>
</manifest>

Add the following attribute to the application tag:

<manifest xmlns:android="http://schemas.android.com/apk/res/android">
<uses-sdk android:minSdkVersion="15" />
<application android:theme="@style/android:Theme.Holo.Light">
</application>
</manifest>

Now your Android application will display dark text on a light background.

For the three Windows and Windows Phone projects, you'll need to change the App.xaml file lo-
cated in the particular project.

In the UWP project, the default App.xaml file looks like this:

<AppTlication
x:Class="Baskervilles.UWP.App"
xmIns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xam1"
xmlns:local="using:Baskervilles.UWP"
RequestedTheme="Light">

</Application>

That RequestedTheme attribute is what gives the UWP application a color scheme of dark text on a
light background. Change it to Dark for light text on a dark background. Remove the Requested-
Theme attribute entirely to allow the user's setting to determine the color scheme.

The App.xaml file for the Windows Phone 8.1 and Windows 8.1 projects is similar, but the Request-
edTheme attribute is not included by default. Here's the App.xaml file in the WinPhone project:

<Application
x:Class="Baskervilles.WinPhone.App"

Chapter 3 Deeper into text 51

xmlns="http://schemas.microsoft.com/winfx/2006/xam1/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xam1"
xmlns:local="using:Baskervilles.WinPhone">

</Application>

By default, the color scheme is determined by the user's setting. You can include a RequestedTheme
attribute and set it to Light or Dark to override the user's preference and take control of the color
scheme.

By setting RequestedTheme on your Windows Phone and Windows projects, your application
should have complete knowledge of the underlying color schemes on all the platforms.

Font sizes and attributes

By default, the Label uses a system font defined by each platform, but Label also defines several
properties that you can use to change this font. Label is one of only two classes with these font-re-
lated properties; Button is the other.

The properties that let you change this font are:
e FontFamily of type string
e FontSize of type double

e FontAttributes of type FontAttributes, an enumeration with three members: None, Bo1ld,
and Italic.

There is also a Font property and corresponding Font structure, but this is deprecated and should not
be used.

The hardest of these to use is FontFamily. In theory you can set it to a font family name such as
“Times Roman,” but it will work only if that particular font family is supported on the particular plat-
form. For this reason, you'll probably use FontFamily in connection with Device.OnPlatform, and
you'll need to know each platform’s supported font family names.

The FontSize property is a little awkward as well. You need a number that roughly indicates the
height of the font, but what numbers should you use? This is a thorny issue, and for that reason, it's
relegated to Chapter 5, "Dealing with sizes,” when the tools to pick a good font size will become avail-
able.

Until then, however, the Device class helps out with a static method called GetNamedSize. This
method requires a member of the NamedSize enumeration:

. Default

° Micro

Chapter 3 Deeper into text 52

. Small

. Medium

L] Large

GetNamedSize also requires the type of the class that you're sizing with this font size, and that ar-
gument will be either typeof (Label) or typeof (Button).You can also use an instance of Label or
Button itself rather than the Type, but this option is often less convenient.

As you'll see later in this chapter, the Namedsize .Medium member does not necessarily return the
same size as NamedSize.Default.

FontAttributes is the least complicated of the three font-related properties to use. You can spec-

ify Bold or Italic or both, as this little snippet of code (adapted from the Greetings program from
the previous chapter) demonstrates:

class GreetingsPage : ContentPage

{

public GreetingsPage()

{

Content = new Label

{

Text = "Greetings, Xamarin.Forms!",

HorizontalOptions = LayoutOptions.Center,

VerticalOptions = LayoutOptions.Center,

FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
FontAttributes = FontAttributes.Bold | FontAttributes.Italic

Here it is on the three platforms:

Chapter 3 Deeper into text 53

Greetings, Xamarin.Forms! GFGEflngS,

Greetings, Xamarin.Forms!

Xamarin.Forms!

The Windows 10 Mobile screen is not quite wide enough to display the text in a single line.

Formatted text

As you've seen, Label has a Text property that you can set to a string. But Labe1 also has an alterna-
tive FormattedText property that constructs a paragraph with nonuniform formatting.

The FormattedText property is of type FormattedString, which has a Spans property of type
IList, a collection of span objects. Each Span object is a uniformly formatted chunk of text
that is governed by six properties:

. Text

[FontFamily

[FontSize

o FontAttributes
. ForegroundColor
. BackgroundColor

Here's one way to instantiate a FormattedString object and then add span instances to its Spans
collection property:

public class VariableFormattedTextPage : ContentPage

{

Chapter 3 Deeper into text 54

public VariableFormattedTextPage()

{
FormattedString formattedString = new FormattedString(Q);
formattedString.Spans.Add(new Span
{
Text = "I "
b
formattedString.Spans.Add(new Span
{
Text = "love",
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
FontAttributes = FontAttributes.Bold
s
formattedString.Spans.Add(new Span
{
Text = " Xamarin.Forms!"
b
Content = new Label
{
FormattedText = formattedString,
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center,
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label))
b
}

As each span is created, it is directly passed to the Add method of the spans collection. Notice that
the Label is given a FontSize of NamedSize.Large, and the Span with the Bold setting is also ex-
plicitly given that same size. When a Span is given a FontAttributes setting, it does not inherit the
FontSize setting of the Label.

Alternatively, it's possible to initialize the contents of the Spans collection by following it with a pair
of curly braces. Within these curly braces, the span objects are instantiated. Because no method calls
are required, the entire FormattedString initialization can occur within the Label initialization:

public class VariableFormattedTextPage : ContentPage

{
public VariableFormattedTextPage()
{
Content = new Label
{
FormattedText = new FormattedString
{
Spans =
{
new Span
{

Text = "I "

Chapter 3 Deeper into text 55

1,
new Span
{
Text = "Tove",
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
FontAttributes = FontAttributes.Bold
1,
new Span
{
Text = " Xamarin.Forms!"
}

3,

HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center,
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label))

This is the version of the program that you'll see in the collection of sample code for this chapter. Re-
gardless of which approach you use, here’s what it looks like:

» . .
ENTHEE | love Xamarin.Forms!

I love Xamarin.Forms!

You can also use the FormattedText property to embed italic or bold words within an entire para-
graph, as the VariableFormattedParagraph program demonstrates:

public class VariableFormattedParagraphPage : ContentPage

{
public VariableFormattedParagraphPage()

{

Chapter 3 Deeper into text

Content = new Label

{
FormattedText = new FormattedString
{
Spans =
{
new Span
{
Text = "\u2003There was nothing so "
1,
new Span
{
Text = "very",
FontAttributes = FontAttributes.Italic
1,
new Span
{
Text = " remarkable in that; nor did Alice " +
"think it so "
1,
new Span
{
Text = "very",
FontAttributes = FontAttributes.Italic
1,
new Span
{
Text = " much out of the way to hear the " +
"Rabbit say to itself \u20180h " +
"dear! Oh dear! I shall be too late!" +
"\u2019 (when she thought it over " +
"afterwards, it occurred to her that " +
"she ought to have wondered at this, " +
"but at the time it all seemed quite " +
"natural); but, when the Rabbit actually "
1},
new Span
{
Text = "took a watch out of its waistcoat-pocket",
FontAttributes = FontAttributes.Italic
1,
new Span
{
Text = ", and looked at it, and then hurried on, " +
"Alice started to her feet, for it flashed " +
"across her mind that she had never before " +
"seen a rabbit with either a waistcoat-" +
"pocket, or a watch to take out of it, " +
"and, burning with curiosity, she ran " +
"across the field after it, and was just " +
"in time to see it pop down a large " +
"rabbit-hold under the hedge."
}

Chapter 3 Deeper into text 57

1,
HorizontalOptions = LayoutOptions.Center,

VerticalOptions = LayoutOptions.Center

1

The paragraph begins with an em space (Unicode \u2003) and contains so-called smart quotes
(\u201C and \u201D), and several words are italicized:

3% a2

There was nothing so very remarkable in that;

or did Alice think it so very much out of the way|
to heer the Rabbit say to itself “Oh dearl Oh
kiear! | shall be too latel” (when she thought it
over afterwards, it occurred to her that she
ought to have wondered at this, but at the time it|
fall seemed quite natural); but, when the Rabbit
actually took a watch out of its waistcoat-pocket,

d looked at it, and then hurried on, Alice

started to her feet, for it flashed across her mind
hat she had never befre seen a rabbit with
gither a waistcoat-pocket, or a watch to take out
b it, and, burning with curiosity, she ran across
he fiald after it, and was just in time to see it

bop down a large rabbit-hald under the hedge.

There was nothing sa very remarkable in that;

or did Alice think it so very much out of the way
o hear the Rabbit say to itself "Oh dear! Oh dear! |
shall be too late!” (when she thought it over
afterwards, it occurred to her that she ought to

ave wondered at this, but at the time it all seemed|
quite natural); but, when the Rabbit actually took a

atch out of its waistcoat-pocket, and locked at it,
and then hurried on, Alice started to her feet, for it
lashed across her mind that she had never before

seen a rabbit with either a waistcoat-pocket, or a

atch to take out of it, and, burning with curiosity,
he ran across the field after it, and was just in time
o see it pop down a large rabbit-hold under the

edge.

You can persuade a single Label to display multiple lines or paragraphs with the insertion of end-
of-line characters. This is demonstrated in the NamedFontSizes program. Multiple span objects are
added to a FormattedString objectin a foreach loop. Each Span object uses a different
NamedFont value and also displays the actual size returned from Device.GetNamedSize:

public class NamedFontSizesPage : ContentPage
{
public NamedFontSizesPage()
{
FormattedString formattedString = new FormattedString(Q);
NamedSize[] namedSizes =
{
NamedSize.Default, NamedSize.Micro, NamedSize.Small,
NamedSize.Medium, NamedSize.lLarge

1

foreach (NamedSize namedSize in namedSizes)
{
double fontSize = Device.GetNamedSize(namedSize, typeof(Label));

Chapter 3 Deeper into text 58

formattedString.Spans.Add(new Span

{
Text = String.Format("Named Size = {0} ({1:F2})",
namedSize, fontSize),
FontSize = fontSize
b;
if (namedSize != namedSizes.Last())
{
formattedString.Spans.Add(new Span
{
Text = Environment.NewLine + Environment.NewLine
b;
}
}
Content = new Label
{
FormattedText = formattedString,
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center
b

Notice that a separate span contains the two platform-specific end-of-line strings to space the individ-
ual lines. This ensures that the line spacing is based on the default font size rather than the font size
just displayed:

* % @02
1718 AM

Named Size = Default (15.00)

Named Size = Micro (15.67)

Named Size = Default (17.00)
Namad Siza = Micro (12,00} Named Size = Small (18.67)

Named Size = Small (14.00) Named Size = Medium (22.67)
Named Size = Medium (17.00)

Named Size = Large (22.00) SRS IEs ; Named Size = Large
(32.00)

Chapter 3 Deeper into text 59

These are not pixel sizes! As with the height of the iOS status bar, it's best to refer to these sizes only
vaguely as some kind of “units.” Some additional clarity is coming in Chapter 5.

The Default size is generally chosen by the operating system, but the other sizes were chosen by
the Xamarin.Forms developers. On iOS, Default is the same as Medium, but on Android Default is
the same as sma11, and on Windows 10 Mobile, Default is smaller than Micro.

The sizes on the iPad and Windows 10 are the same as the iPhone and Windows 10 Mobile, respec-
tively. However, the sizes on the Windows 8.1 and Windows Phone 8.1 platforms show more of
discrepancy:

NamedFontSizes. Windows s -] X

Named Size = Small (18.67) Named Siz

Named Size = Medium (22.67)
Named Size = Large (32.00)

Named Size = Large
(32.00)

Of course, the use of multiple Span objects in a single Label is not a good way to render multiple
paragraphs of text. Moreover, text often has so many paragraphs that it must be scrolled. This is the
job for the next chapter and its exploration of StackLayout and Scrollview.

Chapter 4
Scrolling the stack

If you're like most programmers, as soon as you saw that list of static Color properties in the previous
chapter, you wanted to write a program to display them all, perhaps using the Text property of Label
to identify the color, and the TextColor property to show the actual color.

Although you could do this with a single Label using a FormattedString object, it's much easier
with multiple Label objects. Because multiple Label objects are involved, this job also requires some
way to display all the Label objects on the screen.

The contentPage class defines a Content property of type view that you can set to an object—
but only one object. Displaying multiple views requires setting Content to an instance of a class that
can have multiple children of type view. Such a class is Layout<T>, which defines a Children prop-
erty of type IList<T>.

The Layout<T> class is abstract, but four classes derive from Layout<vView>, a class that can have
multiple children of type view. In alphabetical order, these four classes are:

[Absolutelayout
° Grid
o Relativelayout

[StackLayout

Each of them arranges its children in a characteristic manner. This chapter focuses on StackLayout.

Stacks of views

The stackLayout class arranges its children in a stack. It defines only two properties on its own:

e Orientation of type StackOrientation, an enumeration with two members: vertical (the
default) and Horizontal.

e Spacing of type double, initialized to 6.0.

StackLayout seems ideal for the job of listing colors. You can use the Add method defined by
IList<T> to add children to the children collection of a StackLayout instance. Here's some code
that creates multiple Label objects from two arrays and then adds each Label to the Children col-
lection of a stackLayout:

Color[] colors =

Chapter 4 Scrolling the stack

{
Color.White, Color.Silver, Color.Gray, Color.Black, Color.Red,
Color.Maroon, Color.Yellow, Color.0Olive, Color.Lime, Color.Green,
Color.Aqua, Color.Teal, Color.Blue, Color.Navy, Color.Pink,
Color.Fuchsia, Color.Purple

};

string[] colorNames =

{
"White", "Silver", "Gray", "Black", "Red",
"Maroon", "Yellow", "Olive", "Lime", "Green",
"Aqua", "Teal", "Blue", "Navy", "Pink",
"Fuchsia", "Purple"

1

StacklLayout stackLayout = new StacklLayout();

for (int i = 0; i < colors.Length; i++)

{
Label 1abel = new Label
{
Text = colorNames[i],
TextColor = colors[i],
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label))
b
stackLayout.Children.Add(label);
}

The stackLayout object can then be set to the Content property of the page.

61

But the technique of using parallel arrays is rather perilous. What if they're out of sync or have a dif-

ferent number of elements? A better approach is to keep the color and name together, perhaps in a

tiny structure with Color and Name fields, or as an array of Tuple<Color, string> values, or as an

anonymous type, as demonstrated in the ColorLoop program:

class ColorLoopPage : ContentPage

{
public ColorLoopPage()
{
var colors = new[]
{
new { value = Color.White, name = "White" },
new { value = Color.Silver, name = "Silver" },
new { value = Color.Gray, name = "Gray" },
new { value = Color.Black, name = "Black" },
new { value = Color.Red, name = "Red" },
new { value = Color.Maroon, name = "Maroon" 1},
new { value = Color.Yellow, name = "Yellow" },
new { value = Color.0live, name = "Olive" },
new { value = Color.Lime, name = "Lime" },
new { value = Color.Green, name = "Green" },
new { value = Color.Aqua, name = "Aqua" },
new { value = Color.Teal, name = "Teal" },

Chapter 4 Scrolling the stack 62

new { value = Color.Blue, name = "Blue" },

new { value = Color.Navy, name = "Navy" },

new { value = Color.Pink, name = "Pink" },

new { value = Color.Fuchsia, name = "Fuchsia" },
new { value = Color.Purple, name = "Purple" }

};
StackLayout stackLayout = new StacklLayout();

foreach (var color in colors)

{
stackLayout.Children.Add(
new Label
{
Text = color.name,
TextColor = color.value,
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label))
s
}

Padding = new Thickness(5, Device.OnPlatform(20, 5, 5), 5, 5);
Content = stackLayout;

Or you can initialize the Children property of StackLayout with an explicit collection of views
(similar to the way the Spans collection of a Formattedstring object was initialized in the previous
chapter). The ColorList program sets the Content property of the page to a SstackLayout object,
which then has its Children property initialized with 17 Label views:

class ColorListPage : ContentPage
{
public ColorListPage()
{
Padding = new Thickness (5, Device.OnPlatform (20, 5, 5), 5, 5);
double fontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label));
Content = new StacklLayout

{
Children =
{
new Label
{

Text = "White",
TextColor = Color.White,
FontSize = fontSize

1,

new Label

{
Text = "Silver",
TextColor = Color.Silver,
FontSize = fontSize

3,

Chapter 4 Scrolling the stack 63

new Label

{
Text = "Fuchsia",
TextColor = Color.Fuchsia,
FontSize = fontSize

1,

new Label

{
Text = "Purple",
TextColor = Color.Purple,
FontSize = fontSize

}

}

You don't need to see the code for all 17 children to get the idea! Regardless of how you fill the
Children collection, here's the result:

1213 PM

Yellow

Obviously, this isn't optimum. Some colors aren't visible at all, and some of them are too faint to
read well. Moreover, the list overflows the page on two platforms, and there's no way to scroll it up.

One solution is to reduce the text size. Instead of using NamedSize.Large, try one of the smaller

values.

Another partial solution can be found in stackLayout itself: StackLayout defines a Spacing
property of type double that indicates how much space to leave between the children. By default, it's

Chapter 4 Scrolling the stack 64

6.0, but you can set it to something smaller (for example, zero) to help ensure that all the items will fit:

Content = new StacklLayout

{
Spacing = 0,
Children =
{
new Label
{

Text = "White",
TextColor = Color.White,
FontSize = fontSize

3,

Now all the Label views occupy only as much vertical space as required for the text. You can even set
Spacing to negative values to make the items overlap!

But the best solution is scrolling. Scrolling is not automatically supported by stackLayout and
must be added with another element called scrollview, as you'll see in the next section.

But there's another issue with the color programs shown so far: they need to either explicitly create
an array of colors and names, or explicitly create Label views for each color. To programmers, this is
somewhat tedious, and hence somewhat distasteful. Might it be automated?

Scrolling content

Keep in mind that a Xamarin.Forms program has access to the .NET base class libraries and can use
.NET reflection to obtain information about all the classes and structures defined in an assembly, such
as Xamarin.Forms.Core. This suggests that obtaining the static fields and properties of the Color
structure can be automated.

Most .NET reflection begins with a Type object. You can obtain a Type object for any class or struc-
ture by using the C# typeof operator. For example, the expression typeof (Color) returns a Type
object for the color structure.

In the version of .NET available in the PCL, an extension method for the Type class, named
GetTypelInfo, returns a TypeInfo object from which additional information can be obtained. Alt-
hough that’s not required in the program shown below; it needs other extension methods defined for
the Type class, named GetRuntimeFields and GetRuntimeProperties. These return the fields
and properties of the type in the form of collections of FieldInfo and PropertyInfo objects. From
these, the names as well as the values of the properties can be obtained.

This is demonstrated by the ReflectedColors program. The ReflectedColorsPage.cs file requires a
using directive for System.Reflection.

In two separate foreach statements, the ReflectedColorsPage class loops through all the fields

Chapter 4 Scrolling the stack 65

and properties of the Color structure. For all the public static members that return color values, the
two loops call createColorLabel to create a Label with the Color value and name, and then add
that Label to the StackLayout.

By including all the public static fields and properties, the program lists Color.Transparent,
Color.Default, and Color.Accent along with the 17 static fields displayed in the earlier program. A
separate CreateColorLabel method creates a Label view for each item. Here's the complete listing
of the ReflectedColorsPage class:

public class ReflectedColorsPage : ContentPage
{

public ReflectedColorsPage()

{

StacklLayout stackLayout = new StacklLayout();

// Loop through the Color structure fields.
foreach (FieldInfo info in typeof(Color).GetRuntimeFields())

{
// Skip the obsolete (i.e. misspelled) colors.
if (info.GetCustomAttribute<ObsoleteAttribute>() != null)
continue;
if (info.IsPublic &&
info.IsStatic &&
info.FieldType == typeof(Color))
{
stackLayout.Children.Add(
CreateColorLabel((Color)info.GetvValue(null), info.Name));
}
}

// Loop through the Color structure properties.
foreach (PropertyInfo info in typeof(Color).GetRuntimeProperties())

{
MethodInfo methodInfo = info.GetMethod;
if (methodInfo.IsPublic &&
methodInfo.IsStatic &&
methodInfo.ReturnType == typeof(Color))
{
stackLayout.Children.Add(
CreateColorLabel((Color)info.GetValue(null), info.Name));
}
}

Padding = new Thickness(5, Device.OnPlatform(20, 5, 5), 5, 5);

// Put the StackLayout in a ScrollView.
Content = new ScrollView
{
Content = stacklLayout
b

Chapter 4 Scrolling the stack

Label CreateColorLabel(Color color, string name)

{

Color backgroundColor = Color.Default;

if (color != Color.Default)

{
// Standard Tuminance calculation.
double Tuminance = 0.30 * color.R +
0.59 * color.G +
0.11 * color.B;
backgroundColor = Tuminance > 0.5 ? Color.Black
}

// Create the Label.
return new Label

66

: Color.White;

{
Text = name,
TextColor = color,
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
BackgroundColor = backgroundColor
b

Toward the end of the constructor, the stackLayout is set to the Content property of a
ScrollvView, which is then set to the Content property of the page.

The CreateColorLabel method in the class attempts to make each color visible by setting a con-
trasting background. The method calculates a luminance value based on a standard weighted average
of the red, green, and blue components and then selects a background of either white or black.

This technique won't work for Transparent, so that item can't be displayed at all, and the method
treats Color.Default as a special case and displays that color (whatever it may be) against a
Color.Default background.

Here are the results, which are still quite short of being aesthetically satisfying:

Chapter 4 Scrolling the stack 67

But you can scroll the display because the stackLayout is the child of a scrollview.

StackLayout and scrollview are related in the class hierarchy. stackLayout derives from Lay-
out<View>, and you'll recall that the Layout<T> class defines the children property that stack-
Layout inherits. The generic Layout<T> class derives from the nongeneric Layout class, and
ScrollvView also derives from this nongeneric Layout. Theoretically, Scrollview is a type of layout
object—even though it has only one child.

As you can see from the screenshot, the background color of the L.abel extends to the full width of
the stackLayout, which means that each Label is as wide as the StackLayout.

Let's experiment a bit to get a better understanding of Xamarin.Forms layout. For these experi-
ments, you might want to temporarily give the stackLayout and the Scrol1view distinct back-
ground colors:

public ReflectedColorsPage()

{
StackLayout stackLayout = new StacklLayout
{
BackgroundColor = Color.Blue
};
Content = new ScrollView
{
BackgroundColor = Color.Red,
Content = stacklLayout
1

Chapter 4 Scrolling the stack 68

Layout objects usually have transparent backgrounds by default. Although they occupy an area on
the screen, they are not directly visible. Giving layout objects temporary colors is a great way to see ex-
actly where they are on the screen. It's a good debugging technique for complex layouts.

You will discover that the blue stackLayout peeks out in the space between the individual Label
views. This is a result of the default spacing property of StackLayout. The StackLayout is also visi-
ble through the Label for Color.Default, which has a transparent background.

Try setting the HorizontalOptions property of all the Label views to LayoutOptions.Start:

return new Label

{
Text = name,
TextColor = color,
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
BackgroundColor = backgroundColor,
HorizontalOptions = LayoutOptions.Start
};

Now the blue background of the stackLayout is even more prominent because all the Label
views occupy only as much horizontal space as the text requires, and they are all pushed over to the
left side. Because each Label view is a different width, this display looks even uglier than the first
version!

Now remove the HorizontalOptions setting from the Label, and instead set a HorizontalOp-
tions on the StackLayout:

StackLayout stackLayout = new StacklLayout

{
BackgroundColor = Color.Blue,
HorizontalOptions = LayoutOptions.Start
1

Now the StackLayout becomes only as wide as the widest Label (at least on iOS and Android)
with the red background of the scrol1lview now clearly in view.

As you begin constructing a tree of visual objects, these objects acquire a parent-child relationship.
A parent object is sometimes referred to as the container of its child or children because the child's lo-
cation and size is contained within its parent.

By default, HorizontalOptions and VerticalOptions are set to LayoutOptions.Fill, which
means that each child view attempts to fill the parent container. (At least with the containers encoun-
tered so far. As you'll see, other layout classes have somewhat different behavior.) Even a Labe1 fills its
parent container by default, although without a background color, the Label appears to occupy only
as much space as it requires.

Setting a view's HorizontalOptions Or VerticalOptions property to LayoutOptions.Start,
Center, or End effectively forces the view to shrink down—either horizontally, vertically, or both—to
only the size the view requires.

Chapter 4 Scrolling the stack 69

A stackLayout has this same effect on its child’s vertical size: every child in a StackLayout occu-
pies only as much height as it requires. Setting the verticalOptions property on a child of a stack-
Layout to Start, Center, or End has no effect! However, the child views still expand to fill the width
of the stackLayout, except when the children are given a HorizontalOptions property other than
LayoutOptions.Fill.

If a stackLayout is set to the Content property of a ContentPage, you can set HorizontalOp-
tions or VerticalOptions on the StackLayout. These properties have two effects: first, they shrink
the stackLayout width or height (or both) to the size of its children; and second, they govern where
the stackLayout is positioned relative to the page.

If a stackLayout isina ScrollView, the Scrollview causes the StackLayout to be only as tall
as the sum of the heights of its children. This is how the scrol1view can determine how to vertically
scroll the stackLayout. You can continue to set the HorizontalOptions property on the stack-
Layout to control the width and horizontal placement.

However, you should avoid setting verticalOptions on the Scrollview to LayoutOptions-
.Start, Center, or End. The Scrollview must be able to scroll its child content, and the only way
ScrollvView can do that is by forcing its child (usually a StackLayout) to assume a height that re-
flects only what the child needs and then to use the height of this child and its own height to calculate
how much to scroll that content. If you set VerticalOptions on the scrollview to LayoutOp-
tions.Start, Center, Or End, you are effectively telling the scrol1lview to be only as tall as it needs
to be. But what is that height? Because Scrollview can scroll its contents, it doesn’t need to be any
particular height, so in theory it will shrink down to nothing. Xamarin.Forms protects against this even-
tuality, but it's best for you to avoid code that suggests something you don’t want to happen.

Although putting a StackLayout in a Scrollview is normal, putting a Scrollview in a Stack-
Layout doesn't seem quite right. In theory, the stackLayout will force the Scrollview to have a
height of only what it requires, and that required height is basically zero. Again, Xamarin.Forms pro-
tects against this eventuality, but you should avoid such code.

There is a proper way to put a ScrollvView in a StackLayout that is in complete accordance with
Xamarin.Forms layout principles, and that will be demonstrated shortly.

The preceding discussion applies to vertically oriented StackLayout and Scrollview elements.
StackLayout has a property named Orientation that you can set to a member of the stackori-
entation enumeration—vertical (the default) or Horizontal. Similarly, Scrol1view also has an
Orientation property that you set to a member of the Scrollorientation enumeration. Try this:

public ReflectedColorsPage()

{
StackLayout stackLayout = new StacklLayout
{
Orientation = StackOrientation.Horizontal
};

Content = new ScrollView

Chapter 4 Scrolling the stack 70

Orientation = ScrollOrientation.Horizontal,
Content = stacklLayout
b
}

Now the Label views are stacked horizontally, and the Scrol1vieuw fills the page vertically but allows
horizontal scrolling of the stackLayout, which vertically fills the scrollview:

&

L Mar%n gt Red SIVE] Teal
<

S 100

It looks pretty weird with the default vertical layout options, but those could be fixed to make it look a
little better.

The Expands option

You probably noticed that the HorizontalOptions and VerticalOptions properties are plurals, as

if there's more than one option. These properties are generally set to a static field of the Layoutop-
tions structure—another plural.

The discussions so far have focused on the following static read-only LayoutOptions fields that
returned predefined values of LayoutOptions:

. LayoutOptions.Start
] LayoutOptions.Center

e LayoutOptions.End

Chapter 4 Scrolling the stack 71

o LayoutOptions.Fill

The default—established by the view class—is LayoutOptions.Fill, which means that the view fills
its container.

As you've seen, a VerticalOptions setting on a Label doesn't make a difference when the Label
is a child of a vertical stackLayout. The stackLayout itself constrains the height of its children to
only the height they require, so the child has no freedom to move vertically within that slot.

Be prepared for this rule to be slightly amended!

The LayoutOptions structure has four additional static read-only fields not discussed yet:
. LayoutOptions.StartAndExpand

. LayoutOptions.CenterAndExpand

. LayoutOptions.EndAndExpand

. LayoutOptions.FillAndExpand

LayoutOptions also defines two instance properties, named Alignment and Expands. The four
instances of LayoutOptions returned by the static fields ending with AndExpand all have the Ex-
pands property set to true.

This Expands property is recognized only by stackLayout. It can be very useful for managing the
layout of the page, but it can be confusing on first encounter. Here are the requirements for Expands
to play a role in a vertical stackLayout:

e The contents of the stackLayout must have a total height that is less than the height of the
StackLayout itself. In other words, some extra unused vertical space must exist in the stack-
Layout.

e That first requirement implies that the vertical StackLayout cannot have its own vertical-
Options property set to Start, Center, or End because that would cause the stackLayout
to have a height equal to the aggregate height of its children, and it would have no extra space.

e At least one child of the stackLayout must have a VerticalOptions setting with the
Expands property set to true.

If these conditions are satisfied, the StackLayout allocates the extra vertical space equally among
all the children that have a verticalOptions setting with Expands equal to true. Each of these chil-
dren gets a larger slot in the StackLayout than normal. How the child occupies that slot depends on
the Alignment setting of the LayoutOptions value: Start, Center, End, or Fill.

Here's a program, named VerticalOptionsDemo, that uses reflection to create Label objects with
all the possible verticalOptions settings in a vertical StackLayout. The background and fore-
ground colors are alternated so that you can see exactly how much space each Label occupies. The

Chapter 4 Scrolling the stack

72

program uses Language Integrated Query (LINQ) to sort the fields of the LayoutOptions structure in
a visually more illuminating manner:

public class VerticalOptionsDemoPage : ContentPage

{

public VerticalOptionsDemoPage()

{

Color[] colors = { Color.Yellow, Color.Blue };
int flipFlopper = 0;

// Create Labels sorted by LayoutAlignment property.
IEnumerable<Label> labels =
from field in typeof(LayoutOptions).GetRuntimeFields()
where field.IsPublic && field.IsStatic
orderby ((LayoutOptions)field.GetValue(null)).Alignment
select new Label

{
Text = "VerticalOptions = " + field.Name,
VerticalOptions = (LayoutOptions)field.GetValue(null),
HorizontalTextAlignment = TextAlignment.Center,
FontSize = Device.GetNamedSize(NamedSize.Medium, typeof(Label)),
TextColor = colors[flipFlopper],
BackgroundColor = colors[flipFlopper = 1 - flipFlopper]

b

// Transfer to StackLayout.
StacklLayout stackLayout = new StacklLayout();

foreach (Label Tabel in labels)
{

stackLayout.Children.Add(label);
}

Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);
Content = stackLayout;

You might want to study the results a little:

Chapter 4 Scrolling the stack 73

VerticalOptio

VerticalOptions = StartAndExpand

VerticalOptions = Start
erticalOptions = StartAndExpand

VerticalOptions = Center

VerticalOptions = CenterAndExpand VerticalOptions =
VerticalOptions = CenterAndExpand
' CenterAndExpand
VerticalOptions = End

VerticalOptions = End

‘ :
= ‘CD‘D"S T VerticalOptions = EndAndExpand

VerticalOptions = EndAndExpand

VerticalOptions = Fill

Ver =
VerticalOptions = FillAndExpand VerticalOptions = Fill
VerticalOptions = FillAndExpand

VerticalOptions = FillAndExpand

The Label views with yellow text on blue backgrounds are those with verticalOptions proper-
ties set to LayoutOptions values without the Expands flag set. If the Expands flag is not set on the
LayoutOptions value of an item in a vertical StackLayout, the VerticalOptions setting is
ignored. As you can see, the Label occupies only as much vertical space as it needs in the vertical
StackLayout.

The total height of the children in this stackLayout is less than the height of the stackLayout, so
the stackLayout has extra space. It contains four children with their verticaloptions properties
set to LayoutOptions values with the Expands flag set, so this extra space is allocated equally among
those four children.

In these four cases—the Label views with blue text on yellow backgrounds—the Alignment prop-
erty of the LayoutOptions value indicates how the child is aligned within the area that includes the
extra space. The first one—with the verticalOptions property set to LayoutOptions.StartAnd-
Expand—is above this extra space. The second (CenterAndExpand) is in the middle of the extra space.
The third (EndandExpand) is below the extra space. However, in all these three cases, the Label is get-
ting only as much vertical space as it needs, as indicated by the background color. The rest of the space
belongs to the stackLayout, which shows the background color of the page.

The last Label has its VerticalOptions property set to LayoutOptions.FillAndExpand. In this
case, the Label occupies the entire slot including the extra space, as the large area of yellow back-
ground indicates. The text is at the top of this area; that's because the default setting of vertical-
TextAlignment iS TextAlignment.Start. Set it to something else to position the text vertically
within the area.

Chapter 4 Scrolling the stack 74

The Expands property of LayoutOptions plays a role only when the view is a child of a stack-
Layout. In other contexts, it's ignored.

Frame and BoxView

Two simple rectangular views are often useful for presentation purposes:

The BoxView is a filled rectangle. It derives from view and defines a Color property with a default
setting of Color.Default that's transparent by default.

The Frame displays a rectangular border surrounding some content. Frame derives from Layout by
way of ContentView, from which it inherits a Content property. The content of a Frame can be a sin-
gle view or a layout containing a bunch of views. From VisualElement, Frame inherits a Back-
groundColor property that's white on the iPhone but transparent on Android and Windows Phone.
From Layout, Frame inherits a Padding property that it initializes to 20 units on all sides to give the
content a little breathing room. Frame itself defines a HasShadow property that is t rue by default (but
the shadow shows up only on iOS devices) and an outlineColor property that is transparent by de-
fault but doesn’t affect the iOS shadow, which is always black and always visible when HasShadow is
set to true.

Both the Frame outline and the BoxView are transparent by default, so you might be a little uncer-
tain how to color them without resorting to different colors for different platforms. One good choice is
Color.Accent, which is guaranteed to show up regardless. Or, you can take control over coloring the
background as well as the Frame outline and Boxview.

If the BoxView or Frame is not constrained in size in any way—that is, if it's not in a StackLayout
and has its HorizontalOptions and VerticalOptions set to default values of LayoutOptions-
.Fill—these views expand to fill their containers.

For example, here's a program that has a centered Label set to the Content property of a Frame:

public class FramedTextPage : ContentPage
{
public FramedTextPage()
{
Padding = new Thickness(20);
Content = new Frame
{
OutlineColor = Color.Accent,
Content = new Label

{
Text = "I've been framed!",
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center
}

Chapter 4 Scrolling the stack 75

}

The Label is centered in the Frame, but the Frame fills the whole page, and you might not even be
able to see the Frame clearly if the page had not been given a padding of 20 on all sides:

- 1011

Fue bean framed! I've been framed!
ve been framed:

|'ve been framed!

To display centered framed text, you want to set the HorizontalOptions and VerticalOptions
properties on the Frame (rather than the Label) to LayoutOptions.Center:

public class FramedTextPage : ContentPage

{
public FramedTextPage()
{
Padding = new Thickness(20);
Content = new Frame
{
OutlineColor = Color.Accent,
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center,
Content = new Label
{
Text = "I've been framed!",
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label))
}
1
}
}

Now the Frame hugs the text (but with the frame’s 20-unit default padding) in the center of the
page:

Chapter 4 Scrolling the stack 76

- 10:12

een framed!

I've been framed!

I've been framed!

The version of FramedText included with the sample code for this chapter exercises the freedom to
give everything a custom color:

public class FramedTextPage : ContentPage
{

public FramedTextPage()

{

BackgroundColor = Color.Aqua;

Content = new Frame

{
OutlineColor = Color.Black,
BackgroundColor = Color.Yellow,
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center,

Content = new Label
{
Text = "I've been framed!",
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
FontAttributes = FontAttributes.Italic,
TextColor = Color.Blue

The result looks roughly the same on all three platforms:

Chapter 4 Scrolling the stack 77

I've been framed!

've been framed!

I've been framed!

Try setting a BoxView to the Content property of a ContentPage, like so:

public class SizedBoxViewPage : ContentPage

{
public SizedBoxViewPage()
{
Content = new BoxView
{
Color = Color.Accent
b
}
}

Be sure to set the Color property so you can see it. The BoxView fills the whole area of its con-
tainer, just as Label does with its default HorizontalOptions or VerticalOptions settings:

Chapter 4 Scrolling the stack

It's even underlying the iOS status bar!

Now try setting the HorizontalOptions and VerticalOptions properties of the Boxview to
something other than Fil11, as in this code sample:

public class SizedBoxViewPage : ContentPage

{
public SizedBoxViewPage()
{
Content = new BoxView
{
Color = Color.Accent,
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center
1
}
}

In this case, the Boxview will assume its default dimensions of 40 units square:

Chapter 4 Scrolling the stack 79

- 1018

The BoxView is now 40 units square because the BoxVieuw initializes its WidthRequest and
HeightRequest properties to 40. These two properties require a little explanation:

VisualElement defines width and Height properties, but these properties are read-only.
VisualElement also defines widthRequest and HeightRequest properties that are both settable
and gettable. Normally, all these properties are initialized to —1 (which effectively means they are un-
defined), but some view derivatives, such as BoxView, set the WidthRequest and HeightRequest
properties to specific values.

After a page has organized the layout of its children and rendered all the visuals, the Wwidth and
Height properties indicate actual dimensions of each view—the area that the view occupies on the
screen. Because width and Height are read-only, they are for informational purposes only. (Chapter 5,
“Dealing with sizes,” describes how to work with these values.)

If you want a view to be a specific size, you can set the WwidthRequest and HeightRequest prop-
erties. But these properties indicate (as their names suggest) a requested size or a preferred size. If the
view is allowed to fill its container, these properties will be ignored.

BoxView sets its default size to values of 40 by overriding the onsizerRequest method. You can
think of these settings as a size that Boxview would like to be if nobody else has any opinions in the
matter. You've already seen that WidthRequest and HeightRequest are ignored when the BoxView
is allowed to fill the page. The widthRequest kicks in if the HorizontalOptions is set to LayoutOp-
tions.Left, Center, Or Right, or if the BoxView is a child of a horizontal StackLayout. The
HeightRequest behaves similarly.

Chapter 4 Scrolling the stack 80

Here's the version of the SizedBoxView program included with the code for this chapter:

public class SizedBoxViewPage : ContentPage

{
public SizedBoxViewPage()
{
BackgroundColor = Color.Pink;
Content = new BoxView
{
Color = Color.Navy,
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center,
WidthRequest = 200,
HeightRequest = 100
b
}
}

Let's use both Frame and BoxView in an enhanced color list. The ColorBlocks program has a page
constructor that is virtually identical to the one in ReflectedColors, except that it calls a method
named CreateColorView rather than CreateColorLabel. Here's that method:

class ColorBlocksPage : ContentPage

{

View CreateColorView(Color color, string name)

{

Chapter 4 Scrolling the stack

return new Frame

{
OutlineColor = Color.Accent,
Padding = new Thickness(5),
Content = new StacklLayout
{
Orientation = StackOrientation.Horizontal,
Spacing = 15,
Children =
{
new BoxView
{
Color = color
1,
new Label
{
Text = name,
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
FontAttributes = FontAttributes.Bold,
VerticalOptions = LayoutOptions.Center,
HorizontalOptions = LayoutOptions.StartAndExpand
1,
new StacklLayout
{
Children =
{
new Label
{

Text = String.Format("{0:X2}-{1:X2}-{2:X2}",
(int) (255 * color.R),
(int) (255 * color.Q),
(int) (255 * color.B)),

VerticalOptions = LayoutOptions.CenterAndExpand,

IsVisible = color != Color.Default

1,
new Label
{

Text = String.Format("{0:F2}, {1:F2}, {2:F2}",
color.Hue,
color.Saturation,
color.Luminosity),

VerticalOptions = LayoutOptions.CenterAndExpand,

IsVisible = color != Color.Default

}
3,
HorizontalOptions = LayoutOptions.End
}
}
}
b

81

Chapter 4 Scrolling the stack 82

The CreateColorvView method returns a Frame containing a horizontal StackLayout with a Box-
View indicating the color, a Label for the name of the color, and another StackLayout with two
more Label views for the RGB composition and the Hue, Saturation, and Luminosity values. The
RGB and HSL displays are meaningless for the Color.Default value, so that inner StackLayout has
its Isvisible property set to false in that case. The StackLayout still exists, but it's ignored when
the page is rendered.

The program doesn’'t know which element will determine the height of each color item—the Box-
View, the Label with the color name, or the two Label views with the RGB and HSL values—so it cen-
ters all the Label views. As you can see, the Boxview expands in height to accommodate the height of
the text:

- 10:22

zazb ou-v-5u
00-00-00 083, 1.00,025

Transparent o, 4 g0, o.ool

00-FF-FF

0.50, 1.00, 0.50

FF-66-FF
0.83, 1.00, 0.70

Aqua

Green
FF-00-00
1.00, 1.00, 0.50

00-00-00

0.00, 0.00, 0.00 .
Lime

. C0-C0-Co
Maroon 0.00, 0.00, 0.75

00-00-FF
0.67, 1.00, 0.50

FF-00-FF

0.83, 1.00, 0.50 00-80-80

Navy 0.50,1.00, 0.25

80-80-80

0.00,0.00, 0.50 FF-FF-FF

00-80-00 Olive 25 0.00, 0.00, 1.00
FF-FF-00

0.17, 1.00, 0.50

00-FF-00 Purple

0.33, 1.00, 0.50

80-00-00
1.00, 1.00, 0.25

Pink . | Default

18-A1-E2
0.55, 0.79, 0.50

00-00-80
0.67, 1.00, 0.25

Red

Now this is a scrollable color list that's beginning to be something we can take a little pride in.

A ScrollView in a StackLayout?

It's common to put a StackLayout in a ScrollView, but can you put a Scrollview in a StackLay-
out? And why would you even want to?

It's a general rule in layout systems like the one in Xamarin.Forms that you can't put a scroll in a
stack. A scrol1view needs to have a specific height to compute the difference between the height of
its content and its own height. That difference is the amount that the scro11view can scroll its con-
tents. If the scrollview isin a StackLayout, it doesn't get that specific height. The stackLayout

Chapter 4 Scrolling the stack 83

wants the scrollview to be as short as possible, and that's either the height of the Scrol1view con-
tents or zero, and neither solution works.

So why would you want a Scrollview in a StackLayout anyway?

Sometimes it's precisely what you need. Consider a primitive e-book reader that implements scroll-
ing. You might want a Label at the top of the page always displaying the book's title, followed by a
ScrollView containing a StackLayout with the content of the book itself. It would be convenient for
that Label and the scrollview to be children of a stackLayout that fills the page.

With Xamarin.Forms, such a thing is possible. If you give the Scrollview a VerticalOptions set-
ting of LayoutOptions.FillAndExpand, it can indeed be a child of a stackLayout. The stackLay-
out will give the Scrol1view all the extra space not required by the other children, and the
Scrollview will then have a specific height. Interestingly, Xamarin.Forms protects against other set-
tings of that verticalOptions property, so it works with whatever you set it to.

The BlackCat project displays the text of Edgar Allan Poe’s short story “The Black Cat,” which is
stored in a text file named TheBlackCat.txt in a one-line-per-paragraph format.

How does the BlackCat program access the file with this short story? Perhaps the easiest approach
is to embed the text file right in the program executable or—in the case of a Xamarin.Forms applica-
tion—right in the Portable Class Library DLL. These files are known as embedded resources, and that's
what TheBlackCat.txt file is in this program.

To make an embedded resource in either Visual Studio or Xamarin Studio, you'll probably first want
to create a folder in the project by selecting the Add > New Folder option from the project menu. A
folder for text files might be called Texts, for example. The folder is optional, but it helps organize pro-
gram assets. Then, in that folder, you can select Add > Existing Item in Visual Studio or Add > Add
Files in Xamarin Studio. Navigate to the file, select it, and click Add in Visual Studio or Open in
Xamarin Studio.

Now here’s the important part: Once the file is part of the project, bring up the Properties dialog
from the menu associated with the file. Specify that the Build Action for the file is Embedded-
Resource. This is an easy step to forget, but it is essential.

This was done for the BlackCat project, and consequently the TheBlackCat.txt file becomes embed-
ded in the BlackCat.dll file.

In code, the file can be retrieved by calling the GetManifestResourceStream method defined by
the Assembly class in the System.Reflection namespace. To get the assembly of the PCL, all you
need to do is get the Type of any class defined in the assembly. You can use typeof with the page
type you've derived from ContentPage or GetType on the instance of that class. Then call GetType-
Info on this Type object. Assembly is a property of the resultant TypeInfo object:

Assembly assembly = GetType() .GetTypeInfo().Assembly;

In the GetManifestResourceStream method of Assembly, you'll need to specify the name of the

Chapter 4 Scrolling the stack 84

resource. For embedded resources, that name is not the filename of the resource but the resource ID.
It's easy to confuse these because that ID might look vaguely like a fully qualified filename.

The resource ID begins with the default namespace of the assembly. This is not the .NET namespace!
To get the default namespace of the assembly in Visual Studio, select Properties from the project
menu, and in the properties dialog, select Library at the left and look for the Default namespace
field. In Xamarin Studio, select Options from the project menu, and in the Project Options dialog, se-
lect Main Settings at the left, and look for a field labeled Default Namespace.

For the BlackCat project, that default namespace is the same as the assembly: “BlackCat". However,
you can actually set that default namespace to whatever you want.

The resource ID begins with that default namespace, followed by a period, followed by the folder
name you might have used, followed by another period and the filename. For this example, the re-
source ID is “BlackCat.Texts.TheBlackCat.txt"—and that's what you'll pass to the GetManifestRe-
sourceStream method in the code. The method returns a .NET Stream object, and from that a
StreamReader can be created to read the lines of text.

It's a good idea to use using statements with the Stream object returned from GetManifestRe-
sourceStream and the StreamReader object because that will properly dispose of the objects when
they're no longer needed or if they raise exceptions.

For layout purposes, the BlackCatPage constructor creates two StackLayout objects: mainStack
and textStack. The first line from the file (containing the story’s title and author) becomes a bolded
and centered Label in mainStack; all the subsequent lines go in textStack. The mainStack in-
stance also contains a Scrollview with textStack.

class BlackCatPage : ContentPage
{
public BlackCatPage()
{
StacklLayout mainStack = new StacklLayout();
StackLayout textStack = new StacklLayout
{
Padding = new Thickness(5),
Spacing = 10

};

// Get access to the text resource.
Assembly assembly = GetType().GetTypeInfo().Assembly;
string resource = "BlackCat.Texts.TheBlackCat.txt";

using (Stream stream = assembly.GetManifestResourceStream (resource))

{

using (StreamReader reader = new StreamReader (stream))

{
bool gotTitle = false;
string Tline;

// Read in a 1line (which is actually a paragraph).

Chapter 4 Scrolling the stack 85

while (null != (line = reader.ReadlLine()))

{

Label Tabel = new Label

{
Text = line,
// Black text for ebooks!
TextColor = Color.Black

};

if ('gotTitle)

{
// Add first label (the title) to mainStack.
Tlabel.HorizontalOptions = LayoutOptions.Center;
label.FontSize = Device.GetNamedSize(NamedSize.Medium, label);
Tlabel.FontAttributes = FontAttributes.Bold;
mainStack.Children.Add(1abel);
gotTitle = true;

}

else

{
// Add subsequent Tabels to textStack.
textStack.Children.Add(1abel);

}

}

// Put the textStack in a ScrollView with FiTlAndExpand.
Scrol1View scrollView = new ScrollView

{
Content = textStack,
VerticalOptions = LayoutOptions.FilTAndExpand,
Padding = new Thickness(5, 0),

b

// Add the ScrollView as a second child of mainStack.
mainStack.Children.Add(scrol1View);

// Set page content to mainStack.
Content = mainStack;

// White background for ebooks!
BackgroundColor = Color.White;

// Add some i0S padding for the page.
Padding = new Thickness (0, Device.OnPlatform (20, 0, 0), 0, 0);

Because this is basically an e-book reader, and humans have been reading black text on white paper
for hundreds of years, the BackgroundColor of the page is set to white and the TextColor of each
Label is set to black:

Chapter 4 Scrolling the stack

Corrier % 2:31PM -

THE BLACK CAT by Edgar Allan Poe

FOR the most wild, yet most homely namative
which | am about to pen, | neither expect nor
solicit belief. Mad indeed would | be to expect
it, in & case where my very senses reject their
own evidence. Yet, mad am | not--and very
surely do | not dream. But to-morrow | die,
and to-day | would unburthen my soul. My
immediate purpose is to place befare the
world, plainly, succinctly, and without
comment, a series of mere household avents.
In their consequences, these events have
terrified--have tortured--have destroyed me.
Yet | will not attempt to expound them. To me,
they have presented little but Horror--to many
they will seem less terrible than _barrogues_.
Hereafter, perhaps, some intellect may be
found which will reduce my phantasm to the
common-place--some intallect more calm,
more logical, and far less excitable than my
own, which will perceive, in the circumstances
| detail with awe, F\O\hing more than an
ordinary succession of very natural causes

abrute,
has had frequent occasion o test the palry friendship
and gossamer fidelity of mere _Man_

| married early, and was happy to find in my wife a
disposition not uncongenial with my own. Observing
my partiality for domestic pets. she last no opportunity
of procuring those of the most agreeable kind. We had
birds, gold-fish, a fine dog, rabbits, & small monkey, and
_acat

This latter was a remarkably large and beautiful
animal, entirely black, and sagacious 1o an astonishing
degree. In speaking of his intelligence, my wife, who at
heart was not a little tinctured with superstition, made
frequent allusion to the ancient popular notion, which
regarded all black cats as witches in disguise. Not that
she was ever _serlous_upon this paint-and | mentian
the matter at all for no better reason than that it
happens, just now, ta be remembered

Pluto-this was the cat's name-was my favorite pet
and playmate. | alone fed him, and he attended me
wherever | went about the house. It was even with
difficulty that | could prevent him from following me
through the streets,

ail S 10:25
THE BLACK CAT by Edgar Allan
Poe

from her grasp and buried the axe in her brain.
She fell dead upon the spot, without a groan.

This hideous murder accomplished, | set myself
forthwith, and with entire deliberation, to the
task of concealing the body. | knew that | could
not remove it from the house, either by day or
by night, without the risk of being observed by
the neighbors. Many projects entered my mind.
At one period | thought of cutting the corpse
into minute fragments, and destroying them by
fire, At another, | resolved to dig a grave for it in
the floor of the cellar. Again, | deliberated about
casting it in the well in the yard--about packing
itin a box, as if merchandize, with the usual
arrangements, and so getting a porter to take it
from the hause. Finally | hit upon what |
considered a far better expedient than either of

86

and effects.

From my infancy | was noted for the docility
and humanity of my dispasition. My
tenderness cf heart was even so conspicuous
as to make me the jest of my companions. |
was espacially fond of animals, and was
indulged by my parents with a great variety of
pets With these | spent mo o

these. | determined to wall it up in the cellar--as
Our friendship lasted, in this manner, for several years, the monks of the middle ages are recorded 1o
during which my general temperament and character— have wall heir victim:
through the instrumentality of the Fiend ave walled up their victims.
Intemperance-had (1 blush to confess it) experienced Fora purpose such as this the cellar was well
aradical alteration for the worse. | grew. day by day, adapted. its walls were loosely constructed, and
more moady, mare irritable, more regardiess of the P ¥ 3

had lately been plastered throughout with a

BlackCat is a PCL application. It is also possible to write this program using a Shared Asset Project
rather than a PCL. To prove it, a BlackCatSap project is included with the code for this chapter. How-
ever, because the resource actually becomes part of the application project, you'll need the default
namespace for the application, and that's different for each platform. The code to set the resource vari-

able looks like this:

#if _TI0S__

string resource =

#e1if _ANDROID__

string resource =

#e1if WINDOWS_UWP

string resource =

#e1if WINDOWS_APP

string resource =

#e1if WINDOWS_PHONE_APP

string resource =

#endif

"BlackCatSap.i0S.Texts.TheBlackCat.txt";
"BlackCatSap.Droid.Texts.TheBTackCat.txt";
"BlackCatSap.UWP.Texts.TheBlackCat.txt";
"BlackCatSap.Windows.Texts.TheBlackCat.txt";

"BlackCatSap.WinPhone.Texts.TheBlackCat.txt";

If you're having problems referencing an embedded resource, you might be using an incorrect

name. Try calling GetManifestResourceNames on the Assembly object to get a list of the resource

IDs of all embedded resources.

Chapter 5
Dealing with sizes

Already you've seen some references to sizes in connection with various visual elements:

e The iOS status bar has a height of 20, which you can adjust for with a Padding setting on the
page.

e The BoxView sets its default width and height to 40.
e The default Padding within a Frame is 20.
e The default spacing property on the stackLayout is 6.

And then there’s Device.GetNamedSize, which for various members of the Namedsize enumeration
returns a platform-dependent number appropriate for Fontsize values for a Label or Button.

What are these numbers? What are their units? And how do we intelligently set properties requiring
sizes to other values?

Good questions. As you've seen, the various platforms have different screen sizes and different text
sizes, and all display a different quantity of text on the screen. Is that quantity of text something that a
Xamarin.Forms application can anticipate or control? And even if it's possible, is it a proper program-
ming practice? Should an application adjust font sizes to achieve a desired text density on the screen?

In general, when programming a Xamarin.Forms application, it's best not to get too close to the ac-
tual numeric dimensions of visual objects. It's preferable to trust Xamarin.Forms and the individual
platforms to make the best default choices.

However, there are times when a programmer needs to know something about the size of particular
visual objects and the size of the screen on which they appear.

Pixels, points, dps, DIPs, and DIUs

Video displays consist of a rectangular array of pixels. Any object displayed on the screen also has a
pixel size. In the early days of personal computers, programmers sized and positioned visual objects in
units of pixels. But as a greater variety of screen sizes and pixel densities became available, working
with pixels became undesirable for programmers attempting to write applications that look roughly
the same on many devices. Another solution was required.

These solutions began with operating systems for desktop computers and were then adapted for
mobile devices. For this reason, it's illuminating to begin this exploration with the desktop.

Chapter 5 Dealing with sizes 88

Desktop video displays have a wide range of pixel dimensions, from the nearly obsolete 640 x 480
on up into the thousands. The aspect ratio of 4:3 was once standard for computer displays—and for
movies and television as well—but the high-definition aspect ratio of 16:9 (or the similar 16:10) is now
more common.

Desktop video displays also have a physical dimension usually measured along the diagonal of the
screen in inches or centimeters. The pixel dimension combined with the physical dimension allows you
to calculate the video display’s resolution or pixel density in dots per inch (DPI), sometimes also re-
ferred to as pixels per inch (PPI). The display resolution can also be measured as a dot pitch, which is
the distance between adjacent pixel centers, usually measured in millimeters.

For example, you can use the Pythagorean theorem to calculate that an ancient 800 x 600 display
has a diagonal length of 1,000, the square root of 800 squared plus 600 squared. If this monitor has a
13-inch diagonal, that's a pixel density of 77 DPI, or a dot pitch of 0.33 millimeters. However, a 13-inch
screen on a modern laptop might have pixel dimensions of 2560 x 1600, which is a pixel density of
about 230 DPI, or a dot pitch of about 0.11 millimeters. A 100-pixel square object on this screen is one-
third the size of the same object on the older screen.

Programmers should have a fighting chance when attempting to size visual elements correctly. For
this reason, both Apple and Microsoft devised systems for desktop computing that allow programmers
to work with the video display in some form of device-independent units instead of pixels. Most of the
dimensions that a programmer encounters and specifies are in these device-independent units. It is the
responsibility of the operating system to convert back and forth between these units and pixels.

In the Apple world, desktop video displays were traditionally assumed to have a resolution of 72
units to the inch. This number comes from typography, where many measurements are in units of
points. In classical typography, there are approximately 72 points to the inch, but in digital typography
the point has been standardized to be exactly one seventy-second of an inch. By working with points
rather than pixels, a programmer has an intuitive sense of the relationship between numeric sizes and
the area that visual objects occupy on the screen.

In the Windows world, a similar technique was developed, called device-independent pixels (DIPs) or
device-independent units (DIUs). To a Windows programmer, desktop video displays are assumed to
have a resolution of 96 DIUs, which is exactly one-third higher than 72 DPI, although it can be adjusted
by the user.

Mobile devices, however, have somewhat different rules: The pixel densities achieved on modern
phones are typically much higher than on desktop displays. This higher pixel density allows text and
other visual objects to shrink much more in size before becoming illegible.

Phones are also typically held much closer to the user’s face than is a desktop or laptop screen. This
difference also implies that visual objects on the phone can be smaller than comparable objects on
desktop or laptop screens. Because the physical dimensions of the phone are much smaller than desk-
top displays, shrinking down visual objects is very desirable because it allows much more to fit on the
screen.

Chapter 5 Dealing with sizes 89

Apple continues to refer to the device-independent units on the iPhone as points. Until recently, all
of Apple’s high-density displays—which Apple refers to by the brand name Retina—have a conversion
of two pixels to the point. This was true for the MacBook Pro, iPad, and iPhone. The recent exception is
the iPhone 6 Plus, which has three pixels to the point.

For example, the 640 x 960 pixel dimension of the 3.5-inch screen of the iPhone 4 has an actual
pixel density of about 320 DPI. There are two pixels to the point, so to an application program running
on the iPhone 4, the screen appears to have a dimension of 320 x 480 points. The iPhone 3 actually
did have a pixel dimension of 320 x 480, and points equaled pixels, so to a program running on these
two devices, the displays of the iPhone 3 and iPhone 4 appear to be the same size. Despite the same
perceived sizes, graphical objects and text are displayed in greater resolution on the iPhone 4 than the
iPhone 3.

For the iPhone 3 and iPhone 4, the relationship between the screen size and point dimensions im-
plies a conversion factor of 160 points to the inch rather than the desktop standard of 72.

The iPhone 5 has a 4-inch screen, but the pixel dimension is 640 x 1136. The pixel density is about
the same as the iPhone 4. To a program, this screen has a size of 320 x 768 points.

The iPhone 6 has a 4.7-inch screen and a pixel dimension of 750 x 1334. The pixel density is also
about 320 DPI. There are two pixels to the point, so to a program, the screen appears to have a point
size of 375 x 667.

However, the iPhone 6 Plus has a 5.5-inch screen and a pixel dimension of 1080 x 1920, which is a
pixel density of 400 DPI. This higher pixel density implies more pixels to the point, and for the iPhone 6
Plus, Apple has set the point equal to three pixels. That would normally imply a perceived screen size of
360 x 640 points, but to a program, the iPhone 6 Plus screen has a point size of 414 x 736, so the per-
ceived resolution is about 150 points to the inch.

This information is summarized in the following table:

Model iPhone 2,3 | iPhone 4 iPhone 5 iPhone 6 iPhone 6 Plus*
Pixel size 320 x 480 640 x 960 | 640 x 1136 | 750 x 1334 | 1080 x 1920
Screen diagonal | 3.5 in. 3.5in. 4in. 47 in. 5.5in.

Pixel density 165 DPI 330 DPI 326 DPI 326 DPI 401 DPI
Pixels per point | 1 2 2 2 3

Point size 320 x 480 320 x 480 | 320 x 568 375 x 667 414 x 736
Points per inch 165 165 163 163 154

* Includes 115 percent downsampling.

Android does something quite similar: Android devices have a wide variety of sizes and pixel dimen-
sions, but an Android programmer generally works in units of density-independent pixels (dps). The
relationship between pixels and dps is set assuming 160 dps to the inch, which means that Apple and
Android device-independent units are very similar.

Microsoft took a different approach with Windows Phone 7. The original Windows Phone 7 devices
had a screen dimension of 480 x 800 pixels, which is often referred to as WVGA (Wide Video Graphics

Chapter 5 Dealing with sizes 90

Array). Applications worked with this display in units of pixels. If you assume an average screen size of 4
inches for a 480 x 800 Windows Phone 7 device, this means that Windows Phone 7 implicitly assumed
a pixel density of about 240 DPI. That's 1.5 times the assumed pixel density of iPhone and Android de-
vices. Eventually, several larger screen sizes were allowed: 768 x 1280 (WXGA or Wide Extended
Graphics Array), 720 x 1280 (referred to using high-definition television lingo as 720p), and 1080 x
1920 (called 1080p). For these additional display sizes, programmers worked in device-independent
units. An internal scaling factor translated between pixels and device-independent units so that the
width of the screen in portrait mode always appeared to be 480 pixels.

With the Windows Runtime APl in Windows Phone 8.1, different scaling factors were introduced
based on both the screen’s pixel size and the physical size of the screen. The following table was put
together based on the Windows Phone 8.1 emulators using a program named WhatSize, which you'll
see shortly:

Screen type WVGA 4" WXGA 4.5" 720p 4.7" 1080p 5.5" 1080p 6"
Pixel size 480 x 800 768 x 1280 720 x 1280 1080 x 1920 1080 x 1920
Size in DIUs 400 x 640 384 x 614.5 400 x 684 450 x 772 491 x 847
Scaling factor 12 2 18 24 22

DPI 194 161 169 167 167

The scaling factors were calculated from the width because the height in DIUs displayed by the What-
Size program excludes the Windows Phone status bar. The final DPI figures were calculated based on
the full pixel size, the diagonal size of the screen in inches, and the scaling factor.

Aside from the WVGA outlier, the calculated DPI is close enough to the 160 DPI criterion associated
with iOS and Android devices.

Windows 10 Mobile uses somewhat higher scaling factors, and in multiples of 0.25 rather than 0.2.
The following table was put together based on the Windows 10 Mobile emulators:

Screen type WVGA 4" QHD 5.2" WXGA 4.5" 720p 5" 1080p 6"
Pixel size 480 x 800 540 x 960 768 x 1280 720 x 1280 1080 x 1920
Size in DIUs 320 x 512 360 x 616 341 x 546 360 x 616 432 x 744
Scaling factor 15 15 2.25 2 25

DPI 155 141 147 147 141

You might conclude from this that a good average DPI for Windows 10 Mobile is 144 (rounded to the
nearest multiple of 16) rather than 160. Or you might say that it's close enough to 160 to assume that
it's consistent with iOS and Windows Phone.

Xamarin.Forms has a philosophy of using the conventions of the underlying platforms as much as
possible. In accordance with this philosophy, a Xamarin.Forms programmer works with sizes defined by
each particular platform. All sizes that the programmer encounters through the Xamarin.Forms API are
in these platform-specific, device-independent units.

Xamarin.Forms programmers can generally treat the phone display in a device-independent man-
ner, with the following resolution:

Chapter 5 Dealing with sizes 91

e 160 units to the inch
e 64 units to the centimeter

The visualElement class defines two properties, named width and Height, that provide the
rendered dimensions of views, layouts, and pages in these device-independent units. However, the ini-
tial settings of width and Height are “mock” values of —1. The values of these properties become valid
only when the layout system has positioned and sized everything on the page. Also, keep in mind that
the default Fi11 setting for HorizontalOptions or VerticalOptions often causes a view to
occupy more space than it would otherwise. The width and Height values reflect this extra space.

The width and Height values also include any Padding that may be set on the element and are con-
sistent with the area colored by the view's BackgroundColor property.

VisualElement defines an event named SizeChanged that is fired whenever the width or
Height property of the visual element changes. This event is part of several notifications that occur
when a page is laid out, a process that involves the various elements of the page being sized and posi-
tioned. This layout process occurs following the first definition of a page (generally in the page con-
structor), and a new layout pass takes place in response to any change that might affect layout—for
example, when views are added to a ContentPage or a StackLayout, removed from these objects, or
when properties are set on visual elements that might result in their sizes changing.

A new layout is also triggered when the screen size changes. This happens mostly when the phone
is swiveled between portrait and landscape modes.

A full familiarity with the Xamarin.Forms layout system often accompanies the job of writing your
own Layout<View> derivatives. This task awaits us in Chapter 26, “Custom layouts.” Until then, simply
knowing when wWidth and Height properties change is helpful for working with sizes of visual objects.
You can attach a SizeChanged handler to any visual object on the page, including the page itself. The
WhatSize program demonstrates how to obtain the page’s size and display it:

public class WhatSizePage : ContentPage

{
Label Tabel;

public WhatSizePage()
{

Tabel = new Label

{
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center

};

Content = label;

SizeChanged += OnPageSizeChanged;
}

void OnPageSizeChanged(object sender, EventArgs args)

Chapter 5 Dealing with sizes 92

Tlabel.Text = String.Format("{0} \uO0D7 {1}", Width, Height);
}

This is the first example of event handling in this book, and you can see that events are handled in the
normal C# and .NET manner. The code at the end of the constructor attaches the onPageSize-
Changed event handler to the sizeChanged event of the page. The first argument to the event han-
dler (customarily named sender) is the object firing the event, in this case the instance of whatsize-
Page, but the event handler doesn't use that. Nor does the event handler use the second argument—
the so-called event arguments—which sometimes provides more information about the event.

Instead, the event handler accesses the Label element (conveniently saved as a field) to display the
Width and Height properties of the page. The Unicode character in the String.Format call is a
times (x) symbol.

The sizeChanged event is not the only opportunity to obtain an element’s size. VisualElement
also defines a protected virtual method named OnSizeaAllocated that indicates when the visual ele-
ment is assigned a size. You can override this method in your ContentPage derivative rather than
handling the sizeChanged event, but OnsizeAllocated is sometimes called when the size isn't actu-
ally changing.

Here's the program running on the three standard platforms:

neEs e % @ 1034

1218 PM

360 x 567 341.333343505859 x

375 x 667

546.222249984741

For the record, these are the sources of the screens in these three images:

e The iPhone 6 simulator, with pixel dimensions of 750 x 1334.

Chapter 5 Dealing with sizes 93

e An LG Nexus 5 with a screen size of 1080 x 1920 pixels.
e A Nokia Lumia 925 with a screen size of 768 x 1280 pixels.

Notice that the vertical size perceived by the program on the Android does not include the area oc-
cupied by the status bar or bottom buttons; the vertical size on the Windows 10 Mobile device does
not include the area occupied by the status bar.

By default, all three platforms respond to device orientation changes. If you turn the phones (or em-
ulators) 90 degrees counterclockwise, the phones display the following sizes:

w
~
=
w
@

& w

b I

X w

g o
o
o
[e2)
v
e

% §29510916888%¢S

The screenshots for this book are designed only for portrait mode, so you'll need to turn this book
sideways to see what the program looks like in landscape. The 598-pixel width on the Android excludes
the area for the buttons; the 335-pixel height excludes the status bar, which always appears above the
page. On the Windows 10 Mobile device, the 728-pixel width excludes the area for the status bar,
which appears in the same place but with rotated icons to reflect the new orientation.

Here's the program running on the iPad Air 2 simulator with a pixel dimension of 2048 x 1536.

Chapter 5 Dealing with sizes 94

11:02 AM

1024 x 768

Obviously, the scaling factor is 2. The screen is 9.7 inches in diagonal for a resolution of 132 DPI.

The Surface Pro 3 has a pixel dimension of 2160 x 1440. The scaling factor is selectable by the user
to make everything on the screen larger or smaller, but the recommended scaling factor is 1.5:

1440 x 920

The height displayed by WhatSize excludes the taskbar at the bottom of the screen. The screen is 12"
in diagonal for a resolution of 144 DPI.

Chapter 5 Dealing with sizes 95

A few notes on the WhatSize program itself:

WhatSize creates a single Label in its constructor and sets the Text property in the event handler.
That's not the only way to write such a program. The program could use the sizeChanged handler to
create a whole new Label with the new text and set that new Label as the content of the page, in
which case the previous Label would become unreferenced and hence eligible for garbage collection.
But creating new visual elements is unnecessary and wasteful in this program. It's best for the program
to create only one Label view and just set the Text property to indicate the page’s new size.

Monitoring size changes is the only way a Xamarin.Forms application can detect orientation
changes without obtaining platform-specific information. Is the width greater than the height? That's
landscape. Otherwise, it's portrait.

By default, the Visual Studio and Xamarin Studio templates for Xamarin.Forms solutions enable de-
vice orientation changes for all three platforms. If you want to disable orientation changes—for exam-
ple, if you have an application that just doesn’t work well in portrait or landscape mode—you can do
so.

For iOS, first display the contents of Info.plist in Visual Studio or Xamarin Studio. In the iPhone De-
ployment Info section, use the Supported Device Orientations area to specify which orientations are
allowed.

For Android, in the Activity attribute on the MainActivity class in the MainActivity.cs file, add:

ScreenOrientation = ScreenOrientation.Landscape

or
ScreenOrientation = ScreenOrientation.Portrait
The Activity attribute generated by the solution template contains a ConfigurationChanges ar-

gument that also refers to screen orientation, but the purpose of ConfigurationChanges is to inhibit
a restart of the activity when the phone’s orientation or screen size changes.

For the two Windows Phone projects, the class and enumeration to use is in the Windows-
.Graphics.Display namespace. In the MainPage constructor in the MainPage.xaml.cs file, set the
static DisplayInformation.AutoRotationPreferences property to one or more members of the
DisplayOrientations enumeration combined with the C# bitwise OR operation. To restrict the pro-
gram to landscape or portrait, use:

DisplayInformation.AutoRotationPreferences = DisplayOrientations.Landscape

or:

DisplayInformation.AutoRotationPreferences = DisplayOrientations.Portrait;

Chapter 5 Dealing with sizes 96

Metrical sizes

Now that you know how sizes in a Xamarin.Forms application approximately correspond to metrical
dimensions of inches and centimeters, you can size elements so that they are approximately the same
size on various devices. Here's a program called MetricalBoxView that displays a Boxview with a
width of approximately one centimeter and a height of approximately one inch:

public class MetricalBoxViewPage : ContentPage

{
public MetricalBoxViewPage()
{
Content = new BoxView
{
Color = Color.Accent,
WidthRequest = 64,
HeightRequest = 160,
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center
b
}
}

If you actually take a ruler to the object on your phone's screen, you'll find that it's not exactly the
desired size but certainly close to it, as these screenshots also confirm:

12:21PM

This program is intended to run on phones. If you want to run it on tablets as well, you might use
the Device.Idiom property to set a somewhat smaller factor for the iPad and Windows tablets.

Chapter 5 Dealing with sizes 97

Estimated font sizes

The FontSize property on Label and Button specifies the approximate height of font characters
from the bottom of descenders to the top of ascenders, often (depending on the font) including dia-
critical marks as well. In most cases you'll want to set this property to a value returned by the De-
vice.GetNamedSize method. This allows you to specify a member of the Namedsize enumeration:
Default, Micro, Small, Medium, Or Large.

Alternatively, you can set the FontSize property to actual numeric font sizes, but there’s a little
problem involved (to be discussed in detail shortly). For the most part, you specify font sizes in the
same device-independent units used throughout Xamarin.Forms, which means that you can calculate
device-independent font sizes based on the platform resolution.

For example, suppose you want to use a 12-point font in your program. The first thing you should
know is that while a 12-point font might be a comfortable size for printed material or a desktop screen,
on a phone it's quite large. But let's continue.

There are 72 points to the inch, so a 12-point font is one-sixth of an inch. Multiply by the DPI reso-
lution of 160 and that's about 27 device-independent units.

Let's write a little program called FontSizes, which begins with a display similar to the NamedFont-
Sizes program in Chapter 3 but then displays some text with numeric point sizes, converted to device-
independent units using the device resolution:

public class FontSizesPage : ContentPage
{
public FontSizesPage()
{
BackgroundColor = Color.White;
StacklLayout stackLayout = new StacklLayout
{
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center

1

// Do the NamedSize values.

NamedSize[] namedSizes =

{
NamedSize.Default, NamedSize.Micro, NamedSize.Small,
NamedSize.Medium, NamedSize.lLarge

};

foreach (NamedSize namedSize in namedSizes)
{

double fontSize = Device.GetNamedSize(namedSize, typeof(Label));

stackLayout.Children.Add(new Label
{
Text = String.Format("Named Size = {0} ({1:F2})",

Chapter 5 Dealing with sizes 98

namedSize, fontSize),
FontSize = fontSize,
TextColor = Color.Black
b

// Resolution in device-independent units per 1inch.
double resolution = 160;

// Draw horizontal separator line.
stackLayout.Children.Add(
new BoxView
{
Color = Color.Accent,
HeightRequest = resolution / 80
b

// Do some numeric point sizes.
int[] ptSizes = { 4, 6, 8, 10, 12 };

foreach (double ptSize in ptSizes)

{
double fontSize = resolution * ptSize / 72;
stackLayout.Children.Add(new Label
{
Text = String.Format("Point Size = {0} ({1:F2})",
ptSize, fontSize),
FontSize = fontSize,
TextColor = Color.Black
b;
}

Content = stacklLayout;

To facilitate comparisons among the three screens, the backgrounds have been uniformly set to
white and the labels to black. Notice the BoxView inserted into the StackLayout between the two
foreach blocks: the HeightRequest setting gives it a device-independent height of approximately
one-eightieth of an inch, and it resembles a horizontal rule.

Interestingly, the resultant visual sizes based on the calculation are more consistent among the plat-
forms than the named sizes. The numbers in parentheses are the numeric FontSize values in device-
independent units:

Chapter 5 Dealing with sizes

Named Size = Default (17.00)
Named Siza = Micra (12.08)

Named Size = Small (14.00)
Named Size = Medium (17.00)

Named Size = Large (22.00)

P s o 17333
Point Size = 8 (17.76)
Point Size = 10 (22.22)

Point Size = 12 (26.67)

* %% @ n:2s

Named Size = Default (14.00)
Narmed Size - Micto (100}
Named Size = Small (14.00)

Named Size = Medium (18.00)
Named Size = Large (22.00)

i ine =4 (8.89)

Point Size = 6 (13.33)
Point Size = 8 (17.78)
Point Size = 10 (22.22)

Point Size =12 (26.67)

Named Size = Default (15.00)
Named Size = Micro (15.67)
Named Size = Small (18.67)

Named Size = Medium (22.67)

Named Size = Large
(32.00)

e
Point Size = 6 (13.33)

Point Size = 8 (17.78)
Point Size = 10 (22.22)

99

Point Size = 12 (26.67)

Fitting text to available size

You might need to fit a block of text to a particular rectangular area. It's possible to calculate a value
for the Fontsize property of Label based on the number of text characters, the size of the rectangu-
lar area, and just two numbers.

The first number is line spacing. This is the vertical height of a Label view per line of text. For the
default fonts associated with the three platforms, it is roughly related to the Fontsize property as
follows:

e {OS:lineSpacing = 1.2 * label.FontSize
e Android: 1ineSpacing = 1.2 * 1abel.FontSize
e Windows Phone: 1ineSpacing = 1.3 * label.FontSize

The second helpful number is average character width. For a normal mix of uppercase and lower-
case letters for the default fonts, this average character width is about half of the font size, regardless
of the platform:

e averageCharacterWidth = 0.5* label.FontSize

For example, suppose you want to fit a text string containing 80 characters in a width of 320 units,
and you'd like the font size to be as large as possible. Divide the width (320) by half the number of
characters (40), and you get a font size of 8, which you can set to the FontSize property of Label. For

Chapter 5 Dealing with sizes 100

text that's somewhat indeterminate and can't be tested beforehand, you might want to make this cal-
culation a little more conservative to avoid surprises.

The following program uses both line spacing and average character width to fit a paragraph of text
on the page, minus the area at the top of the iPhone occupied by the status bar. To make the exclusion
of the iOS status bar a bit easier in this program, the program uses a ContentvView.

ContentView derives from Layout but only adds a Content property to what it inherits from
Layout. ContentView is also the base class to Frame. Although Contentview has no functionality
other than occupying a rectangular area of space, it is useful for two purposes: Most often, Content-
View can be a parent to other views to define a new custom view. But Contentview can also simulate
a margin.

As you might have noticed, Xamarin.Forms has no concept of a margin, which traditionally is similar
to padding except that padding is inside a view and a part of the view, while a margin is outside the
view and actually part of the parent’s view. A ContentView lets us simulate this. If you find a need to
set a margin on a view, put the view in a ContentView and set the Padding property on the con-
tentView. ContentView inherits a Padding property from Layout.

The EstimatedFontSize program uses ContentView in a slightly different manner: It sets the cus-
tomary padding on the page to avoid the iOS status bar, but then it sets a Contentview as the con-
tent of that page. Hence, this Contentview is the same size as the page, but excluding the iOS status
bar. It is on this ContentView that the SizeChanged event is attached, and it is the size of this con-
tentView that is used to calculate the text font size.

The sizeChanged handler uses the first argument to obtain the object firing the event (in this case
the Contentview), which is the object in which the Label must fit. The calculation is described in
comments:

public class EstimatedFontSizePage : ContentPage

{
Label Tabel;

public EstimatedFontSizePage()
{
Tabel = new Label(Q);
Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);
ContentView contentView = new ContentView
{
Content = Tlabel
b
contentView.SizeChanged += OnContentViewSizeChanged;
Content = contentView;

}

void OnContentViewSizeChanged(object sender, EventArgs args)
{
string text =
"A default system font with a font size of S " +

Chapter 5 Dealing with sizes 101

"has a Tline height of about ({0:F1} * S) and an " +
"average character width of about ({1:F1} * S). " +
"On this page, which has a width of {2:F0} and a " +
"height of {3:F0}, a font size of 7?1 should " +

"comfortably render the ??2 characters in this " +

"paragraph with ?3 Tines and about ?4 characters +
"per line. Does it work?";

// Get View whose size is changing.
View view = (View)sender;

// Define two values as multiples of font size.
double TineHeight = Device.OnPlatform(1.2, 1.2, 1.3);
double charWidth = 0.5;

// Format the text and get its character length.
text = String.Format(text, lineHeight, charWidth, view.Width, view.Height);
int charCount = text.Length;

// Because:

// TineCount = view.Height / (lineHeight * fontSize)

// charsPerLine = view.Width / (charWidth * fontSize)

// charCount = TineCount * charsPerLine

// Hence, solving for fontSize:

int fontSize = (int)Math.Sqrt(view.Width * view.Height /
(charCount * 1ineHeight * charWidth));

// Now these values can be calculated.
int TineCount = (int)(view.Height / (lineHeight * fontSize));
int charsPerLine = (int)(view.Width / (charWidth * fontSize));

// Replace the placeholders with the values.

text = text.Replace("?1", fontSize.ToString());
text = text.Replace("??2", charCount.ToString());
text = text.Replace("?3", T1ineCount.ToString(Q));
text = text.Replace("?4", charsPerLine.ToString());

// Set the Label properties.
Tabel.Text = text;
Tlabel.FontSize = fontSize;

The text placeholders named “?1", "??2", "?3", and "?4" were chosen to be unique but also to be the
same number of characters as the numbers that replace them.

If the goal is to make the text as large as possible without the text spilling off the page, the results
validate the approach:

Chapter 5 Dealing with sizes

12:23 PM -

A default system font

ith a font size of S has
a line height of about (1.2
“ S) and an average
character width of about

(0.5 * 8). On this page,
hich has a width of 375

ont size of 34 should
icomfortably render the
34 characters in this
paragraph with 15 lines
and about 22 characters
per line. Does it work?

= * % @188
A default system font
with a font size of S has a
line height of about (1.2 *
S) and an average
character width of about
(0.5*S). On this page,
which has a width of 360
and a height of 567, a font
size of 31 should
comfortably render the
334 characters in this
paragraph with 15 lines
and about 23 characters
per line. Does it work?

aill 7 G- 3:32
A default system font wit
font size of S has a line
height of about (1.3 * S)
and an average character
idth of about (0.5 * S).
On this page, which has a
idth of 341 and a height
of 546, a font size of 29
should comfortably render
he 334 characters in this
paragraph with 14 lines
and about 23 characters
per line. Does it work?

102

Not bad. Not bad at all. The text actually displays in one less line that indicated on all three platforms,
but the technique seems sound. It's not always the case that the same Fontsize is calculated for land-
scape mode, but it happens sometimes:

$MJom J1 sao(] aul| Jad siajoeieyo)
6E 1noge pue saul| g yum ydeibered

S|} Ul SISJOBIBYD EE BUL Jepual A|lqeuojuIod
pInoys ¢ 10 92Is Juo} B ‘GGE Jo 1ybiey B

pue /99 10 UIpIm B sey yaiym ‘abed siy; ug)
Ue pue (S , Z'}) Inoge jo ybiey auy| & sey

‘(S . §°0) INOQE JO Yipim Jsjoeieyo sbelse
S JO 8ZIS JUO} B YJIM JUO) WIBSAS }Nejep vy

oM 11 seo(“aul| Jad sie1oeleyd
8€ 1noge pue saul| 6 yum ydeibeled siy;
Ul S19}oBIRYD FEE DY) JOpual A|ge1IoJWO0D
pInoys L jo azis 1o} e ‘Geg Jo 1yblay e

pue 86§ 4O Yipim e sey yoiym ‘sbed siyi ug
S JO 9ZIS U0} B ULIM JU0) WaIsAS 1 nejap v

‘(S « G°0) IN0OQE JO YIpIm Jajoeleyd abelane
ue pue (S x Z'L) Inoge jo ybiay aul| e sey

ay o a

Y,

saul| g yum ydesbeied siyy ul siaydeleyd
fE€ 2y} 1apual Ajgenojwod pinoys

8¢ JO 2zIs U0y B ‘L€ Jo WBiay e pue
G265 4O Uipim e sey ydiym ‘abed siyy ug

>
a
@
®
@
c
=
w
=
w
—+
@
3
-
o
3
—
z
—+
5
m
-
=]
3
=
“,
N
(]
o]
=4
w

11 sao("aul| Jad siaioeleyd /€ Inoge pue

L
< D
m wn
)
Q =
m 3
n @
T
52
'S
—+
o~
= S
E
Q o
5 0
c
OP—“
o~
o =
8‘@
C*
~ W
ﬁ-ﬂ\-’
S w
n 3
Y
w8

Chapter 5 Dealing with sizes 103

A fit-to-size clock

The Device class includes a static StartTimer method that lets you set a timer that fires a periodic
event. The availability of a timer event means that a clock application is possible, even if it displays the
time only in text.

The first argument to Device.StartTimer is an interval expressed as a TimeSpan value. The timer
fires an event periodically based on that interval. (You can go down as low as 15 or 16 milliseconds,
which is about the period of the frame rate of 60 frames per second common on video displays.) The
event handler has no arguments but must return true to keep the timer going.

The FitToSizeClock program creates a Label for displaying the time and then sets two events: the
SizeChanged event on the page for changing the font size, and the Device.StartTimer event for
one-second intervals to change the Text property.

Many C# programmers these days like to define small event handlers as anonymous lambda func-
tions. This allows the event-handling code to be very close to the instantiation and initialization of the
object firing the event instead of somewhere else in the file. It also allows referencing objects within
the event handler without storing those objects as fields.

In this program, both event handlers simply change a property of the Label, and they are both ex-
pressed as lambda functions so that they can access the Label without it being stored as a field:

public class FitToSizeClockPage : ContentPage

{
public FitToSizeClockPage()
{
Label clockLabel = new Label
{
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center
};

Content = clockLabel;

// Handle the SizeChanged event for the page.
SizeChanged += (object sender, EventArgs args) =>

{
// Scale the font size to the page width
// (based on 11 characters in the displayed string).
if (this.Width > 0)
clockLabel.FontSize = this.Width / 6;
}

// Start the timer going.
Device.StartTimer(TimeSpan.FromSeconds(1), (O =>
{
// Set the Text property of the Label.
clockLabel.Text = DateTime.Now.ToString("h:mm:ss tt");

Chapter 5 Dealing with sizes 104

return true;

B;

The startTimer handler specifies a custom formatting string for bateTime that results in 10 or 11
characters, but two of those are capital letters, and those are wider than average characters. The
SizeChanged handler implicitly assumes that 12 characters are displayed by setting the font size to
one-sixth of the page width:

12:25:16 PM 12:25:27 PM 12:25:41 PM

Of course, the text is much larger in landscape mode:

Chapter 5 Dealing with sizes 105

¢l
9¢-¢6l
Cl

-G¢
9¢

- =
S + W
T Y i
Z < <

This one-second timer doesn't tick exactly at the beginning of every second, so the displayed time
might not precisely agree with other time displays on the same device. You can make it more accurate
by setting a more frequent timer tick. Performance won't be impacted much because the display still
changes only once per second and won't require a new layout cycle until then.

Accessibility issues

The EstimatedFontSize program and the FitToSizeClock program both have a subtle flaw, but the
problem might not be so subtle if you're one of the many people who can’t comfortably read text on a
mobile device and uses the device's accessibility features to make the text larger.

On iOSs, run the Settings app, and choose General, and Accessibility, and Larger Text. You can
then use a slider to make text on the screen larger or smaller. The page indicates that text will only be
adjusted in iOS applications that support the Dynamic Type feature.

On Android, run the Settings app, and choose Display and then Font size. You are presented with
four radio buttons for selecting Small, Normal (the default), Large, or Huge.

On a Windows 10 Mobile device, run the Settings app, and choose Ease of Access and then More
options. You can then move a slider labeled Text scaling from 100% to 200%.

Here's what you will discover:

The iOS setting has no effect on Xamarin.Forms applications.

Chapter 5 Dealing with sizes 106

The Android setting affects the values returned from Device.GetNamedSize. If you select some-
thing other than Normal and run the FontSizes program again, you'll see that for the
NamedSize.Default argument, Device.GetNamedSize returns 14 when the setting is Normal (as
the earlier screenshot shows), but returns 12 for a setting of Small, 16 for Large, and 18 1/3 for Huge.

Also, all the text displayed on the Android screen is a different size—either smaller or larger de-
pending on what setting you selected—even for constant FontSize values.

On Windows 10 Mobile, the values returned from Device.GetNamedSize do not depend on the
accessibility setting, but all the text is displayed larger.

This means that the EstimatedFontSize or FitToSizeClock programs do not run correctly on An-
droid or Windows 10 Mobile with the accessibility setting for larger text. Part of the text is truncated.

Let's explore this a little more. The AccessibilityTest program displays two Label elements on its
page. The first has a constant FontSize of 20, and the second merely displays the size of the first
Label when its size changes:

public class AccessibilityTestPage : ContentPage

{
public AccessibilityTestPage()
{
Label testLabel = new Label
{
Text = "FontSize of 20" + Environment.NewLine + "20 characters across",
FontSize = 20,
HorizontalTextAlignment = TextAlignment.Center,
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.CenterAndExpand
};
Label displayLabel = new Label
{
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.CenterAndExpand
};
testLabel.SizeChanged += (sender, args) =>
{
displayLabel.Text = String.Format("{0:FO0} \u0O0OD7 {1:F0}", testlLabel.Width,
testlLabel.Height);
};
Content = new Stacklayout
{
Children =
{
testlLabel,
displayLabel
}
b

Chapter 5 Dealing with sizes 107

Normally, the second Labe1l displays a size that is roughly consistent with the assumptions described
earlier:

FontSize of 20
20 characters across

FontSize of 20
20 characters across

But now go into the accessibility settings and crank them all the way up. Both Android and Windows
10 Mobile display larger text:

FontSize of 20 FontSize of 20
20 characte ross
i sl 20 characters across

FontSize of 20
20 characters across

Chapter 5 Dealing with sizes 108
The character size assumptions described earlier are no longer valid, and that's why the programs fail

to fit the text.

But there is an alternative approach to sizing text to a rectangular area.

Empirically fitting text

Another approach to fitting text within a rectangle of a particular size involves empirically determining
the size of the rendered text based on a particular font size and then adjusting that font size up or
down. This approach has the advantage of working on all devices regardless of the accessibility
settings.

But the process can be tricky: The first problem is that there is not a clean linear relationship be-
tween the font size and the height of the rendered text. As text gets larger relative to the width of its
container, more line breaks result, with more wasted space. A calculation to find the optimum font size
often involves a loop that narrows in on the value.

A second problem involves the actual mechanism of obtaining the size of a Label rendered with a
particular font size. You can set a SizeChanged handler on the Label, but within that handler you
don't want to make any changes (such as setting a new Fontsize property) that will cause recursive
calls to that handler.

A better approach is calling the GetsSizeRequest method defined by VisualElement and inher-
ited by Label and all other views. GetSizeRequest requires two arguments—a width constraint and
a height constraint. These values indicate the size of the rectangle in which you want to fit the element,
and one or the other can be infinity. When using GetSizeRequest with a Label, generally you set
the width constraint argument to the width of the container and the height constraint to

Double.PositiveInfinity

The GetsizeRequest method returns a value of type sizeRequest, a structure with two proper-
ties, named Request and Minimum, both of type Size. The Request property indicates the size of the
rendered text. (More information on this and related methods can be found in Chapter 26.)

The EmpiricalFontSize project demonstrates this technique. For convenience, it defines a small
structure named FontCalc whose constructor makes the call to GetSizeRequest for a particular
Label (already initialized with text), a trial font size, and a text width:

struct FontCalc
{
public FontCalc(Label Tabel, double fontSize, double containerWidth)
: thisQ
{
// Save the font size.
FontSize = fontSize;

// Recalculate the Label height.

Chapter 5 Dealing with sizes 109

label.FontSize = fontSize;
SizeRequest sizeRequest =
Tlabel.GetSizeRequest(containerWidth, Double.PositiveInfinity);

// Save that height.
TextHeight = sizeRequest.Request.Height;

public double FontSize { private set; get; }

public double TextHeight { private set; get; }
}

The resultant height of the rendered Label is saved in the TextHeight property.

When you make a call to GetSizeRequest on a page or a layout, the page or layout needs to ob-
tain the sizes of all its children down through the visual tree. This has a performance penalty, of course,
so you should avoid making calls like that unless necessary. But a Label has no children, so calling
GetSizeRequest On a Label is not nearly as bad. However, you should still try to optimize the calls.
Avoid looping through a sequential series of font size values to determine the maximum value that
doesn't result in text exceeding the container height. A process that algorithmically narrows in on an
optimum value is better.

GetSizeRequest requires that the element be part of a visual tree and that the layout process has
at least partially begun. Don't call GetSizeRequest in the constructor of your page class. You won't
get information from it. The first reasonable opportunity is in an override of the page’s OnAppearing
method. Of course, you might not have sufficient information at this time to pass arguments to the
GetSizeRequest method

However, calling GetSizeRequest doesn't have any side effects. It doesn’t cause a new size to be
set on the element, which means that it doesn’t cause a SizeChanged event to be fired, which means
that it's safe to call in a SizeChanged handler.

The EmpiricalFontSizePage class instantiates FontCalc values in the SizeChanged handler of
the ContentView that hosts the Label. The constructor of each Fontcalc value makes GetSize-
Request calls on the Label and saves the resultant TextHeight. The SizeChanged handler begins
with trial font sizes of 10 and 100 under the assumption that the optimum value is somewhere be-
tween these two and that these represent lower and upper bounds. Hence the variable names 1ower-
FontCalc and upperFontCalc:

public class EmpiricalFontSizePage : ContentPage

{
Label Tabel;

public EmpiricalFontSizePage()
{
label = new Label(Q);

Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);

Chapter 5 Dealing with sizes

ContentView contentView = new ContentView

{
Content = Tlabel

1

contentView.SizeChanged += OnContentViewSizeChanged;

Content = contentView;

void OnContentViewSizeChanged(object sender, EventArgs args)

{

// Get View whose size is changing.
View view = (View)sender;

if (view.Width <= 0 || view.Height <= 0)

return;

Tabel.Text =

"This is a paragraph of text displayed with " +

"a FontSize value of ?? that is empirically " +
"calculated in a Toop within the SizeChanged " +
"handler of the Label's container. This technique " +

"

"can be tricky: You don't want to get into " +
"an infinite Toop by triggering a Tayout pass +
"with every calculation. Does it work?";

"

// Calculate the height of the rendered text.

FontCalc TowerFontCalc
FontCalc upperFontCalc

new FontCalc(label, 10, view.Width);
new FontCalc(label, 100, view.Width);

while (upperFontCalc.FontSize - lowerFontCalc.FontSize > 1)

// Get the average font size of the upper and Tower bounds.
double fontSize = (TowerFontCalc.FontSize + upperFontCalc.FontSize) / 2;

// Check the new text height against the container height.

FontCalc newFontCalc = new FontCalc(label, fontSize, view.Width);

if (newFontCalc.TextHeight > view.Height)

{
{
upperFontCalc =
}
else
{
TowerFontCalc =
}
}

// Set the final font size and the text with the embedded value.

newFontCalc;

newFontCalc;

label.FontSize = TowerFontCalc.FontSize;

Tabel.Text = label.Text.Replace("??", Tabel.FontSize.ToString("F0"));

110

Chapter 5 Dealing with sizes

111

In each iteration of the while loop, the FontSize properties of those two FontCalc values are aver-
aged and a new FontCalc is obtained. This becomes the new lowerFontCalc or upperFontCalc
value depending on the height of the rendered text. The loop ends when the calculated font size is
within one unit of the optimum value.

About seven iterations of the loop are sufficient to get a value that is clearly better than the esti-
mated value calculated in the earlier program:

his is a paragraph of
ext displayed with a
FontSize value of 36
hat is empirically
calculated in a loop

ithin the SizeChanged
handler of the Label's

icontainer. This

echnique can be
ricky: You don't want
o get into an infinite
loop by triggering a
layout pass with every
| calculation. Does it
ork?

] % % O @ 10:04
This is a paragraph of
text displayed with a
FontSize value of 34
that is empirically
calculated in a loop
within the SizeChanged
handler of the Label's
container. This
technigue can be tricky:
You don't want to get
into an infinite loop by
triggering a layout pass
with every calculation.
Does it work?

ail -, 343

his is a paragraph of
ext displayed with a
FontSize value of 30 that
is empirically calculated
in a loop within the
SizeChanged handler of
he Label's container.

his technique can be
ricky: You don't want to
get into an infinite loop
by triggering a layout
pass with every
calculation. Does it work?

Turning the phone sideways triggers another recalculation that results in a similar (though not nec-

essarily the same) font size:

112

Chapter 5 Dealing with sizes

* This is a paragraph of text displayed
with a FontSize value of 30 that is

empirically calculated in a loop within
the SizeChanged handler of the Label's
container. This technique can be tricky:
You don't want to get into an infinite
loop by triggering a layout pass with

“ every calculation. Does it work?

¥ % D' B 100
This is a paragraph of text displayed
with a FontSize value of 35 that is
empirically calculated in a loop within
the SizeChanged handler of the Label's o
container. This technique can be tricky:
You don't want to get into an i

_loop by triggering a layout pass

every calculation. Does it work?

his is a paragraph of text displayed with
a FontSize value of 37 that is empirically
calculated in a loop within the
SizeChanged handler of the Label's
container. This technique can be tricky:

‘ou don't want to get into an infinite loop
by triggering a layout pass with every
calculation. Does it work?

It might seem that the algorithm could be improved beyond simply averaging the Fontsize prop-
erties from the lower and upper FontCalc values. But the relationship between the font size and ren-

dered text height is rather complex, and sometimes the easiest approach is just as good.

Chapter 6
Button clicks

The components of a graphical user interface can be divided roughly into views that are used for
presentation, which display information to the user, and interaction, which obtain input from the user.
While the Label is the most basic presentation view, the Button is probably the archetypal interactive
view. The Button signals a command. It's the user’s way of telling the program to initiate some ac-
tion—to do something.

A Xamarin.Forms button displays text, with or without an accompanying image. (Only text buttons
are described in this chapter; adding an image to a button is covered in Chapter 13, "Bitmaps.”) When
the user’s finger presses on a button, the button changes its appearance somewhat to provide feed-
back to the user. When the finger is released, the button fires a c1icked event. The two arguments of
the clicked handler are typical of Xamarin.Forms event handlers:

e The first argument is the object firing the event. For the C1icked handler, this is the particular
Button object that's been tapped.

e The second argument sometimes provides more information about the event. For the c1icked
event, the second argument is simply an EventArgs object that provides no additional infor-
mation.

Once an application begins implementing user interaction, some special needs arise: The applica-
tion should make an effort to save the results of that interaction if the program happens to be termi-
nated before the user has finished working with it. For that reason, this chapter also discusses how an
application can save transient data, particularly in the context of application lifecycle events. These are
described in the section “Saving transient data.”

Processing the click

Here's a program named ButtonLogger with a Button that shares a StackLayout with a Scroll-
View containing another StackLayout. Every time the Button is clicked, the program adds
a new Label to the scrollable stackLayout, in effect logging all the button clicks:

public class ButtonLoggerPage : ContentPage

{

StackLayout loggerLayout = new StacklLayout(Q);

public ButtonLoggerPage()

{
// Create the Button and attach Clicked handler.
Button button = new Button

Chapter 6 Button clicks 114

Text = "Log the Click Time"
};
button.Clicked += OnButtonClicked;

this.Padding = new Thickness(5, Device.OnPlatform(20, 0, 0), 5, 0);

// Assemble the page.
this.Content = new StacklLayout

{
Children =
{
button,
new ScrollView
{
VerticalOptions = LayoutOptions.Fill1AndExpand,
Content = loggerLayout
}
}
b
}
void OnButtonClicked(object sender, EventArgs args)
{
// Add Label to scrollable StackLayout.
loggerLayout.Children.Add(new Label
{
Text = "Button clicked at " + DateTime.Now.ToString("T")
b
}

In the programs in this book, event handlers are given names beginning with the word on, followed
by some kind of identification of the view firing the event (sometimes just the view type), followed by
the event name. The resultant name in this case is OnButtonClicked.

The constructor attaches the c1icked handler to the Button right after the Button is created. The
page is then assembled with a stackLayout containing the Button and a Scrol1lview with another
StackLayout, hamed loggerLayout. Notice that the Scrollview has its VerticalOptions set to
FillAndExpand so that it can share the stackLayout with the Button and still be visible and scrolla-
ble.

Here's the display after several Button clicks:

Chapter 6 Button clicks

Button clicked at 3:

Button clicked at 3:

Button clicked at 3:

Button clicked at 3;

Button clicked at 3:23:39 PM
Button clicked at 3:

Button clicked at 3:

Button clicked at 3:23:

LOG THE CLICK TIME

LA

0324

Log the Click Time

Button clicked at 3:24:46 PM
Button clicked at 3:24:47 PM
Button clicked at 3:24:49 PM
Button clicked at 3:24:51 PM
Button clicked at 3:24:52 PM
Button clicked at 3:24:53 PM
Button clicked at 3:24:55 PM
Button clicked at 3:25:01 PM

115

Button clicked at 3:23:41 PM
Button clicked at 3:23:42 PM

Button clicked at 3:23:44 PM

As you can see, the Button looks a little different on the three screens. That's because the button is
rendered natively on the individual platforms: on the iPhone it's a UIButton, on Android it's an
Android Button, and on Windows 10 Mobile it's a Windows Runtime Button. By default the button
always fills the area available for it and centers the text inside.

Button defines several properties that let you customize its appearance:
e FontFamily of type string

e FontSize of type double

e FontAttributes of type FontAttributes

e TextColor of type Color (defaultis Color.Default)

e BorderColor of type Color (defaultis Color.Default)

e BorderWidth of type double (default is 0)

e BorderRadius of type double (default is 5)

e Image (to be discussed in Chapter 13)

Button also inherits the BackgroundColor property (and a bunch of other properties) from
VisualElement and inherits HorizontalOptions and VerticalOptions from vView.

Some Button properties might work a little differently on the various platforms. As you can see,
none of the buttons in the screenshots has a border. (However, the Windows Phone 8.1 button has a
visible white border by default.) If you set the BorderWidth property to a nonzero value, the border

Chapter 6 Button clicks 116

becomes visible only on the iPhone, and it's black. If you set the BorderColor property to something
other than Color.Default, the border is visible only on the Windows 10 Mobile device. If you want a
visible border on both iOS and Windows 10 mobile devices, set both Borderwidth and BorderColor.
But the border still won't show up on Android devices unless you also set the BackgroundColor
property. Customizing a button border is a good opportunity for using Device.onPlatform (as you'll
see in Chapter 10, "“XAML markup extensions”).

The BorderRadius property is intended to round off the sharp corners of the border, and it works
on iOS and Android if the border is displayed, but it doesn’t work on Windows 10 and Windows 10
Mobile. The BorderRadius works on Windows 8.1 and Windows Phone 8.1, but if you use it with
BackgroundColor, the background is not enclosed within the border.

Suppose you wrote a program similar to ButtonLogger but did not save the 1oggerLayout object
as a field. Could you get access to that stackLayout object in the Clicked event handler?

Yes! It's possible to obtain parent and child visual elements by a technique called walking the visual
tree. The sender argument to the OnButtonClicked handler is the object firing the event, in this case
the Button, so you can begin the c1icked handler by casting that argument:

Button button = (Button)sender;

You know that the Button is a child of a StackLayout, so that object is accessible from the Parent
property. Again, some casting is required:

StackLayout outerLayout = (StacklLayout)button.Parent;

The second child of this stackLayout is the Scrol1view, so the Children property can be indexed
to obtain that:

ScrollView scrollView = (ScrollView)outerLayout.Children[1];

The content property of this Scrollview is exactly the StackLayout you were looking for:

StackLayout loggerLayout = (StacklLayout)scrollView.Content;

Of course, the danger in doing something like this is that you might change the layout someday
and forget to change your tree-walking code similarly. But the technique comes in handy if the code
that assembles your page is separate from the code handling events from views on that page.

Sharing button clicks

If a program contains multiple Button views, each Button can have its own Clicked handler. But in
some cases it might be more convenient for multiple Button views to share a common Clicked
handler.

Consider a calculator program. Each of the buttons labeled 0 through 9 basically does the same

Chapter 6 Button clicks 117

thing, and having 10 separate Clicked handlers for these 10 buttons—even if they share some com-
mon code—simply wouldn’t make much sense.

You've seen how the first argument to the c1icked handler can be cast to an object of type
Button. But how do you know which Button it is?

One approach is to store all the Button objects as fields and then compare the Button object fir-
ing the event with these fields.

The TwoButtons program demonstrates this technique. This program is similar to the previous pro-
gram but with two buttons—one to add Label objects to the stackLayout, and the other to remove
them. The two Button objects are stored as fields so that the c1icked handler can determine which
one fired the event:

public class TwoButtonsPage : ContentPage
{
Button addButton, removeButton;
StackLayout loggerLayout = new StacklLayout(Q);

public TwoButtonsPage()
{
// Create the Button views and attach Clicked handlers.
addButton = new Button
{
Text = "Add",
HorizontalOptions = LayoutOptions.CenterAndExpand
};
addButton.Clicked += OnButtonClicked;

removeButton = new Button

{
Text = "Remove",
HorizontalOptions = LayoutOptions.CenterAndExpand,
IskEnabled = false

b

removeButton.Clicked += OnButtonClicked;
this.Padding = new Thickness(5, Device.OnPlatform(20, 0, 0), 5, 0);

// Assemble the page.
this.Content = new StacklLayout

{
Children =
{
new StacklLayout
{
Orientation = StackOrientation.Horizontal,
Children =
{
addButton,
removeButton

Chapter 6 Button clicks 118

1,
new ScrollView
{
VerticalOptions = LayoutOptions.FillAndExpand,
Content = loggerLayout
}
}
1
}
void OnButtonClicked(object sender, EventArgs args)
{
Button button = (Button)sender;
if (button == addButton)
{
// Add Label to scrollable StackLayout.
loggerLayout.Children.Add(new Label
{
Text = "Button clicked at " + DateTime.Now.ToString("T")
b
}
else
{
// Remove topmost Label from StackLayout.
ToggerLayout.Children.RemoveAt(0);
}
// Enable "Remove" button only if children are present.
removeButton.IsEnabled = loggerLayout.Children.Count > 0;
}

}

Both buttons are given a HorizontalOptions value of CenterAndExpand so that they can be dis-
played side by side at the top of the screen by using a horizontal StackLayout:

Chapter 6 Button clicks 119

i Wa

REMOVE

Button clicked at 8:55:06 AM
Button clicked at 8:55:09 AM
Button clicked at 8:55:11 AM
Button dlicked at 8:55:13 AM
Button clicked at 8:55:17 AM
Button clicked at 8:55:19 AM
Button clicked at 8:55:21 AM

Button clicked at 8:54:23 AM
Button clicked at 8:54:24 AM
Button clicked at 5 AM
Button clicked at 8:54:27 AM
Button clicked at 8:54:28 AM
Button clicked at 8:54:28 AM
Button clicked at 8:54:31 AM

Notice that when the clicked handler detects removeButton, it simply calls the Removeat
method on the Children property:

loggerLayout.Children.RemoveAt(0);
But what happens if there are no children? Won't RemoveAt raise an exception?

It can’t happen! When the TwoButtons program begins, the IsEnabled property of the remove-
Button is initialized to false. When a button is disabled in this way, a dim appearance signals to the
user that it's nonfunctional. It does not provide feedback to the user and it does not fire C1icked
events. Toward the end of the c1icked handler, the TsEnabled property on removeButton is set to
true only if the loggerLayout has at least one child.

This illustrates a good general rule: if your code needs to determine whether a button clicked
event is valid, it's probably better to prevent invalid button clicks by disabling the button.

Anonymous event handlers

As with any event handler, you can define a c1icked handler as an anonymous lambda function.
Here's a program named ButtonLambdas that has a Label displaying a number and two buttons.
One button doubles the number, and the other halves the number. Normally, the number and Label
variables would be saved as fields. But because the anonymous event handlers are defined right in the
constructor after these variables are defined, the event handlers have access to these local variables:

public class ButtonLambdasPage : ContentPage
{

Chapter 6 Button clicks 120

public ButtonLambdasPage()

{

// Number to manipulate.
double number = 1;

// Create the Label for display.
Label 1abel = new Label

{
Text = number.ToStringQ),
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.CenterAndExpand
b

// Create the first Button and attach Clicked handler.
Button timesButton = new Button

{
Text = "Double",
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Button)),
HorizontalOptions = LayoutOptions.CenterAndExpand
};
timesButton.Clicked += (sender, args) =>
{
number *= 2;
Tlabel.Text = number.ToString(Q);
b

// Create the second Button and attach Clicked handler.
Button divideButton = new Button

{
Text = "Half",
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Button)),
HorizontalOptions = LayoutOptions.CenterAndExpand
b
divideButton.Clicked += (sender, args) =>
{
number /= 2;
Tlabel.Text = number.ToString();
b

// Assemble the page.
this.Content = new StacklLayout

{
Children =
{
Tlabel,
new StacklLayout
{

Orientation = StackOrientation.Horizontal,
VerticalOptions = LayoutOptions.CenterAndExpand,
Children =
{

timesButton,

divideButton

Chapter 6 Button clicks 121

}

Notice the use of Device.GetNamedSize to get large text for both the Label and the Button. When
used with Labe1l, the second argument of GetNamedsSize should indicate a Labe1, and when used
with the Button it should indicate a Button. The sizes for the two elements might be different.

Like the previous program, the two buttons share a horizontal StackLayout:

LA i ERt]

00078125 e 0.015625

DOUBLE
Double Double Half

The disadvantage of defining event handlers as anonymous lambda functions is that they can't be
shared among multiple views. (Actually they can, but some messy reflection code is involved.)

Distinguishing views with IDs

In the TwoButtons program, you saw a technique for sharing an event handler that distinguishes
views by comparing objects. This works fine when there aren’t very many views to distinguish, but it
would be a terrible approach for a calculator program.

The Element class defines a stylelId property of type string specifically for the purpose of iden-
tifying views. It's not used for anything internal to Xamarin.Forms, so you can set it to whatever is con-
venient for the application. You can test the values by using if and else statements or in a switch

Chapter 6 Button clicks 122

and case block, or you can use a pParse method to convert the strings into numbers or enumeration
members.

The following program isn't a calculator, but it is a numeric keypad, which is certainly part of a cal-
culator. The program is called SimplestKeypad and uses a StackLayout for organizing the rows and
columns of keys. (One of the intents of this program is to demonstrate that stackLayout is not quite
the right tool for this job!)

The program creates a total of five stackLayout instances. The mainStack is vertically oriented,
and four horizontal stackLayout objects arrange the 10 digit buttons. To keep things simple, the key-
pad is arranged with telephone ordering rather than calculator ordering:

public class SimplestKeypadPage : ContentPage
{

Label displayLabel;

Button backspaceButton;

public SimplestKeypadPage()
{
// Create a vertical stack for the entire keypad.
StacklLayout mainStack = new StacklLayout
{
VerticalOptions = LayoutOptions.Center,
HorizontalOptions = LayoutOptions.Center

1

// First row is the Label.
displayLabel = new Label

{
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
VerticalOptions = LayoutOptions.Center,
HorizontalTextAlignment = TextAlignment.End

};

mainStack.Children.Add(dispTlayLabel);

// Second row is the backspace Button.
backspaceButton = new Button

{
Text = "\u2lE6",
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Button)),
IsEnabled = false

};

backspaceButton.Clicked += OnBackspaceButtonClicked;
mainStack.Children.Add(backspaceButton);

// Now do the 10 number keys.
StackLayout rowStack = null;

for (int num = 1; num <= 10; num++)
{

if ((hum - 1) % 3 == 0)

{

Chapter 6 Button clicks 123

rowStack = new StacklLayout

{
Orientation = StackOrientation.Horizontal
};
mainStack.Children.Add(rowStack);
}
Button digitButton = new Button
{
Text = (num % 10) .ToString(),
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Button)),
StyleId = (num % 10).ToString(Q
}

digitButton.Clicked += OnDigitButtonClicked;

// For the zero button, expand to fill horizontally.
if (num == 10)

{
digitButton.HorizontalOptions = LayoutOptions.FiTlAndExpand;
}
rowStack.Children.Add(digitButton);
}
this.Content = mainStack;
}
void OnDigitButtonClicked(object sender, EventArgs args)
{
Button button = (Button)sender;
displayLabel.Text += (string)button.Styleld;
backspaceButton.IsEnabled = true;
}
void OnBackspaceButtonClicked(object sender, EventArgs args)
{
string text = displaylLabel.Text;
displayLabel.Text = text.Substring(0, text.Length - 1);
backspaceButton.IsEnabled = displaylLabel.Text.Length > 0;
}

The 10 number keys share a single clicked handler. The style1d property indicates the number
associated with the key, so the program can simply append that number to the string displayed by the
Label. The styleId happens to be identical to the Text property of the Button, and the Text prop-
erty could be used instead, but in the general case, things aren’t always quite that convenient.

The backspace Button is sufficiently different in function to warrant its own C1icked handler, al-
though it would surely be possible to combine the two methods into one to take advantage of any
code they might have in common.

To give the keypad a slightly larger size, all the text is given a FontSize using NamedSize.Large.
Here are the three renderings of the SimplestKeypad program:

Chapter 6 Button clicks 124

Of course, you'll want to press the keys repeatedly until you see how the program responds to a
really large string of digits, and you'll discover that it doesn't adequately anticipate such a thing. When
the Label gets too wide, it begins to govern the overall width of the vertical stackLayout, and the
buttons start shifting as well.

Moreover, if the buttons contain letters or symbols rather than numbers, the buttons will be
misaligned because each button width is based on its content.

Can you fix this problem with the Expands flag on the HorizontalOptions property? No. The
Expands flag causes extra space to be distributed equally among the views in the StackLayout. Each
view will increase additively by the same amount, but the buttons start out with different widths, and
they will always have different widths. For example, take a look at the two buttons in the TwoButtons
or ButtonLambdas program. Those buttons have their HorizontalOptions properties set to Fill-
AndExpand, but they are different widths because the width of the button content is different.

A better solution for these programs is the layout known as the Grid, coming up in Chapter 17.

Saving transient data

Suppose you're entering an important number in the SimplestKeypad program and you're inter-
rupted—perhaps with a phone call. Later on, you shut off the phone, effectively terminating the

program.

What should happen the next time you run SimplestKeypad? Should the long string of numbers
you entered earlier be discarded? Or should it seem as though the program resumed from the state

Chapter 6 Button clicks 125

you last left it? Of course, it doesn't matter for a simple demo program like SimplestKeypad, but in
the general case, users expect mobile applications to remember exactly what they were doing the last
time they interacted with the program.

For this reason, the application class supports two facilities that help the program save and re-
store data:

e The Properties property of Application is a dictionary with string keys and object
items. The contents of this dictionary are automatically saved prior to the application being ter-
minated, and the saved contents become available the next time the application runs.

e The Application class defines three protected virtual methods, named onstart, OnSleep,
and OnResume, and the App class generated by the Xamarin.Forms template overrides these
methods. These methods help an application deal with what are known as application lifecycle
events.

To use these facilities, you need to identify what information your application needs to save so that
it can restore its state after being terminated and restarted. In general, this is a combination of applica-
tion settings—such as colors and font sizes that the user might be given an opportunity to set—and
transient data, such as half-entered entry fields. Application settings usually apply to the entire applica-
tion, while transient data is unique to each page in the application. If each item of this data is an entry
in the Properties dictionary, each item needs a dictionary key. However, if a program needs to save
a large file such as a word-processing document, it shouldn’t use the Properties dictionary, but in-
stead should access the platform’s file system directly. (That's a job for Chapter 20, “Async and file
1/0.")

Also, you should restrict the data types used with Properties to the basic data types supported by
.NET and C#, such as string, int, and double.

The SimplestKeypad program needs to save only a single item of transient data, and the dictionary
key “displayLabelText" seems reasonable.

Sometimes a program can use the Properties dictionary to save and retrieve data without getting
involved with application lifecycle events. For example, the SimplestKeypad program knows exactly
when the Text property of displayLabel changes. It happens only in the two C1icked event han-
dlers for the number keys and the delete key. Those two event handlers could simply store the new
value in the Properties dictionary.

But wait: Properties is a property of the Application class. Do we need to save the instance of
the aApp class so that code in the simplestKeypadPage can get access to the dictionary? No, it's not
necessary. Application defines a static property named Current that returns the current applica-
tion’s instance of the Application class.

To store the Text property of the Label in the dictionary, simply add the following line at the bot-
tom of the two Cclicked event handlers in SimplestKeypad:

Chapter 6 Button clicks 126

Application.Current.Properties["displaylLabelText"] = displayLabel.Text;

Don't worry if the displayLabelText key does not yet exist in the dictionary: The Properties dic-
tionary implements the generic IDictionary interface, which explicitly defines the indexer to replace
the previous item if the key already exists or to add a new item to the dictionary if the key does not
exist. That behavior is exactly what you want here.

The simplestKeypadPage constructor can then conclude by initializing the Text property of the
Label with the following code, which retrieves the item from the dictionary:

IDictionary<string, object> properties = Application.Current.Properties;

if (properties.ContainsKey("displayLabelText"))

{
displayLabel.Text = properties["displaylLabelText"] as string;
backspaceButton.IsEnabled = displaylLabel.Text.Length > 0;

This is all your application needs to do: just save information in the Properties dictionary and re-
trieve it. Xamarin.Forms itself is responsible for the job of saving and loading the contents of the dic-
tionary in platform-specific application storage.

In general, however, it's better for an application to interact with the Properties dictionary in a
more structured manner, and here’s where the application lifecycle events come into play. These are
the three methods that appear in the App class generated by the Xamarin.Forms template:

public class App : Application

{
public AppQ
{
}
protected override void OnStart()
{
// Handle when your app starts
}
protected override void OnSleep()
{
// Handle when your app sleeps
}
protected override void OnResume()
{
// Handle when your app resumes
}
}

The most important is the onsleep call. In general, an application goes into sleep mode when it no
longer commands the screen and has become inactive (apart from some background jobs it might

Chapter 6 Button clicks 127

have initiated). From this sleep mode, an application can be resumed (signaled by an onResume call) or
terminated. But this is important: After the onsieep call, there is no further notification that an appli-
cation is being terminated. The ons1eep call is as close as you get to a termination notification, and it
always precedes a termination. For example, if your application is running and the user turns off the
phone, the application gets an onSleep call as the phone is shutting down.

Actually, there are some exceptions to the rule that a call to onsleep always precedes program ter-
mination: a program that crashes does not get an onsleep call first, but you probably expect that. But
here’s a case that you might not anticipate: When you are debugging a Xamarin.Forms application,
and use Visual Studio or Xamarin Studio to stop debugging, the program is terminated without a pre-
ceding OnSleep call. This means that when you are debugging code that uses these application life-
cycle events, you should get into the habit of using the phone itself to put your program to sleep, to
resume the program, and to terminate it.

When your Xamarin.Forms application is running, the easiest way to trigger an onsleep call on a
phone or simulator is by pressing the phone’s Home button. You can then bring the program back to
the foreground and trigger an onResume call by selecting the application from the home menu (on
iOS devices or Android devices) or by pressing the Back button (on Android and Windows Phone
devices).

If your Xamarin.Forms program is running and you invoke the phone’s application switcher—by
pressing the Home button twice on iOS devices, by pressing the Multitask button on Android devices
(or by holding down the Home button on older Android devices), or by holding down the Back button
on a Windows Phone—the application gets an onsleep call. If you then select that program, the appli-
cation gets an OnResume call as it resumes execution. If you instead terminate the application—by
swiping the application’s image upward on iOS devices or by tapping the X on the upper-right corner
of the application’s image on Android and Windows Phone devices—the program stops executing with
no further notification.

So here's the basic rule: Whenever your application gets a call to onsleep, you should ensure that
the Properties dictionary contains all the information about the application you want to save.

If you're using lifecycle events solely for saving and restoring program data, you don't need to han-
dle the onResume method. When your program gets an onResume call, the operating system has al-
ready automatically restored the program contents and state. If you want to, you can use OnResume as
an opportunity to clear out the Properties dictionary because you are assured of getting another
onSleep call before your program terminates. However, if your program has established a connection
with a web service—or is in the process of establishing such a connection—you might want to use on-
Resume to restore that connection. Perhaps the connection has timed out in the interval that the pro-
gram was inactive. Or perhaps some fresh data is available.

You have some flexibility when you restore the data from the Properties dictionary to your appli-
cation as your program starts running. When a Xamarin.Forms program starts up, the first opportunity
you have to execute some code in the Portable Class Library is the constructor of the App class. At that

Chapter 6 Button clicks 128

time, the Properties dictionary has already been filled with the saved data from platform-specific
storage. The next code that executes is generally the constructor of the first page in your application
instantiated from the App constructor. The onstart call in Application (and App) follows that, and
then an overridable method called onaAppearing is called in the page class. You can retrieve the data
at any time during this startup process.

The data that an application needs to save is usually in a page class, but the Onsleep override is in
the App class. So somehow the page class and the App class must communicate. One approach is to
define an ons1eep method in the page class that saves the data to the Properties dictionary and
then call the page’s onsleep method from the onsieep method in app. This approach works fine for
a single-page application—indeed, the application class has a static property named MainPage that
is set in the App constructor and which the ons1eep method can use to get access to that page—but it
doesn’t work nearly as well for multipage applications.

Here's a somewhat different approach: You first define all the data you need to save as public prop-
erties in the App class, for example:

public class App : Application

{

pubTic AppQ

{

}

public string DisplayLabelText { set; get; }
}

The page class (or classes) can then set and retrieve those properties when convenient. The App class
can restore any such properties from the Properties dictionary in its constructor prior to instantiat-
ing the page and can store the properties in the Properties dictionary in its Onsleep override.

That's the approach taken by the PersistentKeypad project. This program is identical to Simplest-
Keypad except that it includes code to save and restore the contents of the keypad. Here's the app
class that maintains a public DisplayLabelText property that is saved in the onsleep override and
loaded in the App constructor:

namespace PersistentKeypad
{
public class App : Application

{
const string displayLabelText = "displaylLabelText";

pubTlic AppQO
{
if (Properties.ContainsKey(displaylLabelText))
{
DisplaylLabelText = (string)Properties[displaylLabelText];
}

Chapter 6 Button clicks 129

MainPage = new PersistentKeypadPage();

public string DisplaylLabelText { set; get; }

protected override void OnStart()

{
// Handle when your app starts
}
protected override void OnSleep()
{
// Handle when your app sleeps
Properties[displayLabelText] = DisplaylLabelText;
}
protected override void OnResume()
{
// Handle when your app resumes
}

}

To avoid spelling errors, the App class defines the string dictionary key as a constant. It's the same as
the property name except that it begins with a lowercase letter. Notice that the DisplayLabelText
property is set prior to instantiating PersistentKeypadPage so that it's available in the
PersistentKeypadPage constructor.

An application with many more items might want to consolidate them in a class named Appset-
tings (for example), serialize that class to an XML or a JSON string, and then save the string in the
dictionary.

The PersistentKeypadPage class accesses that DisplayLabelText property in its constructor
and sets the property in its two event handlers:

public class PersistentKeypadPage : ContentPage
{

Label displaylLabel;

Button backspaceButton;

public PersistentKeypadPage()
{

// New code for loading previous keypad text.

App app = Application.Current as App;

displayLabel.Text = app.DisplaylLabelText;

backspaceButton.IsEnabled = displaylLabel.Text != null &&
displayLabel.Text.Length > 0;

Chapter 6 Button clicks

void OnDigitButtonClicked(object sender, EventArgs args)

{

Button button = (Button)sender;
displayLabel.Text += (string)button.StyleId;
backspaceButton.IsEnabled = true;

// Save keypad text.
App app = Application.Current as App;
app.DisplaylLabelText = displaylLabel.Text;

void OnBackspaceButtonClicked(object sender, EventArgs args)

{

string text = displaylLabel.Text;
displayLabel.Text = text.Substring(0, text.Length - 1);
backspaceButton.IsEnabled = displaylLabel.Text.Length > 0;

// Save keypad text.
App app = Application.Current as App;
app.DisplaylLabelText = displaylLabel.Text;

130

When testing programs that use the Properties dictionary and application lifecycle events, you'll
want to occasionally uninstall the program from the phone or simulator. Uninstalling a program from a

device also deletes any stored data, so the next time the program is deployed from Visual Studio or

Xamarin Studio, the program encounters an empty dictionary, as though it were being run for the very

first time.

Chapter 7

XAML vs. code

C# is undoubtedly one of the greatest programming languages the world has ever seen. You can write
entire Xamarin.Forms applications in C#, and it's conceivable that you've found C# to be so ideally
suited for Xamarin.Forms that you haven't even considered using anything else.

But keep an open mind. Xamarin.Forms provides an alternative to C# that has some distinct ad-
vantages for certain aspects of program development. This alternative is XAML (pronounced "zam-
mel"), which stands for the Extensible Application Markup Language. Like C#, XAML was developed at
Microsoft Corporation, and it is only a few years younger than C#.

As its name suggests, XAML adheres to the syntax of XML, the Extensible Markup Language. This
book assumes that you have familiarity with the basic concepts and syntax of XML.

In the most general sense, XAML is a declarative markup language used for instantiating and initial-
izing objects. That definition might seem excessively general, and XAML is indeed quite flexible. But
most real-world XAML has been used for defining tree-structured visual user interfaces characteristic of
graphical programming environments. The history of XAML-based user interfaces begins with the
Windows Presentation Foundation (WPF) and continues with Silverlight, Windows Phone 7 and 8, and
Windows 8 and 10. Each of these XAML implementations supports a somewhat different set of visual
elements defined by the particular platform. Likewise, the XAML implementation in Xamarin.Forms
supports the visual elements defined by Xamarin.Forms, such as Label, BoxView, Frame, Button,
StackLayout, and ContentPage.

As you've seen, a Xamarin.Forms application written entirely in code generally defines the initial ap-
pearance of its user interface in the constructor of a class that derives from Contentpage. If you
choose to use XAML, the markup generally replaces this constructor code. You will find that XAML pro-
vides a more succinct and elegant definition of the user interface and has a visual structure that better
mimics the tree organization of the visual elements on the page.

XAML is also generally easier to maintain and modify than equivalent code. Because XAML is XML, it
is also potentially toolable: XAML can more easily be parsed and edited by software tools than the
equivalent C# code. Indeed, an early impetus behind XAML was to facilitate a collaboration between
programmers and designers: Designers can use design tools that generate XAML, while programmers
focus on the code that interacts with the markup. While this vision has perhaps only rarely been ful-
filled to perfection, it certainly suggests how applications can be structured to accommodate XAML.
You use XAML for the visuals and code for the underlying logic.

Yet, XAML goes beyond that simple division of labor. As you'll see in a future chapter, it's possible to
define bindings right in the XAML that link user-interface objects with underlying data.

Chapter 7 XAML vs. code 132

When creating XAML for Microsoft platforms, some developers use interactive design tools such as
Microsoft Blend, but many others prefer to handwrite XAML. No design tools are available for Xama-
rin.Forms, so handwriting is the only option. Obviously, all the XAML examples in this book are hand-
written. But even when design tools are available, the ability to handwrite XAML is an important skill.

The prospect of handwriting XAML might cause some consternation among developers for another
reason: XML is notoriously verbose. Yet, you'll see almost immediately that XAML is often more concise
than the equivalent C# code. The real power of XAML becomes evident only incrementally, however,
and won't be fully apparent until Chapter 19, “Collection views,” when you use XAML for constructing
templates for multiple items displayed in a Listview.

It is natural for programmers who prefer strongly typed languages such as C# to be skeptical of a
markup language where everything is a text string. But you'll see shortly how XAML is a very strict ana-
log of programming code. Much of what's allowed in your XAML files is defined by the classes and
properties that make up the Xamarin.Forms application programming interface. For this reason, you
might even begin to think of XAML as a "strongly typed" markup language. The XAML parser does its
job in a very mechanical manner based on the underlying API infrastructure. One of the objectives of
this chapter and the next is to demystify XAML and illuminate what happens when the XAML is parsed.

Yet, code and markup are very different: Code defines a process while markup defines a state. XAML
has several deficiencies that are intrinsic to markup languages: XAML has no loops, no flow control, no
algebraic calculation syntax, and no event handlers. However, XAML defines several features that help
compensate for some of these deficiencies. You'll see many of these features in future chapters.

If you do not want to use XAML, you don't need to. Anything that can be done in XAML can be
done in C#. But watch out: Sometimes developers get a little taste of XAML and get carried away and
try to do everything in XAML! As usual, the best rule is “moderation in all things.” Many of the best
techniques involve combining code and XAML in interactive ways.

Let's begin this exploration with a few snippets of code and the equivalent XAML, and then see how
XAML and code fit together in a Xamarin.Forms application.

Properties and attributes

Here is a Xamarin.Forms Label instantiated and initialized in code, much as it might appear in the
constructor of a page class:

new Label

{
Text = "Hello from Code!",
IsVisible = true,
Opacity = 0.75,
HorizontalTextAlignment = TextAlignment.Center,
VerticalOptions = LayoutOptions.CenterAndExpand,
TextColor = Color.Blue,

Chapter 7 XAML vs. code 133

BackgroundColor = Color.FromRgb(255, 128, 128),
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
FontAttributes = FontAttributes.Bold | FontAttributes.Italic

};

Here is a very similar Label instantiated and initialized in XAML, which you can see immediately is

more concise than the equivalent code:

<Label Text="Hello from XAML!"
IsVisible="True"
Opacity="0.75"
HorizontalTextAlignment="Center"
VerticalOptions="CenterAndExpand"
TextColor="Blue"
BackgroundColor="#FF8080"
FontSize="Large"
FontAttributes="Bold,Italic" />

Xamarin.Forms classes such as Label become XML elements in XAML. Properties such as Text,
IsVisible, and the rest become XML attributes in XAML.

To be instantiated in XAML, a class such as Label must have a public parameterless constructor. (In
the next chapter, you'll see that there is a technique to pass arguments to a constructor in XAML, but
it's generally used for special purposes.) The properties set in XAML must have public set accessors. By
convention, spaces surround an equal sign in code but not in XML (or XAML), but you can use as much
white space as you want.

The concision of the XAML results mostly from the brevity of the attribute values—for example, the
use of the word "Large" rather than a call to the Device.GetNamedSize method. These abbreviations
are not built into the XAML parser. The XAML parser is instead assisted by various converter classes de-
fined specifically for this purpose.

When the XAML parser encounters the Label element, it can use reflection to determine whether
Xamarin.Forms has a class named Label, and if so, it can instantiate that class. Now it is ready to ini-
tialize that object. The Text property is of type string, and the attribute value is simply assigned to
that property.

Because XAML is XML, you can include Unicode characters in the text by using the standard XML
syntax. Precede the decimal Unicode value with s# (or the hexadecimal Unicode value with s#x) and
follow it with a semicolon:

Text="Cost — €123.45"

Those are the Unicode values for the em dash and euro symbol. To force a line break, use the line-feed
character s#x0002, or (because leading zeros aren't required) s#xa, or, in decimal, s#10.

Angle brackets, ampersands, and quotation marks have a special meaning in XML, so to include
those characters in a text string, use one of the standard predefined entities:

e glt; for<

Chapter 7 XAML vs. code 134

e sgt; for>

e gamp; for &
e gapos; for'
e squot; for"

The HTML predefined entities such as snbsp; are not supported. For a nonbreaking space use s#x20;
instead.

In addition, in Chapter 10, “XAML markup extensions,” you'll discover that curly braces ({ and }) have
a special meaning in XAML. If you need to begin an attribute value with a left curly brace, begin it with
a pair of curly braces ({}) and then the left curly brace.

Back to the example: The Isvisible and Opacity properties of Label are of type bool and dou-
ble, respectively, and these are as simple as you might expect. The XAML parser uses the Bool-
ean.Parse and Double.Parse methods to convert the attribute values. The Boolean.Parse
method is case insensitive, but generally Boolean values are capitalized as “True” and “False” in XAML.
The Double.Parse method is passed a CultureInfo.InvariantCulture argument, so the conver-
sion doesn't depend on the local culture of the programmer or user.

The HorizontalTextAlignment property of Label is of type TextAlignment, which is an enu-
meration. For any property that is an enumeration type, the XAML parser uses the Enum. Parse
method to convert from the string to the value.

The verticalOptions property is of type LayoutOptions, a structure. When the XAML parser
references the LayoutOptions structure using reflection, it discovers that the structure has a C# at-
tribute defined:

[TypeConverter (typeof(LayoutOptionsConverter))]
public struct LayoutOptions
{

}

(Watch out! This discussion involves two types of attributes: XML attributes such as HorizontalText-
Alignment and C# attributes such as this TypeConverter.)

The TypeConverter attribute is supported by a class named TypeConverteraAttribute. This par-
ticular TypeConverter attribute on LayoutOptions references a class named LayoutOptionsCon-
verter, which derives from a public abstract class named TypeConverter that defines methods
named CanConvertFrom and ConvertFrom. When the XAML parser encounters this TypeConverter
attribute, it instantiates the LayoutOptionsConverter. The VerticalOptions attribute in the XAML
is assigned the string "Center”, so the XAML parser passes that “Center” string to the ConvertFrom
method of LayoutOptionsConverter, and out pops a LayoutOptions value. This is assigned to the
VerticalOptions property of the Label object.

Chapter 7 XAML vs. code 135

Similarly, when the XAML parser encounters the TextColor and BackgroundColor properties, it
uses reflection to determine that those properties are of type Color. The Color structure is also
adorned with a TypeConverter attribute:

[TypeConverter (typeof(ColorTypeConverter))]

public struct Color

{
3

You can create an instance of ColorTypeConverter and experiment with it in code if you'd like. It
accepts color definitions in several formats: It can convert a string like “Blue” to the Color.Blue value,
and the “Default” and “Accent” strings to the Color.Default and Color.Accent values. Color-
TypeConverter can also parse strings that encode red-green-blue values, such as “#FF8080", which is
a red value of OxFF, a green value of 0x80, and a blue value also of 0x80.

All numeric RGB values begin with a number-sign prefix, but that prefix can be followed with eight,
six, four, or three hexadecimal digits for specifying color values with or without an alpha channel.
Here's the most extensive syntax:

BackgroundColor="#aarrggbb"
Each of the letters represents a hexadecimal digit, in the order alpha (opacity), red, green, and blue. For

the alpha channel, keep in mind that OxFF is fully opaque and 0x00 is fully transparent. Here's the syn-
tax without an alpha channel:

BackgroundColor="#rrggbb"
In this case the alpha value is set to OxFF for full opacity.

Two other formats allow you to specify only a single hexadecimal digit for each channel:

BackgroundColor="#argb"
BackgroundColor="#rgb"

In these cases, the digit is repeated to form the value. For example, #CF3 is the RGB color OxCC-0xFF-
0x33. These short formats are rarely used.

The FontSize property of Label is of type double. This is a little different from properties of type
LayoutOptions and Color. The LayoutOptions and Color structures are part of Xamarin.Forms, so
they can be flagged with the C# TypeConverter attribute, but it's not possible to flag the .NET
Double structure with a TypeConverter attribute just for font sizes!

Instead, the Fontsize property within the Labe1l class has the TypeConverter attribute:

public class Label : View, IFontElement

{

[TypeConverter (typeof (FontSizeConverter))]
public double FontSize

{

Chapter 7 XAML vs. code 136

3

The FontSizeConverter class determines whether the string passed to it is one of the members of
the NamedsSize enumeration. If not, FontSizeConverter assumes the value is a double.

The last attribute set in the example is FontAttributes. The FontAttributes property is an enu-
meration named FontAttributes, and you already know that the XAML parser handles enumeration
types automatically. However, the FontAttributes enumeration has a C# Flags attribute set like so:
[Flags]

public enum FontAttributes

{
None = 0,
Bold = 1,
Italic = 2
}

The XAML parser therefore allows multiple members separated by commas:

FontAttributes="Bold,Italic"

This demonstration of the mechanical nature of the XAML parser should be very good news. It
means that you can include custom classes in XAML, and these classes can have properties of custom
types, or the properties can be of standard types but allow additional values. All you need is to flag
these types or properties with a C# TypeConverter attribute and provide a class that derives from

TypeConverter.

Property-element syntax

Here is some C# that is similar to the FramedText code in Chapter 4. In one statement it instantiates a
Frame and a Label and sets the Label to the Content property of the Frame:

new Frame

{
OutTineColor = Color.Accent,
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center,
Content = new Label

{

Text = "Greetings, Xamarin.Forms!"
}
};

But when you start to duplicate this in XAML, you might become a little stymied at the point where
you set the Content attribute:

<Frame OutlineColor="Accent"

Chapter 7 XAML vs. code 137

HorizontalOptions="Center"
VerticalOptions="Center"
Content=" what goes here? " />

How can that Content attribute be set to an entire Label object?

The solution to this problem is the most fundamental feature of XAML syntax. The first step is to
separate the Frame tag into start and end tags:
<Frame OutlineColor="Accent"

HorizontalOptions="Center"
VerticalOptions="Center">

</Frame>

Within those tags, add two more tags that consist of the element (Frame) and the property you want
to set (Content) connected with a period:
<Frame OutlineColor="Accent"

HorizontalOptions="Center"

VerticalOptions="Center">
<Frame.Content>

</Frame.Content>
</Frame>

Now put the Label within those tags:

<Frame OutlineColor="Accent"
HorizontalOptions="Center"
VerticalOptions="Center">
<Frame.Content>
<Label Text="Greetings, Xamarin.Forms!" />
</Frame.Content>
</Frame>

That syntax is how you set a Label to the Content property of the Frame.

You might wonder if this XAML feature violates XML syntax rules. It does not. The period has no
special meaning in XML, so Frame.Content is a perfectly valid XML tag. However, XAML imposes its
own rules about these tags: The Frame.Content tags must appear within Frame tags, and no attrib-
utes can be set in the Frame.Content tag. The object set to the Content property appears as the
XML content of those tags.

Once this syntax is introduced, some terminology becomes necessary. In the final XAML snippet
shown above:

e Frame and Label are C# objects expressed as XML elements. They are called object elements.

[OutlineColor,HorizontalOptions,VerticalOptions,andTextareC#[NOpeﬂbseX—
pressed as XML attributes. They are called property attributes.

Chapter 7 XAML vs. code 138

e Frame.Content is a C# property expressed as an XML element, and it is therefore called a
property element.

Property elements are very common in real-life XAML. You'll see numerous examples in this chapter
and future chapters, and you'll soon find property elements becoming second nature to your use of
XAML. But watch out: Sometimes developers must remember so much that we forget the basics. Even
after you've been using XAML for a while, you'll probably encounter a situation where it doesn’t seem
possible to set a particular object to a particular property. The solution is very often a property
element.

You can also use property-element syntax for simpler properties, for example:

<Frame HorizontalOptions="Center">
<Frame.VerticalOptions>
Center
</Frame.VerticalOptions>
<Frame.OutTineColor>
Accent
</Frame.OutTlineColor>
<Frame.Content>
<Label>
<Label.Text>
Greetings, Xamarin.Forms!
</Label.Text>
</Label>
</Frame.Content>
</Frame>

Now the VerticalOptions and OutlineColor properties of Frame and the Text property of Label
have all become property elements. The value of these attributes is always the content of the property
element without quotation marks.

Of course, it doesn’t make much sense to define these properties as property elements. It's unneces-
sarily verbose. But it works as it should.

Let's go a little further: Instead of setting HorizontalOptions to “Center” (corresponding to the
static property LayoutOptions.Center), you can express HorizontalOptions as a property ele-
ment and set it to a LayoutOptions value with its individual properties set:

<Frame>
<Frame.HorizontalOptions>
<LayoutOptions Alignment="Center"
Expands="False" />
</Frame.HorizontalOptions>
<Frame.VerticalOptions>
Center
</Frame.VerticalOptions>
<Frame.OutTlineColor>
Accent
</Frame.OutTlineColor>
<Frame.Content>

Chapter 7 XAML vs. code 139

<Label>
<Label.Text>
Greetings, Xamarin.Forms!
</Label.Text>
</Label>
</Frame.Content>
</Frame>

And you can also express these properties of LayoutOptions as property elements:

<Frame>
<Frame.HorizontalOptions>
<LayoutOptions>
<LayoutOptions.Alignment>
Center
</LayoutOptions.Alignment>
<LayoutOptions.Expands>
False
</LayoutOptions.Expands>
</LayoutOptions>

</Frame.HorizontalOptions>
</Frame>

You can't set the same property as a property attribute and a property element. That's setting the
property twice, and it's not allowed. And remember that nothing else can appear in the property-
element tags. The value being set to the property is always the XML content of those tags.

Now you should know how to use a stackLayout in XAML. First express the Children property as
the property element stackLayout.Children, and then include the children of the stackLayout as
XML content of the property-element tags. Here’s an example where each child of the first StackLay-
out is another StackLayout with a horizontal orientation:

<StackLayout>
<StackLayout.Children>
<StackLayout Orientation="Horizontal">
<StackLayout.Children>
<BoxView Color="Red" />
<Label Text="Red"
VerticalOptions="Center" />
</StackLayout.Children>
</StackLayout>

<StackLayout Orientation="Horizontal">
<StackLayout.Children>
<BoxView Color="Green" />
<Label Text="Green"
VerticalOptions="Center" />
</StackLayout.Children>
</StackLayout>

<StackLayout Orientation="Horizontal">
<StackLayout.Children>

Chapter 7 XAML vs. code 140

<BoxView Color="Blue" />
<Label Text="Blue"
VerticalOptions="Center" />
</StackLayout.Children>
</StackLayout>
</StackLayout.Children>
</StackLayout>

Each horizontal stackLayout has a BoxView with a color and a Label with that color name.

Of course, the repetitive markup here looks rather scary! What if you wanted to display 16 colors?
Or 140? You might succeed at first with a lot of copying and pasting, but if you then needed to refine
the visuals a bit, you'd be in bad shape. In code you'd do this in a loop, but XAML has no such feature.

When markup threatens to be overly repetitious, you can always use code. Defining some of a user
interface in XAML and the rest in code is perfectly reasonable. But there are other solutions, as you'll
see in later chapters.

Adding a XAML page to your project

Now that you've seen some snippets of XAML, let’s look at a whole XAML page in the context of a
complete program. First, create a Xamarin.Forms solution named CodePlusXaml using the Portable
Class Library solution template.

Now add a XAML ContentPage to the PCL. Here's how: In Visual Studio, right-click the
CodePlusXaml project in the Solution Explorer. Select Add > New Item from the menu. In the Add
New Item dialog, select Visual C# and Cross-Platform at the left, and Forms Xaml Page from the
central list. Name it CodePlusXamlPage.cs.

In Xamarin Studio, invoke the drop-down menu on the CodePlusXaml project in the Solution list,
and select Add > New File. In the New File dialog, select Forms at the left and Forms ContentPage
Xaml in the central list. (Watch out: There's also a Forms ContentView Xaml in the list. You want a
content page.) Name it CodePlusXamlIPage.

In either case, two files are created:
e CodePlusXamlPage.xaml, the XAML file; and
e CodePlusXamlPage.xaml.cs, a C# file (despite the odd double extension on the filename).

In the file list, the second file is indented underneath the first, indicating their close relationship. The C#
file is often referred to as the code-behind of the XAML file. It contains code that supports the markup.
These two files both contribute to a class named CodePlusXamlPage that derives from ContentPage.

Let's examine the code file first. Excluding the using directives, it looks like this:

Chapter 7 XAML vs. code 141

namespace CodePlusXaml

{
public partial class CodePlusXamlPage : ContentPage
{
public CodePlusXamlPage()
{
InitializeComponent();
}
}
}

It is indeed a class named CodePlusxamlPage that derives from ContentPage, just as anticipated.
However, the class definition includes a partial keyword, which usually indicates that this is only part
of the CodePlusXamlPage class definition. Somewhere else there should be another partial class defi-
nition for CodePlusxamlPage. So if it exists, where is it? It's a mystery! (For now.)

Another mystery is the InitializeComponent method that the constructor calls. Judging solely
from the syntax, it seems as though this method should be defined or inherited by ContentPpage. Yet
you won't find InitializeComponent in the APl documentation.

Let's set those two mysteries aside temporarily and look at the XAML file. The Visual Studio and
Xamarin Studio templates generate two somewhat different XAML files. If you're using Visual Studio,
delete the markup for the Label and replace it with ContentPage.Content property-element tags
so that it looks like the version in Xamarin Studio:
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="CodePlusXaml.CodePlusXamlPage">
<ContentPage.Content>

</ContentPage.Content>
</ContentPage>

The root element is ContentPage, which is the class that CodePlusxamlPage derives from. That tag
begins with two XML namespace declarations, both of which are URIs. But don't bother checking the
web addresses! There's nothing there. These URIs simply indicate who owns the namespace and what
function it serves.

The default namespace belongs to Xamarin. This is the XML namespace for elements in the file with
no prefix, such as the ContentPage tag. The URI includes the year that this namespace came into be-
ing and the word forms as an abbreviation for Xamarin.Forms.

The second namespace is associated with a prefix of x by convention, and it belongs to Microsoft.
This namespace refers to elements and attributes that are intrinsic to XAML and are found in every
XAML implementation. The word winfx refers to a name once used for the .NET Framework 3.0, which
introduced WPF and XAML. The year 2009 refers to a particular XAML specification, which also implies
a particular collection of elements and attributes that build upon the original XAML specification,
which is dated 2006. However, Xamarin.Forms implements only a subset of the elements and attributes
in the 2009 specification.

Chapter 7 XAML vs. code 142

The next line is one of the attributes that is intrinsic to XAML, called Class. Because the x prefix is
almost universally used for this namespace, this attribute is commonly referred to as x:Class and pro-
nounced "x class.”

The x:Class attribute can appear only on the root element of a XAML file. It specifies the .NET
namespace and name of a derived class. The base class of this derived class is the root element. In
other words, this x: Class specification indicates that the CodePlusxamlPpage class in the
CodePlusXaml namespace derives from ContentPage. That's exactly the same information as the
CodePlusXamlPage class definition in the CodePlusXamlPage.xaml.cs file.

Let's add some content to this ContentPage in the XAML file. This requires setting something to
the content property, which in the XAML file means putting something between ContentPage.Con-
tent property-element tags. Begin the content with a stackLayout, and then add a Label to the
Children property:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="CodePlusXaml.CodePlusXamlPage">
<ContentPage.Content>
<StackLayout>
<StackLayout.Children>
<Label Text="Hello from XAML!"
IsVisible="True"
Opacity="0.75"
HorizontalTextAlignment="Center"
VerticalOptions="CenterAndExpand"
TextCoTlor="BTlue"
BackgroundColor="#FF8080"
FontSize="Large"
FontAttributes="Bold,Italic" />
</StackLayout.Children>
</StackLayout>
</ContentPage.Content>
</ContentPage>

That's the XAML Label you saw at the beginning of this chapter.

You'll now need to change the rpp class to instantiate this page just like you do with a code-only
derivative of ContentPage:

namespace CodePlusXaml

{

public class App : Application

{
public AppQ
{

MainPage = new CodePlusXamlPage();

}

}

Chapter 7 XAML vs. code 143

You can now build and deploy this program. After you do so, it's possible to clear up a couple of
mysteries encountered earlier in this section:

In Visual Studio, in the Solution Explorer, select the CodePlusXaml project, find the icon at the top
with the tooltip Show All Files, and toggle that on.

In Xamarin Studio, in the Solution file list, invoke the drop-down menu for the whole solution, and
select Display Options > Show All Files.

In the CodePlusXaml Portable Class Library project, find the obj folder and within that, the Debug
folder. You'll see a file named CodePlusXamlPage.xaml.g.cs. Notice the g in the filename. That stands
for generated. Here it is, complete with the comment that tells you that this file is generated by a tool:

e
// <auto-generated>

// This code was generated by a tool.

// Runtime Version:4.0.30319.42000

//

// Changes to this file may cause incorrect behavior and will be lost if

// the code is regenerated.

// </auto-generated>

e

namespace CodePlusXaml {
using System;
using Xamarin.Forms;
using Xamarin.Forms.XamT;

public partial class CodePlusXamlPage : global::Xamarin.Forms.ContentPage {

[System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build.Tasks.Xam1G",
"0.0.0.0")]
private void InitializeComponent() {
this.LoadFromXaml (typeof (CodePlusXamlPage));
}

During the build process, the XAML file is parsed, and this code file is generated. Notice that it's a
partial class definition of CodeP1usxamlPage, which derives from ContentPage, and the class con-
tains a method named InitializeComponent.

In other words, it's a perfect fit for the CodePlusXamlPage.xaml.cs code-behind file. After the
CodePlusXamlPage.xaml.g.cs file is generated, the two files can be compiled together as if they were
just normal C# partial class definitions.

At run time, the aApp class instantiates the CodeP1lusXamlPage class. The CodePlusXamlPage con-
structor (defined in the code-behind file) calls TnitializeComponent (defined in the generated file),
and InitializeComponent calls LoadFromXaml. This is an extension method for view defined in the
Extensions class in the Xamarin.Forms.Xaml assembly. What LoadFromxaml does depends on

Chapter 7 XAML vs. code 144

whether you've chosen to compile the XAML or not (as discussed in the next section). But when the
InitializeComponent method returns, the whole page is in place, just as though everything had
been instantiated and initialized in code in the CodePlusxXamlPage constructor.

It's possible to continue adding content to the page in the constructor of the code-behind file, but
only after the InitializeComponent call returns. Let's take this opportunity to create another Label
by using some code from earlier in this chapter:

namespace CodePlusXaml

{
public partial class CodePlusXamlPage : ContentPage
{
public CodePlusXamlPage()
{
InitializeComponent();
Label Tabel = new Label
{
Text = "Hello from Code!",
IsVisible = true,
Opacity = 0.75,
HorizontalTextAlignment = TextAlignment.Center,
VerticalOptions = LayoutOptions.CenterAndExpand,
TextColor = Color.Blue,
BackgroundColor = Color.FromRgb(255, 128, 128),
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
FontAttributes = FontAttributes.Bold | FontAttributes.Italic
1
(Content as StacklLayout).Children.Insert(0, label);
}
}
}

The constructor concludes by accessing the stackLayout that we know is set to the Content
property of the page and inserting the Label at the top. (In the next chapter, you'll see a much better
way to reference objects in the XAML file by using the x:Name attribute.) You can create the Label
prior to the TnitializeComponent call, but you can't add it to the StackLayout at that time be-
cause InitializeComponent is what causes the stackLayout (and all the other XAML elements) to
be instantiated. Here's the result:

Chapter 7 XAML vs. code 145

Hello from Code!

Hello from XAML!

Hello from XAML!

Aside from the text, the two buttons are identical.

You don't have to spend much time examining the generated code file that the XAML parser cre-
ates, but it's helpful to understand how the XAML file plays a role both in the build process and during
run time. Also, sometimes an error in the XAML file raises a run-time exception at the LoadFromXaml
call, so you will probably see the generated code file pop up frequently, and you should know what
it is.

The XAML compiler

You have an option whether to compile the XAML during the build process. Compiling the XAML per-
forms validity checks during the build process, reduces the size of the executable, and improves load-
ing time, but it's somewhat newer than the noncompilation approach, so there might be issues
sometimes.

To indicate that you want to compile all the XAML files in your application, you can insert the fol-
lowing assembly attribute somewhere in a code file. The most convenient place is the Assembly.cs file
in the Properties folder of the PCL project:

[assembly: XamlCompilation(XamlCompilationOptions.Compile)]

You can put it in another C# file, but because it's an assembly attribute, it needs to be outside any
namespace block. You'll also need a using directive for xamarin.Forms.Xaml.

You can alternatively specify that the XAML file for a particular class is compiled:

Chapter 7 XAML vs. code 146

namespace CodePlusXaml

{
[Xam1Compilation(XamlCompilationOptions.Compile)]
public partial class CodePlusXamlPage : ContentPage
{
public CodePlusXamlPage()
{
InitializeComponent();
}
}
}

The XamlCompilationOptions enumeration has two members, Compile and Skip, which means
that you can use xam1lCompilation as an assembly attribute to enable XAML compilation for all clas-
ses in the project, but skip XAML compilation for individual classes by using the skip member.

When you do not choose to compile the XAML, the entire XAML file is bound into the executable as
an embedded resource, just like the Edgar Allan Poe story in the BlackCat program in Chapter 4. In-
deed, you can get access to the XAML file at run time by using the GetManifestResourceStream
method. That's similar to what the LoadFromxaml call in InitializeComponent does. It loads the
XAML file and parses it for a second time, instantiating and initializing all the elements in the XAML file
except for the root element, which already exists.

When you choose to compile the XAML, this process is streamlined somewhat, but the LoadFrom-
xaml method still needs to instantiate all the elements and build a visual tree.

Platform specificity in the XAML file

Here is the XAML file for a program named ScaryColorList that's similar to a snippet of XAML that you
saw earlier. But now the repetition is even scarier because each color item is surrounded by a Frame:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ScaryColorList.ScaryColorListPage">
<ContentPage.Content>
<StackLayout>
<StackLayout.Children>
<Frame OutlineColor="Accent">
<Frame.Content>
<StackLayout Orientation="Horizontal">
<StackLayout.Children>
<BoxView Color="Red" />
<Label Text="Red"
VerticalOptions="Center" />
</StackLayout.Children>
</StackLayout>
</Frame.Content>

Chapter 7 XAML vs. code 147

</Frame>

<Frame OutlineColor="Accent">
<Frame.Content>
<StackLayout Orientation="Horizontal">
<StackLayout.Children>
<BoxView Color="Green" />
<Label Text="Green"
VerticalOptions="Center" />
</StackLayout.Children>
</StackLayout>
</Frame.Content>
</Frame>

<Frame OutlineColor="Accent">
<Frame.Content>
<StackLayout Orientation="Horizontal">
<StackLayout.Children>
<BoxView Color="Blue" />
<Label Text="Blue"
VerticalOptions="Center" />
</StackLayout.Children>
</StackLayout>
</Frame.Content>
</Frame>
</StackLayout.Children>
</StackLayout>
</ContentPage.Content>
</ContentPage>

The code-behind file contains only the standard call to ITnitializeComponent.

Aside from the repetitious markup, this program has a more practical problem: When it runs on iOS,
the top item overlaps the status bar. This problem can be fixed with a call to bevice.0OnPlatformin
the page’s constructor (just as you saw in Chapter 2). Because Device.OnPlatform sets the Padding
property on the page and doesn't require anything in the XAML file, it could go either before or after
the InitializeComponent call. Here's one way to do it:

public partial class ScaryColorListPage : ContentPage

{
public ScaryColorListPage()
{
Padding = Device.OnPlatform(new Thickness(0, 20, 0, 0),
new Thickness(0),
new Thickness(0));
InitializeComponent();
}
}

Or, you could set a uniform padding value for all three platforms right in the root element of the
XAML file:

Chapter 7 XAML vs. code 148

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ScaryColorList.ScaryColorListPage"
Padding="0, 20, 0, 0">
<ContentPage.Content>

</ContentPage.Content>
</ContentPage>

That sets the Padding property for the page. The ThicknessTypeConverter class requires the values
to be separated by commas, but you have the same flexibility as with the Thickness constructor. You
can specify four values in the order left, top, right, and bottom; two values (the first for left and right,
and the second for top and bottom); or one value.

However, you can also specify platform-specific values right in the XAML file by using the onPlat-
form class, whose name suggests that it is similar in function to the Device.oOnPlatform static
method.

OonPlatform is a very interesting class, and it's worthwhile to gain a sense of how it works. The class
is generic, and it has three properties of type T, as well as an implicit conversion of itself to T that
makes use of the Device.0s value:

public class OnPlatform<T>

{
public T i0S { get; set; }

public T Android { get; set; }
public T WinPhone { get; set; }
public static implicit operator T(OnPlatform<T> onPlatform)

{

// returns one of the three properties based on Device.0S

}

In theory, you might use the onPlatform<T> class in code, perhaps like this in the constructor of a
ContentPage derivative:

Padding = new OnPlatform<Thickness>

{
i0S = new Thickness(0, 20, 0, 0),
Android = new Thickness(0),
WinPhone = new Thickness(0)

};

You can set an instance of this onplatform class directly to the Padding property because the on-
Platform class defines an implicit conversion of itself to the generic argument (in this case

Thickness).

Chapter 7 XAML vs. code 149

However, you shouldn't use OnPlatform in code. Use Device.OnPlatform instead. OnPlatform
is designed for XAML, and the only really tricky part is figuring out how to specify the generic type
argument.

Fortunately, the XAML 2009 specification includes an attribute designed specifically for generic clas-
ses, called TypeArguments. Because it's part of XAML itself, it's used with an x prefix, so it appears as
x:TypeArguments. Here's how OnPlatform is used in XAML to select among three Thickness
values:
<OnPlatform x:TypeArguments="Thickness"

i0s="0, 20, 0, 0"

Android="0"
WinPhone="0" />

In this example (and in the previous code example), the Android and WinPhone settings aren't re-
quired because they are the defaults. Notice that the Thickness strings can be set directly to the
properties because those properties are of type Thickness, and hence the XAML parser will use the
ThicknessTypeConverter for converting those strings.

Now that we have the onPlatform markup, how do we set it to the Padding property of the
Page? By expressing Padding using property-element syntax, of course!

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ScaryColorList.ScaryColorListPage">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness
i0s="0, 20, 0, 0" />
</ContentPage.Padding>

<ContentPage.Content>

</ContentPage.Content>
</ContentPage>

This is how the ScaryColorList program appears in the collection of samples from this book and here’s
how it looks:

Chapter 7 XAML vs. code 150

Similar to onDevice, OnIdiom distinguishes between Phone and Tablet. For reasons that will be-
come apparent in the next chapter, you should try to restrict the use of OnDevice and onIdiom to

small chunks of markup rather than large blocks. Their use shouldn’t become a structural element in
your XAML files.

The content property attribute

The XAML file in the ScaryColorList program is actually somewhat longer than it needs to be. You can
delete the ContentPage.Content tags, all the stackLayout.Children tags, and all the
Frame.Content tags, and the program will work the same:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ScaryColorList.ScaryColorListPage">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="0, 20, 0, 0" />
</ContentPage.Padding>

<StackLayout>
<Frame OutlineColor="Accent">
<StackLayout Orientation="Horizontal">
<BoxView Color="Red" />
<Label Text="Red"
VerticalOptions="Center" />
</StackLayout>

Chapter 7 XAML vs. code 151

</Frame>

<Frame OutlineColor="Accent">
<StackLayout Orientation="Horizontal">
<BoxView Color="Green" />
<Label Text="Green"
VerticalOptions="Center" />
</StackLayout>
</Frame>

<Frame OutlineColor="Accent">
<StackLayout Orientation="Horizontal">
<BoxView Color="Blue" />
<Label Text="Blue"
VerticalOptions="Center" />
</StackLayout>
</Frame>
</StackLayout>
</ContentPage>

It looks a lot cleaner now. The only property element left is for the Padding property of ContentPpage.

As with almost everything about XAML syntax, this elimination of some property elements is sup-
ported by the underlying classes. Every class used in XAML is allowed to define one property as a con-
tent property (sometimes also called the class’s default property). For this content property, the prop-
erty-element tags are not required, and any XML content within the start and end tags is automatically
assigned to this property. Very conveniently, the content property of ContentPage is Content, the
content property of StackLayout is Children, and the content property of Frame is Content.

These content properties are documented, but you need to know where to look. A class specifies its
content property by using the ContentPropertyaAttribute. If this attribute is attached to a class, it
appears in the online Xamarin.Forms APl documentation along with the class declaration. Here’s how it
appears in the documentation for Contentpage:

[Xamarin.Forms.ContentProperty("Content")]
public class ContentPage : TemplatedPage

If you say it aloud, it sounds a bit redundant: The Content property is the content property of
ContentPage.

The declaration for the Frame class is similar:

[Xamarin.Forms.ContentProperty("Content")]
public class Frame : ContentView

StackLayout doesn't have a ContentProperty attribute applied, but stackLayout derives from
Layout<View>, and Layout<T> has a ContentProperty attribute:
[Xamarin.Forms.ContentProperty("Children")]

public abstract class Layout<T> : Layout, IViewContainer<T>
where T : View

http://iosapi.xamarin.com/monodoc.ashx?link=T%3aXamarin.Forms.Layout

Chapter 7 XAML vs. code 152

The ContentProperty attribute is inherited by the classes that derive from Layout<T>, so Children
is the content property of stackLayout.

Certainly, there's no problem if you include the property elements when they're not required, but in
most cases they will no longer appear in the sample programs in this book.

Formatted text

Text displayed by a XAML file might involve just a word or two, but sometimes an entire paragraph is
required, perhaps with some embedded character formatting. Specifying character formatting is not
always as obvious, or as easy, in XAML as might be suggested by our familiarity with HTML.

The TextVariations solution has a XAML file that contains seven Label views in a scrollable
StackLayout:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="TextVariations.TextVariationsPage">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="0, 20, 0, 0" />
</ContentPage.Padding>

<Scrol1View>
<StackLayout>

</StackLayout>
</Scrol1View>
</ContentPage>

Each of the seven Label views shows a somewhat different way of defining the displayed text. For ref-
erence purposes, here's the program running on all three platforms:

Chapter 7 XAML vs. code 153

w4 0nze
1128 AM [Single lines of text are easy.
[Single lines of text are easy.
ext can also be content of the Text property.

fext can also be content of the Text property. ext is the content property of Label.

Perhaps the best way to define a paragraph of
foxt s the content property of Label nifarmly formatted text is by setting the Text
~ ~ roperty as an attribute and left justifying the block|
Perhaps the best way to define a paragraph of f text in the XAML file. End-of-line characters are
niformly formatted text is by setting the Text onverted 1o a space character.
property as an attribute and left justitying the
block of text in the XAML file. End-of-line: fext as content has the curse
haracters are converted to a space character. OF breaks at each line's close.
hat's a format great for verse
Fext as content has the curse But not the best for prose.
Of breaks at each line's close,
hat's a format great for verse

But not the best for prose. A single line with bold and italic and | arge

o ; A single line with bold and italic and [arge text et
A single line with bold and itaiic and large text . paragraph of formatted text requires left
ustifying it within the XAML file. But the text can
A paragraph of formatted text requires left nclude multiple kinds of character formatting,
ustifying it within the XAML file. But the text can
nclude multiple kinds of character formatting,

including bold and itaiic and Iarge and

neluding bold and italic and la g€ and

c il hatever combinations you might desire to adomn
hatever combinations you might desire to | you mig|
adorn your glorious prose. | our glorious prose.

The simplest approach involves just setting a few words to the Text attribute of the Label element:

<Label VerticalOptions="CenterAndExpand"
Text="Single Tines of text are easy." />

You can also set the Text property by breaking it out as a property element:

<Label VerticalOptions="CenterAndExpand">
<Label.Text>
Text can also be content of the Text property.
</Label.Text>
</Label>

Text is the content property of Label, so you don't need the Label.Text tags:

<Label VerticalOptions="CenterAndExpand">
Text is the content property of Label.
</Label>

When you set text as the content of the Label (whether you use the Label . Text tags or not), the text
is trimmed: all white space, including carriage returns, is removed from the beginning and end of the
text. However, all embedded white space is retained, including end-of-line characters.

When you set the Text property as a property attribute, all white space within the quotation marks
is retained, but if the text occupies more than one line in the XAML file, each end-of-line character (or
character sequence) is converted to a single space.

As a result, displaying a whole paragraph of uniformly formatted text is somewhat problematic. The
most foolproof approach is setting Text as a property attribute. You can put the whole paragraph as a

Chapter 7 XAML vs. code 154

single line in the XAML file, but if you prefer to use multiple lines, you should left justify the whole par-
agraph in the XAML file surrounded by quotation marks, like so:

<Label VerticalOptions="CenterAndExpand"
Text=
"Perhaps the best way to define a paragraph of
uniformly formatted text is by setting the Text
property as an attribute and left justifying
the block of text in the XAML file. End-of-Tine
characters are converted to a space character." />

The end-of-line characters are converted to space characters so the individual lines are properly con-
catenated. But watch out: Don't leave any stray characters at the end or beginning of the individual
lines. Those will show up as extraneous characters within the paragraph.

When multiple lines of text are specified as content of the Labe1, only white space at the beginning
and end of the text is timmed. All embedded white space is retained, including end-of-line characters:

<Label VerticalOptions="CenterAndExpand">
Text as content has the curse
Of breaks at each 1ine's close.
That's a format great for verse
But not the best for prose.
</Label>

This text is rendered as four separate lines. If you're displaying lists or poetry in your Xamarin.Forms
application, that's exactly what you want. Otherwise, probably not.

If your line or paragraph of text requires some nonuniform paragraph formatting, you'll want to use
the FormattedText property of Label. As you might recall, you set this to a FormattedString ob-
ject and then set multiple Span objects to the Spans collection of the Formattedstring. In XAML,
you need property-element tags for Label.FormattedString, but Spans is the content property of
FormattedString:

<Label VerticalOptions="CenterAndExpand">
<Label.FormattedText>
<FormattedString>

</FormattedString>
</Label.FormattedText>
</Label>

Notice that the Text properties of the nonformatted items have spaces at the end or beginning of the
text string, or both, so that the items don’t run into each other.

Chapter 7 XAML vs. code

155

In the general case, however, you might be working with an entire paragraph. You can set the Text
attribute of span to a long line, or you can wrap it on multiple lines. As with Label, keep the entire

block left justified in the XAML file:

<Label VerticalOptions="CenterAndExpand">
<Label.FormattedText>
<FormattedString>
<Span Text=
"A paragraph of formatted text requires left justifying
it within the XAML file. But the text can include multiple
kinds of character formatting, including " />

<Span Text="italic" FontAttributes="Italic"

<Span Text=
and whatever combinations you might desire to adorn
your glorious prose." />
</FormattedString>
</Label.FormattedText>
</Label>

/>

You'll notice in the screenshot that the text with the large font size is aligned with the regular text on
the baseline, which is the typographically proper approach, and the line spacing is adjusted to accom-

modate the larger text.

In most Xamarin.Forms programs, neither XAML nor code exist in isolation but work together. Ele-
ments in XAML can trigger events handled in code, and code can modify elements in XAML. In the

next chapter you'll see how this works.

Chapter 8

Code and XAML in harmony

A code file and a XAML file always exist as a pair. The two files complement each other. Despite being
referred to as the “code-behind” file to the XAML, very often the code is prominent in taking on the
more active and interactive parts of the application. This implies that the code-behind file must be able
to refer to elements defined in XAML with as much ease as objects instantiated in code. Likewise, ele-
ments in XAML must be able to fire events that are handled in code-based event handlers. That's what
this chapter is all about.

But first, let’s explore a couple of unusual techniques for instantiating objects in a XAML file.

Passing arguments

When you run an application containing a XAML file, each element in the XAML file is instantiated with
a call to the parameterless constructor of the corresponding class or structure. The load process contin-
ues with initialization of the resultant object by setting properties from attribute values. This seems rea-
sonable. However, developers using XAML sometimes have a need to instantiate objects with construc-
tors that require arguments or by calling a static creation method. These needs usually don't involve
the APl itself, but instead involve external data classes referenced by the XAML file that interact with
the API.

The 2009 XAML specification introduced an x:Arguments element and an x:FactoryMethod at-
tribute for these cases, and Xamarin.Forms supports them. These techniques are not often used in ordi-
nary circumstances, but you should see how they work in case the need arises.

Constructors with arguments

To pass arguments to a constructor of an element in XAML, the element must be separated into start
and end tags. Follow the start tag of the element with x: Arguments start and end tags. Within those
x:Arguments tags, include one or more constructor arguments.

But how do you specify multiple arguments of common types, such as double or int? Do you sep-
arate the arguments with commas?

No. Each argument must be delimited with start and end tags. Fortunately, the XAML 2009 specifi-
cation defines XML elements for common basic types. You can use these tags to clarify the types of el-
ements, to specify generic types in onPlatform, or to delimit constructor arguments. Here's the com-
plete set supported by Xamarin.Forms. Notice that they duplicate the .NET type names rather than the
C# type names:

Chapter 8 Code and XAML in harmony

. X
. X
. X
. X
. X
. X
. X
. X
. X
. X
. X
. X
. X

o X

You'll be

The ParameteredConstructorDemo sample demonstrates the use of x: Arguments with argu-

:Object
:Boolean
:Byte
:Intlé6
:Int32
:Int64
:Single
:Double
:Decimal
:Char
:String
:TimeSpan

:Array

:DateTime (supported by Xamarin.Forms but not the XAML 2009 specification)

157

hard-pressed to find a use for all of these, but you'll certainly discover uses for some of them.

ments delimited by x: Double tags using three different constructors of the Color structure. The con-
structor with three parameters requires red, green, and blue values ranging from 0 to 1. The construc-
tor with four parameters adds an alpha channel as the fourth parameter (which is set here to 0.5), and

the constructor with a single parameter indicates a gray shade from 0 (black) to 1 (white):

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ParameteredConstructorDemo.ParameteredConstructorDemoPage">

<StackLayout>

<BoxView WidthRequest="100"

HeightRequest="100"

HorizontalOptions="Center"
VerticalOptions="CenterAndExpand">

<BoxView.Color>
<Color>
<x:Arguments>

<x:Double>1</x:Double>

<x:Double>0</x:Double>

<x:DoubTe>0</x:DoubTle>
</Xx:Arguments>

</Color>

Chapter 8 Code and XAML in harmony 158

</BoxView.Color>
</BoxView>

<BoxView WidthRequest="100"
HeightRequest="100"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand">
<BoxView.Color>
<Color>
<x:Arguments>
<x:DoubTe>0</x:DoubTle>
<x:Double>0</x:Double>
<x:Double>1</x:Double>
<x:DoubTe>0.5</x:Double>
</x:Arguments>
</Color>
</BoxView.Color>
</BoxView>

<BoxView WidthRequest="100"
HeightRequest="100"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand">
<BoxView.Color>
<Color>
<x:Arguments>
<x:DoubTe>0.5</x:Double>
</x:Arguments>
</Color>
</BoxView.Color>
</BoxView>
</StackLayout>
</ContentPage>

The number of elements within the x : Arguments tags, and the types of these elements, must match
one of the constructors of the class or structure. Here's the result:

Chapter 8 Code and XAML in harmony 159

The blue Boxview is light against the light background and dark against the dark background because
it's 50 percent transparent and lets the background show through.

Can | call methods from XAML?

At one time, the answer to this question was "Don't be ridiculous,” but now it's a qualified “Yes.” Don't
get too excited, though. The only methods you can call in XAML are those that return objects (or val-
ues) of the same type as the class (or structure) that defines the method. These methods must be pub-
lic and static. They are sometimes called creation methods or factory methods. You can instantiate an
element in XAML through a call to one of these methods by specifying the method’s name using the
x:FactoryMethod attribute and its arguments using the x: Arguments element.

The color structure defines seven static methods that return Color values, so these qualify. This
XAML file makes use of three of them:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="FactoryMethodDemo.FactoryMethodDemoPage">

<StackLayout>
<BoxView WidthRequest="100"
HeightRequest="100"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand">
<BoxView.Color>
<Color x:FactoryMethod="FromRgbh">
<x:Arguments>
<x:Int32>255</x:Int32>
<x:Int32>0</x:Int32>

Chapter 8 Code and XAML in harmony 160

<x:Int32>0</x:Int32>
</x:Arguments>
</Color>
</BoxView.Color>
</BoxView>

<BoxView WidthRequest="100"
HeightRequest="100"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand">
<BoxView.Color>
<Color x:FactoryMethod="FromRgb">
<x:Arguments>
<x:DoubTe>0</x:DoubTle>
<x:DoubTe>1.0</x:Double>
<x:DoubTe>0</x:DoubTle>
</x:Arguments>
</Color>
</BoxView.Color>
</BoxView>

<BoxView WidthRequest="100"
HeightRequest="100"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand">
<BoxView.Color>
<Color x:FactoryMethod="FromHsla">
<x:Arguments>
<x:DoubTe>0.67</x:Double>
<x:DoubTe>1.0</x:Double>
<x:DoubTe>0.5</x:Double>
<x:Double>1.0</x:Double>
</Xx:Arguments>
</Color>
</BoxView.Color>
</BoxView>
</StackLayout>
</ContentPage>

The first two static methods invoked here are both named Color.FromRrgb, but the types of ele-
ments within the x: Arguments tags distinguish between int arguments that range from 0 to 255 and
double arguments that range from 0 to 1. The third one is the Color.FromHsla method, which cre-
ates a Color value from hue, saturation, luminosity, and alpha components. Interestingly, this is the
only way to define a Color value from HSL values in a XAML file by using the Xamarin.Forms API.
Here's the result:

Chapter 8 Code and XAML in harmony 161

The x:Name attribute

In most real applications, the code-behind file needs to reference elements defined in the XAML file.
You saw one way to do this in the CodePlusXaml program in the previous chapter: If the code-behind
file has knowledge of the layout of the visual tree defined in the XAML file, it can start from the root
element (the page itself) and locate specific elements within the tree. This process is called "walking the
tree” and can be useful for locating particular elements on a page.

Generally, a better approach is to give elements in the XAML file a name similar to a variable name.
To do this you use an attribute that is intrinsic to XAML, called Name. Because the prefix x is almost uni-
versally used for attributes intrinsic to XAML, this Name attribute is commonly referred to as x: Name.

The XamlClock project demonstrates the use of x : Name. Here is the XamlIClockPage.xaml file con-
taining two Label controls, named timeLabel and dateLabel:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="Xam1Clock.Xam1ClockPage">
<StackLayout>
<Label x:Name="timeLabel"

FontSize="Large"
HorizontalOptions="Center"
VerticalOptions="EndAndExpand" />

<Label x:Name="datelLabel"
HorizontalOptions="Center"
VerticalOptions="StartAndExpand" />

Chapter 8 Code and XAML in harmony 162

</StackLayout>
</ContentPage>

The rules for x: Name are the same as for C# variable names. (You'll see why shortly.) The name must
begin with a letter or an underscore and can contain only letters, underscores, and numbers.

Like the clock program in Chapter 5, XamlClock uses Device.StartTimer to fire a periodic event
for updating the time and date. Here’s the xam1ClockPage code-behind file:

namespace Xaml1Clock

{
public partial class XamlClockPage
{
public Xam1ClockPage()
{
InitializeComponent();
Device.StartTimer(TimeSpan.FromSeconds(1), OnTimerTick);
}
bool OnTimerTick()
{
DateTime dt = DateTime.Now;
timelLabel.Text = dt.ToString("T");
datelabel.Text = dt.ToString("D");
return true;
}
}
}

This timer callback method is called once per second. The method must return true to continue the
timer. If it returns false, the timer stops and must be restarted with another call to Device.Start-

Timer.

The callback method references timeLabel and dateLabel as though they were normal variables
and sets the Text properties of each:

Chapter 8 Code and XAML in harmony 163

12:48 PM

12:51:42 PM

12:48:01 PM

Friday, January 22, 2016

Friday, January 22, 2016

This is not a visually impressive clock, but it's definitely functional.

How is it that the code-behind file can reference the elements identified with x:Name? Is it magic?
Of course not. The mechanism is very evident when you examine the XamlIClockPage.xaml.g.cs file that
the XAML parser generates from the XAML file as the project is being built:

ettt
// <auto-generated>

// This code was generated by a tool.

// Runtime Version:4.0.30319.42000

//

// Changes to this file may cause incorrect behavior and will be lost if

// the code 1is regenerated.

// </auto-generated>
ettt

namespace Xam1Clock {
using System;
using Xamarin.Forms;
using Xamarin.Forms.XamT;

public partial class XamlClockPage : global::Xamarin.Forms.ContentPage {

[System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build.Tasks.Xam1G",
"0.0.0.0")]
private global::Xamarin.Forms.Label timelLabel;

[System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build.Tasks.Xam1G",
"0.0.0.0")]
private global::Xamarin.Forms.Label datelLabel;

Chapter 8 Code and XAML in harmony 164

[System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build.Tasks.Xam1G",
"0.0.0.0")]
private void InitializeComponent() {
this.LoadFromXaml (typeof (Xam1ClockPage));
timelLabel = this.FindByName<global::Xamarin.Forms.Label>("timeLabel™);
datelLabel this.FindByName<global::Xamarin.Forms.Label>("dateLabel");

}

It might be a little hard to see because of the attributes and fully qualified types, but as the build-time
XAML parser chews through the XAML file, every x: Name attribute becomes a private field in this gen-
erated code file. This allows code in the code-behind file to reference these names as though they were
normal fields—which they definitely are. However, the fields are initially nul1. Only when Initial-
izeComponent is called at run time are the two fields set via the FindByName method, which is de-
fined in the NameScopeExtensions class. If the constructor of your code-behind file tries to reference
these two fields prior to the InitializeComponent call, they will have null values.

This generated code file also implies another rule for x: Name values that is now very obvious but
rarely stated explicitly: the names cannot duplicate names of fields or properties defined in the code-
behind file.

Because these are private fields, they can be accessed only from the code-behind file and not from
other classes. If a ContentPage derivative needs to expose public fields or properties to other classes,
you must define those yourself.

Obviously, x:Name values must be unique within a XAML page. This can sometimes be a problem if
you're using onPlatform for platform-specific elements in the XAML file. For example, here's a XAML
file that expresses the 10S, Android, and WinPhone properties of OnPlatform as property elements
to select one of three Label views:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="PlatformSpecificLabels.PlatformSpecificLabelsPage">

<OnPTatform x:TypeArguments="View">
<OnPlatform.i0S>
<Label Text="This is an i0S device"
HorizontalOptions="Center"
VerticalOptions="Center" />
</0nPlatform.i0S>

<OnPlatform.Android>
<Label Text="This is an Android device"
HorizontalOptions="Center"
VerticalOptions="Center" />
</0nPlatform.Android>

<0OnPlatform.WinPhone>
<Label Text="This is an Windows device"

Chapter 8 Code and XAML in harmony 165

HorizontalOptions="Center"
VerticalOptions="Center" />
</0OnPlatform.WinPhone>
</0OnPlatform>
</ContentPage>

The x:TypeArguments attribute of onPlatform must match the type of the target property exactly.
This onPlatform element is implicitly being set to the Content property of ContentPage, and this
Content property is of type View, so the x: TypeArguments attribute of OnPlatform must specify
View. However, the properties of onPlatform can be set to any class that derives from that type. The
objects set to the 10S, Android, and WinPhone properties can in fact be different types just as long as
they all derive from view.

Although that XAML file works, it's not exactly optimum. All three Label views are instantiated and
initialized, but only one is set to the Content property of the ContentPage. The problem with this
approach arises if you need to refer to the Label from the code-behind file and you give each of them
the same name, like so:

The following XAML file does not work!

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="PlatformSpecificLabels.PlatformSpecificLabelsPage">

<OnPTatform x:TypeArguments="View">
<OnPlatform.i0S>
<Label x:Name="devicelLabel"
Text="This is an i0S device"
HorizontalOptions="Center"
VerticalOptions="Center" />
</0nPlatform.i0S>

<OnPTatform.Android>
<Label x:Name="devicelLabel"
Text="This is an Android device"
HorizontalOptions="Center"
VerticalOptions="Center" />
</0OnPlatform.Android>

<OnPTatform.WinPhone>
<Label x:Name="devicelLabel"

Text="This is a Windows device"
HorizontalOptions="Center"
VerticalOptions="Center" />

</0nPlatform.WinPhone>

</0OnPlatform>
</ContentPage>

This will not work because multiple elements cannot have the same name.

You could give them different names and handle the three names in the code-behind file by using

Chapter 8 Code and XAML in harmony 166

Device.OnPlatform, but a better solution is to keep the platform-specific markup as small as possi-
ble. In this example, all the Label properties are the same except for Text, so only the Text property
needs to be platform specific. Here's the version of the PlatformSpecificLabels program that is in-
cluded with the sample code for this chapter. It has a single Labe1, and everything is platform inde-
pendent except for the Text property:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="PlatformSpecificLabels.PlatformSpecificLabelsPage">

<Label x:Name="devicelLabel"
HorizontalOptions="Center"
VerticalOptions="Center">
<Label.Text>

<OnPlatform x:TypeArguments="x:String"
i0S="This is an i0S device"
Android="This 1is an Android device
WinPhone="This is a Windows device" />

</Label.Text>
</Label>
</ContentPage>

Here's what it looks like:

This is an i0S device This is a Windows device

The Text property is the content property for Labe1l, so you don't need the Label.Text tags in
the previous example. This works as well:
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="PlatformSpecificLabels.PlatformSpecificLabelsPage">

Chapter 8 Code and XAML in harmony 167

<Label x:Name="devicelLabel"
HorizontalOptions="Center"
VerticalOptions="Center">
<OnPlatform x:TypeArguments="x:String"
i0S="This 1is an i0S device"
Android="This is an Android device"
WinPhone="This is a Windows device" />
</Label>
</ContentPage>

Custom XAML-based views

The ScaryColorList program in the previous chapter listed a few colors in a StackLayout using
Frame, BoxView, and Label. Even with just three colors, the repetitive markup was starting to look
very ominous. Unfortunately there is no XAML markup that duplicates the C# for and while loops, so
your choice is to use code for generating multiple similar items, or to find a better way to do it in
markup.

In this book, you'll see several ways to list colors in XAML, and eventually, a very clean and elegant
way to do this job will become clear. But that requires a few more steps into learning Xamarin.Forms.
Until then, we'll be looking at some other approaches that you might find useful in similar circum-
stances.

One strategy is to create a custom view that has the sole purpose of displaying a color with a name
and a colored box. And while we're at it, let's display the hexadecimal RGB values of the colors as well.
You can then use that custom view in a XAML page file for the individual colors.

What might a reference to such a custom view look like in XAML?
Or the better question is: How would you like it to look?

If the markup looked something like this, the repetition is not bad at all, and not so much worse
than explicitly defining an array of color values in code:
<StackLayout>
<MyColorView Color="Red" />

<MyColorView Color="Green" />
<MyColorView Color="Blue" />

</StackLayout>

Well, actually, it won't look exactly like that. MyColorview is obviously a custom class and not part of
the Xamarin.Forms API. Therefore, it cannot appear in the XAML file without a namespace prefix that is
defined in an XML namespace declaration.

With this XML prefix applied, there won't be any confusion about this custom view being part of the
Xamarin.Forms API, so let's give it a more dignified name of Colorview rather than MyColorview.

Chapter 8 Code and XAML in harmony 168

This hypothetical Colorview class is an example of a fairly easy custom view because it consists
solely of existing views—specifically Label, Frame, and BoxView—arranged in a particular way using
StackLayout. Xamarin.Forms defines a view designed specifically for the purpose of parenting such
an arrangement of views, and it's called Contentview. Like ContentPage, ContentView has a Con-
tent property that you can set to a visual tree of other views. You can define the contents of the Con-
tentView in code, but it's more fun to do it in XAML.

Let's put together a solution named ColorViewList. This solution will have two sets of XAML and
code-behind files, the first for a class named ColorviewListPage, which derives from ContentPage
(as usual), and the second for a class named Colorview, which derives from Contentview.

To create the Colorview class in Visual Studio, use the same procedure as when adding a new
XAML page to the ColorViewList project: Right-click the project name in the Solution Explorer, and
select Add > New Item from the context menu. In the Add New Item dialog, select Visual C# >
Cross-Platform at the left and then Forms Xaml Page. Enter the name ColorView.cs. But right away,
before you forget, go into the ColorView.xaml file and change the ContentPage start and end tags to
ContentView. In the ColorView.xaml.cs file, change the base class to Contentview.

The process is a little easier in Xamarin Studio. From the tool menu for the ColorViewlList project,
select Add > New File. In the New File dialog, select Forms at the left and Forms ContentView Xaml
(not Forms ContentPage Xaml). Give it a name of ColorView.

You'll also need to create a XAML file and code-behind file for the ColorviewListPage class, as
usual.

The ColorView.xaml file describes the layout of the individual color items but without any actual
color values. Instead, the Boxview and two Label views are given names:

<ContentView xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ColorViewList.ColorView">

<Frame OutlineColor="Accent">
<StackLayout Orientation="Horizontal">
<BoxView x:Name="boxView"
WidthRequest="70"
HeightRequest="70" />

<StackLayout>
<Label x:Name="colorNamelLabel"
FontSize="Large"
VerticalOptions="CenterAndExpand" />

<Label x:Name="colorValuelLabel"
VerticalOptions="CenterAndExpand" />
</StackLayout>
</StackLayout>
</Frame>
</ContentView>

Chapter 8 Code and XAML in harmony 169

In a real-life program, you'll have plenty of time later to fine-tune the visuals. Initially, you'll just want
to get all the named views in there.

Besides the visuals, this Colorview class will need a new property to set the color. This property
must be defined in the code-behind file. At first, it seems reasonable to give Colorview a property
named Color of type Color (as the earlier XAML snippet with MyColorview seems to suggest). But
the Colorview class needs to display the color name, and it can't get the color name from a Color
value.

Instead, it makes more sense to define a property named ColorName of type string. The code-
behind file can then use reflection to obtain the static field of the Color class corresponding to that
name.

But wait: Xamarin.Forms includes a public ColorTypeConverter class that the XAML parser uses to
convert a text color name like "Red” or "Blue” into a Color value. Why not take advantage of that?

Here's the code-behind file for Colorview. It defines a ColorName property with a set accessor
that sets the Text property of the colorNameLabel to the color name, and then uses ColorType-
Converter to convert the name to a Color value. This Color value is then used to set the color
property of boxView and the Text property of the colorvalueLabel to the RGB values:

public partial class ColorView : ContentView

{
string colorName;
ColorTypeConverter colorTypeConv = new ColorTypeConverter();

public ColorView(Q)

{
InitializeComponent();
}
public string ColorName
{
set
{
// Set the name.
colorName = value;
colorNameLabel.Text = value;
// Get the actual Color and set the other views.
Color color = (Color)colorTypeConv.ConvertFrom(colorName);
boxView.Color = color;
colorValuelLabel.Text = String.Format("{0:X2}-{1:X2}-{2:X2}",
(int) (255 * color.R),
(int) (255 * color.G),
(int) (255 * color.B));
get
{

return colorName;

Chapter 8 Code and XAML in harmony 170

The Colorview class is finished. Now let's look at ColorviewListPage. The ColorViewList-
Page.xaml file must list multiple colorview instances, so it needs a new XML namespace declaration
with a new namespace prefix to reference the Colorview element.

The Colorview class is part of the same project as ColorviewListPage. Generally, programmers
use an XML namespace prefix of 1ocal for such cases. The new namespace declaration appears in the
root element of the XAML file (like the other two) with the following format:

xmlns:local="clr-namespace:ColorViewList;assembly=ColorViewList"

In the general case, a custom XML namespace declaration for XAML must specify a common language
runtime (CLR) namespace—also known as the .NET namespace—and an assembly. The keywords to
specify these are clr-namespace and assembly. Often the CLR namespace is the same as the assem-
bly, as they are in this case, but they don't need to be. The two parts are connected by a semicolon.

Notice that a colon follows c1r-namespace, but an equal sign follows assembly. This apparent
inconsistency is deliberate: the format of the namespace declaration is intended to mimic a URI found
in conventional namespace declarations, in which a colon follows the URI scheme name.

You use the same syntax for referencing objects in external portable class libraries. The only differ-
ence in those cases is that the project also needs a reference to that external PCL. (You'll see an exam-
ple in Chapter 10, “XAML markup extensions.”).

The local prefix is common for code in the same assembly, and in that case the assembly part is
not required:

xmIns:local="clr-namespace:ColorViewList"

For a XAML file in a PCL, you can include the assembly part to reference something in the same as-
sembly if you want but it's not necessary. For a XAML file in an SAP, however, you must not include the
assembly part to reference a local class because there is no assembly associated with an SAP. The
code in the SAP is actually part of the individual platform assemblies, and those all have different
names.

Here's the XAML for the ColorviewListPage class. The code-behind file contains nothing beyond
the InitializeComponent call:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmlns:local="clr-namespace:ColorViewList"
x:Class="ColorViewList.ColorViewListPage">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0s="0, 20, 0, 0" />
</ContentPage.Padding>

Chapter 8 Code and XAML in harmony

<Scrol1View>

<StackLayout Padding="6, 0">

<local
<local
<local
<local
<local
<local
<local
<local
<local
<local
<local
<local
<local
<local
<local
<local
<local

:ColorView
:ColorView
:ColorView
:ColorView
:ColorView
:ColorView
:ColorView
:ColorView
:ColorView
:ColorView
:ColorView
:ColorView
:ColorView
:ColorView
:ColorView
:ColorView
:ColorView

</StackLayout>

</Scrol1View>
</ContentPage>

ColorName="Aqua" />
ColorName="BTlack" />
ColorName="BTlue" />
ColorName="Fuchsia" />
ColorName="Gray" />
ColorName="Green" />
ColorName="Lime" />
ColorName="Maroon" />
ColorName="Navy" />
ColorName="0Tive" />
ColorName="Purple" />
ColorName="Pink" />
ColorName="Red" />
ColorName="Silver" />
ColorName="Teal" />
ColorName="White" />
ColorName="Yellow" />

171

This is not quite as odious as the earlier example seemed to suggest, and it demonstrates how you can

encapsulate visuals in their own XAML-based classes. Notice that the stackLayout is the child of a

ScrollView, so the list can be scrolled:

10610 AM

Agua

DO-FF-FF

Fuchsia

FF-00-FF

4% @02

Lime

00-FF-00

Maroon

Pink

FF-66-FF

Red

FF-00-00

Silver
Co-co-co

Teal

00-80-80

However, there is one aspect of the ColorViewList project that does not qualify as a “best practice.” It
is the definition of the ColorName property in Colorview. This should really be implemented as a

Chapter 8 Code and XAML in harmony 172

BindableProperty object. Delving into bindable objects and bindable properties is a high priority
and will be explored in Chapter 11, “The bindable infrastructure.”

Events and handlers

When you tap a Xamarin.Forms Button, it fires a C1icked event. You can instantiate a Button in
XAML, but the c1icked event handler itself must reside in the code-behind file. The Button is only
one of a bunch of views that exist primarily to generate events, so the process of handling events is
crucial to coordinating XAML and code files.

Attaching an event handler to an event in XAML is as simple as setting a property; it is, in fact, visu-
ally indistinguishable from a property setting. The XamlKeypad project is a XAML version of the Per-
sistentKeypad project from Chapter 6. It illustrates setting event handlers in XAML and handling these
events in the code-behind file. It also includes logic to save keypad entries when the program is termi-
nated.

If you take a look back at the constructor code of the SimplestKeypadPage Or PersistentKey-
padPage classes, you'll see a couple of loops to create the buttons that make up the numeric part of
the keypad. Of course, this is precisely the type of thing you can’t do in XAML, but look at how much
cleaner the markup in Xam1KeypadPage is when compared with that code:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="XamlKeypad.Xam1KeypadPage">

<StackLayout VerticalOptions="Center"
HorizontalOptions="Center">

<Label x:Name="displayLabel"
Font="Large"
VerticalOptions="Center"
HorizontalTextAlignment="End" />

<Button x:Name="backspaceButton"
Text="⇦"
Font="Large"
IsEnabled="False"
Clicked="0OnBackspaceButtonClicked" />

<StackLayout Orientation="Horizontal">
<Button Text="7" StyleId="7" Font="Large"
Clicked="0OnDigitButtonClicked" />
<Button Text="8" StyleId="8" Font="Large"
Clicked="0OnDigitButtonClicked" />
<Button Text="9" StyleId="9" Font="Large"
Clicked="0OnDigitButtonClicked" />
</StackLayout>

Chapter 8 Code and XAML in harmony

<StackLayout Orientation="Horizontal">
<Button Text="4" StyleId="4" Font="Large"
Clicked="0OnDigitButtonClicked" />
<Button Text="5" StyleId="5" Font="Large"
Clicked="0OnDigitButtonClicked" />
<Button Text="6" StyleIld="6" Font="Large"
Clicked="0OnDigitButtonClicked" />
</StackLayout>

<StackLayout Orientation="Horizontal">
<Button Text="1" StyleId="1" Font="Large"
Clicked="0OnDigitButtonClicked" />
<Button Text="2" StyleId="2" Font="Large"
Clicked="0OnDigitButtonClicked" />
<Button Text="3" StyleId="3" Font="Large"
Clicked="0OnDigitButtonClicked" />
</StackLayout>

<Button Text="0" StyleId="0" Font="Large"
Clicked="0OnDigitButtonClicked" />

</StackLayout>
</ContentPage>

The file is a lot shorter than it would have been had the three properties on each numeric Button
been formatted into three lines, but packing these all together makes the uniformity of the markup
very obvious and provides clarity rather than obscurity.

173

The big question is this: Which would you rather maintain and modify? The code in the Simplest-
KeypadPage Of PersistentKeypadPage constructors or the markup in the Xaml1KeypadpPage XAML

file?

Here's the screenshot. You'll see that these keys are now arranged in calculator order rather than

telephone order:

Chapter 8 Code and XAML in harmony 174

* % @027

The backspace button has its C1icked event set to the OnBackspaceButtonClicked handler,
while the digit buttons share the onDigitButtonClicked handler. As you'll recall, the style1d prop-
erty is often used to distinguish views sharing the same event handler, which means that the two event
handlers can be implemented in the code-behind file exactly the same as in the code-only program:

public partial class XamlKeypadPage

{
App app = Application.Current as App;

public XamTKeypadPage()

{
InitializeComponent();
displayLabel.Text = app.DisplaylLabelText;
backspaceButton.IsEnabled = displaylLabel.Text != null &&
displayLabel.Text.Length > 0;
}
void OnDigitButtonClicked(object sender, EventArgs args)
{
Button button = (Button)sender;
displayLabel.Text += (string)button.Styleld;
backspaceButton.IsEnabled = true;
app.DisplayLabelText = displayLabel.Text;
}

void OnBackspaceButtonClicked(object sender, EventArgs args)
{

string text = displaylLabel.Text;

displayLabel.Text = text.Substring(0, text.Length - 1);

Chapter 8 Code and XAML in harmony 175

backspaceButton.IsEnabled = displayLabel.Text.Length > 0;
app.DisplaylLabelText = displaylLabel.Text;
}

Part of the job of the LoadFromxaml method called by InitializeComponent involves attaching
these event handlers to the objects instantiated from the XAML file.

The XamlKeypad project also includes the code that was added to the page and 2App classes in Per-
sistentKeypad to save the keypad text when the program is terminated. The app class in XamlKeypad
is basically the same as the one in PersistentKeypad.

Tap gestures

The Xamarin.Forms But ton responds to finger taps, but you can actually get finger taps from any class
that derives from View, including Label, BoxView, and Frame. These tap events are not built into the
View class, but the view class defines a property named GestureRecognizers. Taps are enabled by
adding an object to this GestureRecognizers collection. An instance of any class that derives from
GestureRecognizer can be added to this collection, but undoubtedly the most useful is TapGes-

tureRecognizer.

Here's how to add a TapGestureRecognizer to a BoxView in code:

BoxView boxView = new BoxView

{

Color = Color.Blue
};
TapGestureRecognizer tapGesture = new TapGestureRecognizer();
tapGesture.Tapped += OnBoxViewTapped;
boxView.GestureRecognizers.Add(tapGesture);

TapGestureRecognizer also defines a NumberOfTapsRequired property with a default value of 1.
Set it to 2 to implement double taps.

To generate Tapped events, the View object must have its IsEnabled property set to true, its Is-
Visible property set to true (or it won't be visible at all), and its InputTransparent property set to
false. These are all default conditions.

The Tapped handler looks just like a C1icked handler for the Button:

void OnBoxViewTapped(object sender, EventArgs args)

{
}

As you know, the sender argument of an event handler is normally the object that fires the event,

Chapter 8 Code and XAML in harmony 176

which in this case would be the TapGestureRecognizer object. That would not be of much use. In-
stead, the sender argument to the Tapped handler is the view being tapped, in this case the BoxView.
That's much more useful!

Like Button, TapGestureRecognizer also defines Command and CommandParameter properties;
these are used when implementing the MVVM design pattern, and they are discussed in a later chap-
ter.

TapGestureRecognizer also defines properties named TappedCallback and TappedCallback-
pParameter and a constructor that includes a TappedCallback argument. These are all deprecated
and should not be used.

In XAML, you can attach a TapGestureRecognizer to a view by expressing the GestureRecog-
nizers collection as a property element:
<BoxView Color="Blue">
<BoxView.GestureRecognizers>
<TapGestureRecognizer Tapped="OnBoxViewTapped" />

</BoxView.GestureRecognizers>
</BoxView>

As usual, the XAML is a little shorter than the equivalent code.
Let's make a program that's inspired by one of the first standalone computer games.

The Xamarin.Forms version of this game is called MonkeyTap because it's an imitation game. It
contains four BoxVview elements, colored red, blue, yellow, and green. When the game begins, one of
the Boxview elements flashes, and you must then tap that Boxview. That BoxVview flashes again fol-
lowed by another one, and now you must tap both in sequence. Then those two flashes are followed
by a third and so forth. (The original had sound as well, but MonkeyTap does not.) It's a rather cruel
game because there is no way to win. The game just keeps on getting harder and harder until you lose.

The MonkeyTapPage.xaml file instantiates the four Boxview elements and a Button in the center
labeled "Begin”.

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="MonkeyTap.MonkeyTapPage">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0s="0, 20, 0, 0" />
</ContentPage.Padding>

<StackLayout>
<BoxView x:Name="boxview0"
VerticalOptions="FilTAndExpand">
<BoxView.GestureRecognizers>
<TapGestureRecognizer Tapped="OnBoxViewTapped" />
</BoxView.GestureRecognizers>

Chapter 8 Code and XAML in harmony 177

</BoxView>

<BoxView x:Name="boxviewl"
VerticalOptions="FillAndExpand">
<BoxView.GestureRecognizers>
<TapGestureRecognizer Tapped="OnBoxViewTapped" />
</BoxView.GestureRecognizers>
</BoxView>

<Button x:Name="startGameButton"
Text="Begin"
Font="Large"
HorizontalOptions="Center"
Clicked="OnStartGameButtonClicked" />

<BoxView x:Name="boxview2"
VerticalOptions="FillAndExpand">
<BoxView.GestureRecognizers>
<TapGestureRecognizer Tapped="OnBoxViewTapped" />
</BoxView.GestureRecognizers>
</BoxView>

<BoxView x:Name="boxview3"
VerticalOptions="FilTAndExpand">
<BoxView.GestureRecognizers>
<TapGestureRecognizer Tapped="OnBoxViewTapped" />
</BoxView.GestureRecognizers>
</BoxView>
</StackLayout>
</ContentPage>

All four Boxview elements here have a TapGestureRecognizer attached, but they aren't yet as-
signed colors. That's handled in the code-behind file because the colors won't stay constant. The colors
need to be changed for the flashing effect.

The code-behind file begins with some constants and variable fields. (You'll notice that one of them
is flagged as protected; in the next chapter, a class will derive from this one and require access to this
field. Some methods are defined as protected as well.)

public partial class MonkeyTapPage

{
const int sequenceTime = 750; // in msec
protected const int flashDuration = 250;

const double offLuminosity = 0.4; // somewhat dimmer
const double onLuminosity = 0.75; // much brighter

BoxView[] boxViews;

Color[] colors = { Color.Red, Color.Blue, Color.Yellow, Color.Green };
List<int> sequence = new List<int>(Q);

int sequencelndex;

bool awaitingTaps;

bool gameEnded;

Chapter 8 Code and XAML in harmony 178

Random random = new Random();

pubTlic MonkeyTapPage()

{
InitializeComponent();
boxViews = new BoxView[] { boxviewO, boxviewl, boxview2, boxview3 };
InitializeBoxViewColors();
}
void InitializeBoxViewColors()
{
for (int index = 0; index < 4; index++)
boxViews[index].Color = colors[index].WithLuminosity(offLuminosity);
}

}

The constructor puts all four Boxview elements in an array; this allows them to be referenced by a sim-
ple index that has values of 0, 1, 2, and 3. The InitializeBoxViewColors method sets all the Box-
View elements to their slightly dimmed nonflashed state.

The program is now waiting for the user to press the Begin button to start the first game. The same
Button handles replays, so it includes a redundant initialization of the Boxview colors. The Button
handler also prepares for building the sequence of flashed Boxview elements by clearing the se-
quence list and calling startSequence

public partial class MonkeyTapPage

{
protected void OnStartGameButtonClicked(object sender, EventArgs args)
{
gameEnded = false;
startGameButton.IsVisible = false;
InitializeBoxViewColors(Q);
sequence.Clear();
StartSequence();
}
void StartSequence()
{
sequence.Add(random.Next(4));
sequenceIndex = 0;
Device.StartTimer(TimeSpan.FromMilliseconds(sequenceTime), OnTimerTick);
}
}

StartSequence adds a new random integer to the sequence list, initializes sequenceIndex to 0,
and starts the timer.

In the normal case, the timer tick handler is called for each index in the sequence list and causes
the corresponding Boxview to flash with a call to F1ashBoxVview. The timer handler returns false

Chapter 8 Code and XAML in harmony 179

when the sequence is at an end, also indicating by setting awaitingTaps that it's time for the user to
imitate the sequence:

public partial class MonkeyTapPage

{
bool OnTimerTick()
{
if (gameEnded)
return false;
FlashBoxView(sequence[sequenceIndex]);
sequenceIndex++;
awaitingTaps = sequenceIndex == sequence.Count;
sequenceIndex = awaitingTaps ? 0 : sequencelndex;
return !awaitingTaps;
}
protected virtual void FlashBoxView(int index)
{
boxViews[index].Color = colors[index].WithLuminosity(onLuminosity);
Device.StartTimer(TimeSpan.FromMilliseconds(flashDuration), () =>
{
if (gameEnded)
return false;
boxViews[index].Color = colors[index].WithLuminosity(offLuminosity);
return false;
s
}
}

The flash is just a quarter second in duration. The FlashBoxView method first sets the luminosity for
a bright color and creates a “one-shot” timer, so called because the timer callback method (here
expressed as a lambda function) returns false and shuts off the timer after restoring the color’s
luminosity.

The Tapped handler for the Boxview elements ignores the tap if the game is already over (which
only happens with a mistake by the user), and ends the game if the user taps prematurely without
waiting for the program to go through the sequence. Otherwise, it just compares the tapped BoxView
with the next one in the sequence, flashes that Boxview if correct, or ends the game if not:

public partial class MonkeyTapPage

{

protected void OnBoxViewTapped(object sender, EventArgs args)

{
if (gameEnded)
return;

if (lawaitingTaps)

Chapter 8 Code and XAML in harmony 180

EndGame();
return;

BoxView tappedBoxView = (BoxView)sender;
int index = Array.IndexOf(boxViews, tappedBoxView);

if (index != sequence[sequenceIndex])
{

EndGame();

return;
}

FlashBoxView(index);

sequenceIndex++;
awaitingTaps = sequencelndex < sequence.Count;

if (lawaitingTaps)

StartSequence();
}
protected virtual void EndGame()
{
gameEnded = true;
for (int index = 0; index < 4; index++)
boxViews[index].Color = Color.Gray;
startGameButton.Text = "Try again?";
startGameButton.IsVisible = true;
}

}

If the user manages to “ape” the sequence all the way through, another call to startSequence adds a
new index to the sequence list and starts playing that new one. Eventually, though, there will be a call
to EndGame, which colors all the boxes gray to emphasize the end, and reenables the Button for a
chance to try it again.

Here's the program after the Button has been clicked and hidden:

Chapter 8 Code and XAML in harmony 181

I know, | know. The game is a real drag without sound.

Let's take the opportunity in the next chapter to fix that.

Chapter 9
Platform-specific API calls

An emergency has arisen. Anyone playing with the MonkeyTap game from the previous chapter will
quickly come to the conclusion that it desperately needs a very basic enhancement, and it simply can-
not be allowed to exist without it.

MonkeyTap needs sound.

It doesn’t need very sophisticated sound—just little beeps to accompany the flashes of the four
BoxView elements. But the Xamarin.Forms API doesn’t support sound, so sound is not something we
can add to MonkeyTap with just a couple of API calls. Supporting sound requires going somewhat be-
yond Xamarin.Forms to make use of platform-specific sound-generation facilities. Figuring out how to
make sounds in iOS, Android, and Windows Phone is hard enough. But how does a Xamarin.Forms
program then make calls into the individual platforms?

Before tackling the complexities of sound, let's examine the different approaches to making plat-
form-specific API calls with a much simpler example. The first three short programs shown in this chap-
ter are all functionally identical: They all display two tiny items of information supplied by the underly-
ing platform’s operating system that reveal the model of the device running the program and the op-
erating system version.

Preprocessing in the Shared Asset Project

As you learned in Chapter 2, “Anatomy of an app,” you can use either a Shared Asset Project (SAP) or a
Portable Class Library (PCL) for the code that is common to all three platforms. An SAP contains code
files that are shared among the platform projects, while a PCL encloses the common code in a library
that is accessible only through public types.

Accessing platform APIs from a Shared Asset Project is a little more straightforward than from a
Portable Class Library because it involves more traditional programming tools, so let’s try that ap-
proach first. You can create a Xamarin.Forms solution with an SAP using the process described in
Chapter 2. You can then add a XAML-based ContentPage class to the SAP the same way you add one
to a PCL.

Here's the XAML file for a project that displays platform information, named PlatinfoSap1:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="PlatInfoSapl.PlatInfoSaplPage">

<StackLayout Padding="20">

Chapter 9 Platform-specific API calls 183

<StackLayout VerticalOptions="CenterAndExpand">
<Label Text="Device Model:" />

<ContentView Padding="50, 0, 0, 0">
<Label x:Name="modelLabel"
FontSize="Large"
FontAttributes="Bold" />
</ContentView>
</StackLayout>

<StackLayout VerticalOptions="CenterAndExpand">
<Label Text="Operating System Version:" />

<ContentView Padding="50, 0, 0, 0">
<Label x:Name="versionLabel"
FontSize="Large"
FontAttributes="Bold" />
</ContentView>
</StackLayout>

</StackLayout>
</ContentPage>

The code-behind file must set the Text properties for modelLabel and versionLabel.

Code files in a Shared Asset Project are extensions of the code in the individual platforms. This
means that code in the SAP can make use of the C# preprocessor directives #if, #elif, #else, and
#endif with conditional-compilation symbols defined for the three platforms, as demonstrated in
Chapters 2 and 4. These symbols are:

e 105 foriOS

e ANDROID for Android

e wINDoWsS_ UwP for the Universal Windows Platform
e wINDOWS APP for Windows 8.1

e WINDOWS PHONE APP for Windows Phone 8.1

The APIs involved in obtaining the model and version information are, of course, different for the
three platforms:

e ForiOS, use the uUIDevice class in the UTKit namespace.
e For Android, use various properties of the Bui1d class in the Android.0S namespace.

e For the Windows platforms, use the EasClientDeviceInformation class in the win-
dows.Security.ExchangeActiveSyncProvisioning hamespace.

Here's the PlatinfoSapl.xaml.cs code-behind file showing how modellLabel and versionLabel are
set based on the conditional-compilation symbols:

using System;

Chapter 9 Platform-specific API calls

using Xamarin.Forms;

#if _TI0S__
using UIKit;

#e1if _ANDROID__
using Android.0S;

#e1if WINDOWS_APP || WINDOWS_PHONE_APP || WINDOWS_UWP
using Windows.Security.ExchangeActiveSyncProvisioning;

#endif

namespace PlatInfoSapl

{
public partial class PlatInfoSaplPage : ContentPage
{
public PlatInfoSaplPage ()
{
InitializeComponent ();
#if __I0S__

UIDevice device = new UIDevice();

modellLabel.Text = device.Model.ToString(Q);

versionLabel.Text = String.Format("{0} {1}", device.SystemName,
device.SystemVersion);

#elif _ANDROID__
modellLabel.Text = String.Format("{0} {1}", Build.Manufacturer,
Build.Model);
versionLabel.Text = Build.VERSION.Release.ToString(Q);
#e1if WINDOWS_APP || WINDOWS_PHONE_APP || WINDOWS_UWP
EasClientDeviceInformation devInfo = new EasClientDeviceInformation();
modellLabel.Text = String.Format("{0} {1}", devInfo.SystemManufacturer,
devInfo.SystemProductName) ;

versionLabel.Text = devInfo.OperatingSystem;

#endif

}

Notice that these preprocessor directives are used to select different using directives as well as to
make calls to platform-specific APIs. In a program as simple as this, you could simply include the
namespaces with the class names, but for longer blocks of code, you'll probably want those using

directives.

And of course it works:

184

Chapter 9 Platform-specific API calls 185

Device Model:

NOKIA
RM-893 nam_t
mous_201

Device Model
iPhone

LGE Nexus 5

Operating System Version:
iPhone 0S 9.2

Operating System Version:

WindowsPhone

The advantage of this approach is that you have all the code for the three platforms in one place.
But the preprocessor directives in the code listing are—let’s face it—rather ugly, and they harken back
to a much earlier era in programming. Using preprocessor directives might not seem so bad for short
and less frequent calls such as this example, but in a larger program you'll need to juggle blocks of
platform-specific code and shared code, and the multitude of preprocessor directives can easily be-
come confusing. Preprocessor directives should be used for little fixes and generally not as structural
elements in the application.

Let's try another approach.

Parallel classes and the Shared Asset Project

Although the Shared Asset Project is an extension of the platform projects, the relationship goes both
ways: just as a platform project can make calls into code in a Shared Asset Project, the SAP can make
calls into the individual platform projects.

This means that we can restrict the platform-specific API calls to classes in the individual platform
projects. If the names and namespaces of these classes in the platform projects are the same, then code
in the SAP can access these classes in a transparent, platform-independent manner.

In the PlatinfoSap2 solution, each of the five platform projects has a class named pPlatformInfo
that contains two methods that return string objects, named GetModel and GetVersion. Here's the
version of this class in the iOS project:

using System;

Chapter 9 Platform-specific API calls 186

using UIKit;

namespace PlatInfoSap2
{

public class PlatformInfo

{

UIDevice device = new UIDevice();

public string GetModel()
{

return device.Model.ToString(Q);

public string GetVersion()
{

return String.Format("{0} {1}", device.SystemName,
device.SystemVersion);

}

Notice the namespace name. Although the other classes in this iOS project use the PlatInfo-
Sap2.10S namespace, the namespace for this class is just PlatInfoSap2. This allows the SAP to ac-
cess this class directly without any platform specifics.

Here's the parallel class in the Android project. Same namespace, same class name, and same
method names, but different implementations of these methods using Android API calls:

using System;
using Android.0S;

namespace PlatInfoSap2

{
public class PlatformInfo
{
public string GetModel()
{
return String.Format("{0} {1}", Build.Manufacturer,
Build.Model);
}
public string GetVersion()
{
return Build.VERSION.Release.ToString(Q);
}
}
}

And here’s the class that exists in three identical copies in the three Windows and Windows Phone
projects:

using System;
using Windows.Security.ExchangeActiveSyncProvisioning;

Chapter 9 Platform-specific API calls 187

namespace PlatInfoSap2

{

public class PlatformInfo

{

EasClientDeviceInformation devInfo = new EasClientDeviceInformation();

public string GetModel()
{
return String.Format("{0} {1}", devInfo.SystemManufacturer,
devInfo.SystemProductName);

}

public string GetVersion()
{

return devInfo.OperatingSystem;
}

The XAML file in the PlatinfoSap2 project is basically the same as the one in PlatinfoSap1 project.
The code-behind file is considerably simpler:

using System;
using Xamarin.Forms;

namespace PlatInfoSap2

{
public partial class PlatInfoSap2Page : ContentPage
{
public PlatInfoSap2Page ()
{
InitializeComponent ();
PlatformInfo platformInfo = new PlatformInfo();
modellLabel.Text = platformInfo.GetModel();
versionLabel.Text = platformInfo.GetVersion(Q);
}
}
}

The particular version of PlatformInfo that is referenced by the class is the one in the compiled pro-
ject. It's almost as if we've defined a little extension to Xamarin.Forms that resides in the individual
platform projects.

DependencyService and the Portable Class Library

Can the technique illustrated in the PlatinfoSap2 program be implemented in a solution with a Porta-
ble Class Library? At first, it doesn't seem possible. Although application projects make calls to libraries
all the time, libraries generally cant make calls to applications except in the context of events or

Chapter 9 Platform-specific API calls 188

callback functions. The PCL is bundled with a device-independent version of .NET and closed up
tight—capable only of executing code within itself or other PCLs it might reference.

But wait: When a Xamarin.Forms application is running, it can use .NET reflection to get access to its
own assembly and any other assemblies in the program. This means that code in the PCL can use re-
flection to access classes that exist in the platform assembly from which the PCL is referenced. Those
classes must be defined as public, of course, but that's just about the only requirement.

Before you start writing code that exploits this technique, you should know that this solution al-
ready exists in the form of a Xamarin.Forms class named DependencyService. This class uses .NET
reflection to search through all the other assembilies in the application—including the particular plat-
form assembly itself—and provide access to platform-specific code.

The use of DependencyService is illustrated in the DisplayPlatformInfo solution, which uses a
Portable Class Library for the shared code. You begin the process of using DependencyService by
defining an interface type in the PCL project that declares the signatures of the methods you want to
implement in the platform projects. Here's IPlatformInfo:

namespace DisplayPlatformInfo

{
public interface IPlatformInfo
{
string GetModel();
string GetVersion();
}
}

You've seen those two methods before. They're the same two methods implemented in the Plat-
formInfo classes in the platform projects in PlatinfoSap2.

In a manner very similar to PlatinfoSap2, all three platform projects in DisplayPlatforminfo must
now have a class that implements the TPlatformInfo interface. Here's the class in the iOS project,
named PlatformInfo:

using System;
using UIKit;
using Xamarin.Forms;

[assembly: Dependency(typeof(DisplayPlatformInfo.i0S.PlatformInfo))]

namespace DisplayPlatformInfo.i0S

{
public class PlatformInfo : IPlatformInfo

{

UIDevice device = new UIDevice();

public string GetModel()
{

return device.Model.ToString(Q);

Chapter 9 Platform-specific API calls 189

}
public string GetVersion()
{
return String.Format("{0} {1}", device.SystemName,
device.SystemVersion);
}

}

This class is not referenced directly from the PCL, so the namespace name can be anything you want.
Here it's set to the same namespace as the other code in the iOS project. The class name can also be
anything you want. Whatever you name it, however, the class must explicitly implement the 1P1at-
formInfo interface defined in the PCL:

public class PlatformInfo : IPlatformInfo

Furthermore, this class must be referenced in a special attribute outside the namespace block. You'll
see it near the top of the file following the using directives:
[assembly: Dependency(typeof(DisplayPlatformInfo.i0S.PlatformInfo))]
The DependencyAttribute class that defines this Dependency attribute is part of Xamarin.Forms and
used specifically in connection with Dependencyservice. The argument is a Type object of a class in
the platform project that is available for access by the PCL. In this case, it's this Plat formInfo class.

This attribute is attached to the platform assembly itself, so code executing in the PCL doesn’t have to
search all over the library to find it.

Here's the Android version of PlatformInfo:

using System;
using Android.0S;
using Xamarin.Forms;

[assembly: Dependency(typeof(DisplayPlatformInfo.Droid.PlatformInfo))]

namespace DisplayPlatformInfo.Droid

{
public class PlatformInfo : IPlatformInfo
{
public string GetModel()
{
return String.Format("{0} {1}", Build.Manufacturer,
Build.Model);
}
public string GetVersion()
{
return Build.VERSION.Release.ToString(Q);
}
}

Chapter 9 Platform-specific API calls

And here’s the one for the UWP project:

using System;
using Windows.Security.ExchangeActiveSyncProvisioning;
using Xamarin.Forms;

[assembly: Dependency(typeof(DisplayPlatformInfo.UWP.PlatformInfo))]

namespace DisplayPlatformInfo.UWP

{
public class PlatformInfo : IPlatformInfo

{

EasClientDeviceInformation devInfo = new EasClientDeviceInformation();

public string GetModel()
{
return String.Format("{0} {1}", devInfo.SystemManufacturer,
devInfo.SystemProductName);

public string GetVersion()
{
return devInfo.OperatingSystem;

}

190

The Windows 8.1 and Windows Phone 8.1 projects have similar files that differ only by the namespace.

Code in the PCL can then get access to the particular platform’s implementation of TPlatform-

Info by using the DependencyService class. This is a static class with three public methods, the most

important of which is named Get. Get is a generic method whose argument is the interface you've de-

fined, in this case IPlatformInfo.

IPTatformInfo platformInfo = DependencyService.Get<IPlatformInfo>();

The Get method returns an instance of the platform-specific class that implements the TPlatform-
Info interface. You can then use this object to make platform-specific calls. This is demonstrated in the

code-behind file for the DisplayPlatformInfo project:

namespace DisplayPlatformInfo

{

public partial class DisplayPlatformInfoPage : ContentPage

{
public DisplayPlatformInfoPage()

{
InitializeComponent();
IPTatformInfo platformInfo = DependencyService.Get<IPlatformInfo>(Q);
modelLabel.Text = platformInfo.GetModel();
versionLabel.Text = platformInfo.GetVersion(Q);
}

Chapter 9 Platform-specific API calls 191

DependencyService caches the instances of the objects that it obtains through the Get method.
This speeds up subsequent uses of Get and also allows the platform implementations of the interface
to maintain state: any fields and properties in the platform implementations will be preserved across
multiple Get calls. These classes can also include events or implement callback methods.

DependencyService requires just a little more overhead than the approach shown in the Platin-
foSap2 project and is somewhat more structured because the individual platform classes implement an
interface defined in shared code.

DependencyService is not the only way to implement platform-specific calls in a PCL. Adven-
turous developers might want to use dependency-injection techniques to configure the PCL to make
calls into the platform projects. But DependencyService is very easy to use, and it eliminates most
reasons to use a Shared Asset Project in a Xamarin.Forms application.

Platform-specific sound generation

Now for the real objective of this chapter: to give sound to MonkeyTap. All three platforms support
APIs that allow a program to dynamically generate and play audio waveforms. This is the approach
taken by the MonkeyTapWithSound program.

Commercial music files are often compressed in formats such as MP3. But when a program is algo-
rithmically generating waveforms, an uncompressed format is much more convenient. The most basic
technique—which is supported by all three platforms—is called pulse code modulation or PCM. De-
spite the fancy name, it's quite simple, and it's the technique used for storing sound on music CDs.

A PCM waveform is described by a series of samples at a constant rate, known as the sampling rate.
Music CDs use a standard rate of 44,100 samples per second. Audio files generated by computer pro-
grams often use a sampling rate of half that (22,050) or one-quarter (11,025) if high audio quality is
not required. The highest frequency that can be recorded and reproduced is one-half the sampling
rate.

Each sample is a fixed size that defines the amplitude of the waveform at that point in time. The
samples on a music CD are signed 16-bit values. Samples of 8 bits are common when sound quality
doesn’t matter as much. Some environments support floating-point values. Multiple samples can
accommodate stereo or any number of channels. For simple sound effects on mobile devices, monau-
ral sound is often fine.

The sound generation algorithm in MonkeyTapWithSound is hard-coded for 16-bit monaural
samples, but the sampling rate is specified by a constant and can easily be changed.

Now that you know how DependencyService works, let's examine the code added to Monkey-

Chapter 9 Platform-specific API calls 192

Tap to turn it into MonkeyTapWithSound, and let's look at it from the top down. To avoid reproduc-
ing a lot of code, the new project contains links to the MonkeyTap.xaml and MonkeyTap.xaml.cs files in
the MonkeyTap project.

In Visual Studio, you can add items to projects as links to existing files by selecting Add > Existing
Item from the project menu. Then use the Add Existing Item dialog to navigate to the file. Choose
Add as Link from the drop-down on the Add button.

In Xamarin Studio, select Add > Add Files from the project’s tool menu. After opening the file or
files, an Add File to Folder alert box pops up. Choose Add a link to the file.

However, after taking these steps in Visual Studio, it was also necessary to manually edit the Mon-
keyTapWithSound.csproj file to change the MonkeyTapPage.xaml file to an EmbeddedResource and
the Generator to MSBuild:UpdateDesignTimeXaml. Also, a DependentUpon tag was added to the
MonkeyTapPage.xaml.cs file to reference the MonkeyTapPage.xaml file. This causes the code-behind
file to be indented under the XAML file in the file list.

The MonkeyTapWithSoundPage class then derives from the MonkeyTapPage class. Although the
MonkeyTapPage class is defined by a XAML file and a code-behind file, MonkeyTapWithSoundPage is
code only. When a class is derived in this way, event handlers in the original code-behind file for events
in the XAML file must be defined as protected, and this is the case.

The MonkeyTap class also defined a flashDuration constant as protected, and two methods
were defined as protected and virtual. The MonkeyTapWithSoundPage overrides these two meth-
ods to call a static method named SoundPlayer.PlaySound:

namespace MonkeyTapWithSound

{
class MonkeyTapWithSoundPage : MonkeyTap.MonkeyTapPage

{

const int errorDuration = 500;

// Diminished 7th in 1st inversion: C, Eb, F#, A
doubTle[] frequencies = { 523.25, 622.25, 739.99, 880 };

protected override void BlinkBoxView(int index)

{
SoundPlayer.PlaySound(frequencies[index], flashDuration);
base.BlinkBoxView(index);

}

protected override void EndGame()

{
SoundPlayer.PlaySound(65.4, errorDuration);
base.EndGame();

Chapter 9 Platform-specific API calls 193

The soundPlayer.PlaySound method accepts a frequency and a duration in milliseconds. Every-
thing else—the volume, the harmonic makeup of the sound, and how the sound is generated—is the
responsibility of the P1aySound method. However, this code makes an implicit assumption that
SoundPlayer.PlaySound returns immediately and does not wait for the sound to complete playing.
Fortunately, all three platforms support sound-generation APIs that behave in this way.

The soundPlayer class with the PlaySound static method is part of the MonkeyTapWithSound
PCL project. The responsibility of this method is to define an array of the PCM data for the sound. The
size of this array is based on the sampling rate and the duration. The for loop calculates samples that
define a triangle wave of the requested frequency:

namespace MonkeyTapWithSound
{
class SoundPlayer

{
const int samplingRate = 22050;

// Hard-coded for monaural, 16-bit-per-sample PCM
public static void PlaySound(double frequency = 440, int duration = 250)
{
short[] shortBuffer = new short[samplingRate * duration / 1000];
double angleIncrement = frequency / samplingRate;
double angle = 0; // normalized 0 to 1

for (int i = 0; i < shortBuffer.Length; i++)
{

// Define triangle wave

double sample;

// 0 to 1
if (angle < 0.25)
sample = 4 * angle;

// 1 to -1
else if (angle < 0.75)
sample = 4 * (0.5 - angle);

// -1 to 0
else
sample = 4 * (angle - 1);

shortBuffer[i] = (short) (32767 * sample);
angle += anglelIncrement;

while (angle > 1)
angle -= 1;
}

byte[] byteBuffer = new byte[2 * shortBuffer.Length];
Buffer.BlockCopy(shortBuffer, 0, byteBuffer, 0, byteBuffer.Length);

DependencyService.Get<IPlatformSoundPlayer>().PlaySound(samplingRate, byteBuffer);

Chapter 9 Platform-specific API calls 194

}

Although the samples are 16-bit integers, two of the platforms want the data in the form of an array of
bytes, so a conversion occurs near the end with Buf fer.BlockCopy. The last line of the method uses
DependencyService to pass this byte array with the sampling rate to the individual platforms.

The DependencyService.Get method references the IPlat formSoundPlayer interface that de-
fines the signature of the P1aySound method:

namespace MonkeyTapWithSound

{
public interface IPlatformSoundPlayer
{
void PTaySound(int samplingRate, byte[] pcmData);
}
}

Now comes the hard part: writing this P1aySound method for the three platforms!

The iOS version uses AvAudioPlayer, which requires data that includes the header used in Wave-
form Audio File Format (.wav) files. The code here assembles that data in a MemoryBuffer and then
converts that to an NSDhata object:

using System;

using System.IO;
using System.Text;
using Xamarin.Forms;
using AVFoundation;
using Foundation;

[assembly: Dependency(typeof(MonkeyTapWithSound.i0S.PlatformSoundPlayer))]

namespace MonkeyTapWithSound.i0S
{
public class PlatformSoundPlayer : IPTatformSoundPlayer
{
const int numChannels = 1;
const int bitsPerSample = 16;

public void PlaySound(int samplingRate, byte[] pcmData)

{
int numSamples = pcmData.Length / (bitsPerSample / 8);

MemoryStream memoryStream = new MemoryStream();
BinaryWriter writer = new BinaryWriter(memoryStream, Encoding.ASCII);

// Construct WAVE header.

writer.Write(new char[] { 'R', 'I', '"F', "F' });

writer.Write(36 + sizeof(short) * numSamples);

writer.Write(new char[] { 'W', 'A', 'V', "E' });

writer.Write(new char[] { 'f', 'm"', 't', " ' }); // format chunk

Chapter 9 Platform-specific API calls 195

writer.Write(16); // PCM chunk size
writer.Write((short)1l); // PCM format flag
writer.Write((short)numChannels);

writer.Write(samplingRate);

writer.Write(samplingRate * numChannels * bitsPerSample / 8); // byte rate
writer.Write((short) (numChannels * bitsPerSample / 8)); // block align
writer.Write((short)bitsPerSample);

writer.Write(new char[] { 'd', 'a', 't', 'a' }); // data chunk

writer.Write(numSamples numChannels * bitsPerSample / 8);

// Write data as well.
writer.Write(pcmData, 0, pcmData.lLength);

memoryStream.Seek (0, SeekOrigin.Begin);

NSData data = NSData.FromStream(memoryStream);
AVAudioPlayer audioPlayer = AVAudioPlayer.FromData(data);
audioPlayer.Play();

Notice the two essentials: PlatformSoundPlayer implements the IPlatformSoundPlayer inter-
face, and the class is flagged with the Dependency attribute.

The Android version uses the audioTrack class, and that turns out to be a little easier. However,
AudioTrack objects can't overlap, so it's necessary to save the previous object and stop it playing be-
fore starting the next one:

using System;
using Android.Media;
using Xamarin.Forms;

[assembly: Dependency(typeof(MonkeyTapWithSound.Droid.PlatformSoundPlayer))]

namespace MonkeyTapWithSound.Droid

{
public class PlatformSoundPlayer : IPlatformSoundPlayer
{

AudioTrack previousAudioTrack;

public void PlaySound(int samplingRate, byte[] pcmData)
{
if (previousAudioTrack != null)
{
previousAudioTrack.Stop(Q);
previousAudioTrack.Release();

AudioTrack audioTrack = new AudioTrack(Stream.Music,
sampTlingRate,
ChannelOut.Mono,
Android.Media.Encoding.Pcml6bit,
pcmData.lLength * sizeof(short),

Chapter 9 Platform-specific API calls

AudioTrackMode.Static);

audioTrack.Write(pcmData, 0, pcmData.Length);
audioTrack.Play(Q);

previousAudioTrack = audioTrack;

196

The three Windows and Windows Phone platforms can use MediaStreamSource. To avoid a lot of
repetitive code, the MonkeyTapWithSound solution contains an additional SAP project named
WinRuntimeShared consisting solely of a class that all three platforms can use:

using System;

using System.Runtime.InteropServices.WindowsRuntime;
using Windows.Media.Core;

using Windows.Media.MediaProperties;

using Windows.Storage.Streams;

using Windows.UI.Xaml.Controls;

namespace MonkeyTapWithSound.WinRuntimeShared

{

public class SharedSoundPlayer

{

MediaElement mediaElement = new MediaElement();
TimeSpan duration;

public void PlaySound(int samplingRate, byte[] pcmData)

{

AudioEncodingProperties audioProps =

AudioEncodingProperties.CreatePcm((uint)samplingRate, 1, 16);

AudioStreamDescriptor audioDesc = new AudioStreamDescriptor(audioProps);
MediaStreamSource mss = new MediaStreamSource(audioDesc);

bool samplePlayed = false;
mss.SampleRequested += (sender, args) =>

{

};

if (samplePlayed)
return;

IBuffer ibuffer = pcmData.AsBuffer(Q);
MediaStreamSample sample =

MediaStreamSample.CreateFromBuffer(ibuffer, TimeSpan.Zero);
sample.Duration = TimeSpan.FromSeconds(pcmData.Length / 2.0 / samplingRate);
args.Request.Sample = sample;
samplePlayed = true;

mediaETement.SetMediaStreamSource(mss);

Chapter 9 Platform-specific API calls 197

This SAP project is referenced by the three Windows and Windows Phone projects, each of which
contains an identical (except for the namespace) Plat formSoundPlayer class:

using System;
using Xamarin.Forms;

[assembly: Dependency(typeof(MonkeyTapWithSound.UWP.PlatformSoundPlayer))]

namespace MonkeyTapWithSound.UWP

{
public class PlatformSoundPlayer : IPlatformSoundPlayer
{
WinRuntimeShared.SharedSoundPlayer sharedSoundPlayer;
public void PlaySound(int samplingRate, byte[] pcmData)
{
if (sharedSoundPlayer == null)
{
sharedSoundPlayer = new WinRuntimeShared.SharedSoundPlayer();
}
sharedSoundPlayer.PlaySound(samplingRate, pcmData);
}
}
}

The use of DependencyService to perform platform-specific chores is very powerful, but this ap-
proach falls short when it comes to user-interface elements. If you need to expand the arsenal of views
that adorn the pages of your Xamarin.Forms applications, that job involves creating platform-specific
renderers, a process discussed in the final chapter of this book.

Chapter 10
XAML markup extensions

In code, you can set a property in a variety of different ways from a variety of different sources:

triangle.Anglel = 45;

triangle.Anglel = 180 * radians / Math.PI;
triangle.Anglel = angles[i];

triangle.Anglel animator.GetCurrentAngle();

If this Anglel property is a double, all that's required is that the source be a double or otherwise pro-
vide a numeric value that is convertible to a double.

In markup, however, a property of type double usually can be set only from a string that qualifies
as a valid argument to Double.Parse. The only exception you've seen so far is when the target prop-
erty is flagged with a TypeConverter attribute, such as the Fontsize property.

It might be desirable if XAML were more flexible—if you could set a property from sources other
than explicit text strings. For example, suppose you want to define another way to set a property of
type Color, perhaps using the Hue, Saturation, and Luminosity values but without the hassle of
the x:FactoryMethod element. Just offhand, it doesn’t seem possible. The XAML parser expects that
any value set to an attribute of type Color is a string acceptable to the ColorTypeConverter class.

The purpose of XAML markup extensions is to get around this apparent restriction. Rest assured that
XAML markup extensions are not extensions to XML. XAML is always legal XML. XAML markup exten-
sions are extensions only in the sense that they extend the possibilities of attribute settings in markup.
A markup extension essentially provides a value of a particular type without necessarily being a text
representation of a value.

The code infrastructure

Strictly speaking, a XAML markup extension is a class that implements IMarkupExtension, which is a
public interface defined in the regular Xamarin.Forms.Core assembly but with the namespace xama-

rin.Forms.Xaml:

public interface IMarkupExtension

{

object ProvideValue(IServiceProvider serviceProvider);

}

As the name suggests, Providevalue is the method that provides a value to a XAML attribute.
IserviceProvider is part of the base class libraries of NET and defined in the system namespace:

Chapter 10 XAML markup extensions 199

public interface IServiceProvider

{

3

object GetService(Type type);

Obviously, this information doesn’t provide much of a hint on writing custom markup extensions, and
in truth, they can be tricky. (You'll see an example shortly and other examples later in this book.) Fortu-
nately, Xamarin.Forms provides several valuable markup extensions for you. These fall into three
categories:

Markup extensions that are part of the XAML 2009 specification. These appear in XAML files
with the customary x prefix and are:

. x:Static

. x:Reference
. x:Type

. x:Null

. X:Array

These are implemented in classes that consist of the name of the markup extension with the
word Extension appended—for example, the StaticExtension and ReferenceExtension
classes. These classes are defined in the Xamarin.Forms.Xaml assembly.

The following markup extensions originated in the Windows Presentation Foundation (WPF)
and, with the exception of DynamicResource, are supported by Microsoft's other implemen-
tations of XAML, including Silverlight, Windows Phone 7 and 8, and Windows 8 and 10:

J StaticResource
o DynamicResource
o Binding

These are implemented in the public StaticResourceExtension, DynamicResourceExten—
sion, and BindingExtension classes.

There is only one markup extension that is unique to Xamarin.Forms: the ConstraintExpres-
sion class used in connection with RelativeLayout.

Although it's possible to play around with public markup-extension classes in code, they really only

make sense in XAML.

Chapter 10 XAML markup extensions 200

Accessing static members

One of the simplest and most useful implementations of IMarkupExtension is encapsulated in the
StaticExtension class. This is part of the original XAML specification, so it customarily appears in
XAML with an x prefix. sStaticExtension defines a single property named Member of type string
that you set to a class and member name of a public constant, static property, static field, or enumera-
tion member.

Let's see how this works. Here's a Label with six properties set as they would normally appear in
XAML.

<Label Text="Just some text"
BackgroundColor="Accent"
TextColor="Black"
FontAttributes="Italic"
VerticalOptions="Center"
HorizontalTextAlignment="Center" />

Five of these attributes are set to text strings that eventually reference various static properties, fields,
and enumeration members, but the conversion of those text strings occurs through type converters
and the standard XAML parsing of enumeration types.

If you want to be more explicit in setting these attributes to those various static properties, fields,
and enumeration members, you can use x:StaticExtension within property element tags:

<Label Text="Just some text">
<LabeT.BackgroundColor>
<x:StaticExtension Member="Color.Accent" />
</Label.BackgroundColor>

<Label.TextColor>
<x:StaticExtension Member="Color.Black" />
</Label.TextColor>

<Label.FontAttributes>
<x:StaticExtension Member="FontAttributes.Italic" />
</Label.FontAttributes>

<Label.VerticalOptions>
<x:StaticExtension Member="LayoutOptions.Center" />
</Label.VerticalOptions>

<Label.HorizontalTextAlignment>
<x:StaticExtension Member="TextAlignment.Center" />
</Label.HorizontalTextAlignment>
</Label>

Color.Accent is a static property. Color.Black and LayoutOptions.Center are static fields.
FontAttributes.Italic and TextAlignment.Center are enumeration members.

Chapter 10 XAML markup extensions 201

Considering the ease with which these attributes are set with text strings, the approach using stat-
icExtension initially seems ridiculous, but notice that it's a general-purpose mechanism. You can use
any static property, field, or enumeration member in the staticExtension tag if its type matches the
type of the target property.

By convention, classes that implement IMarkupExtension incorporate the word Extension in
their names, but you can leave that out in XAML, which is why this markup extension is usually called
x:Static rather than x:StaticExtension. The following markup is marginally shorter than the pre-
vious block:
<Label Text="Just some text">

<Label.BackgroundColor>

<x:Static Member="Color.Accent" />
</Label.BackgroundColor>

<Label.TextColor>
<x:Static Member="Color.Black" />
</Label.TextColor>

<Label.FontAttributes>
<x:Static Member="FontAttributes.Italic" />
</Label.FontAttributes>

<Label.VerticalOptions>
<x:Static Member="LayoutOptions.Center" />
</Label.VerticalOptions>

<LabeT.HorizontalTextAlignment>
<x:Static Member="TextAlignment.Center" />
</Label.HorizontalTextAlignment>
</Label>

And now for the really major markup reduction—a change in syntax that causes the property-ele-
ment tags to disappear and the footprint to shrink considerably. XAML markup extensions almost al-
ways appear with the markup extension name and the arguments within a pair of curly braces:
<Label Text="Just some text"

BackgroundColor="{x:Static Member=Color.Accent}"
TextColor="{x:Static Member=Color.Black}"
FontAttributes="{x:Static Member=FontAttributes.Italic}"

VerticalOptions="{x:Static Member=LayoutOptions.Center}"
HorizontalTextAlignment="{x:Static Member=TextAlignment.Center}" />

This syntax with the curly braces is so ubiquitously used in connection with XAML markup exten-
sions that many developers consider markup extensions to be synonymous with the curly-brace syntax.
And that’s nearly true: while curly braces always signal the presence of a XAML markup extension, in
many cases a markup extension can appear in XAML without the curly braces (as demonstrated earlier)
and it's sometimes convenient to use them in that way.

Chapter 10 XAML markup extensions 202

Notice there are no quotation marks within the curly braces. Within those braces, very different syn-
tax rules apply. The Member property of the staticExtension class is no longer an XML attribute. In
terms of XML, the entire expression delimited by the curly braces is the value of the attribute, and the
arguments within the curly braces appear without quotation marks.

Just like elements, markup extensions can have a ContentProperty attribute. Markup extensions
that have only one property—such as the StaticExtension class with its single Member property—
invariably mark that sole property as the content property. For markup extensions using the curly-
brace syntax, this means that the Member property name and the equal sign can be removed:
<Label Text="Just some text"

BackgroundColor="{x:Static Color.Accent}"
TextColor="{x:Static Color.Black}"
FontAttributes="{x:Static FontAttributes.Italic}"

VerticalOptions="{x:Static LayoutOptions.Center}"
HorizontalTextAlignment="{x:Static TextAlignment.Center}" />

This is the common form of the x: Static markup extension.

Obviously, the use of x:static for these particular properties is unnecessary, but you can define
your own static members for implementing application-wide constants, and you can reference these in
your XAML files. This is demonstrated in the SharedStatics project.

The SharedStatics project contains a class named AppConstants that defines some constants and
static fields that might be of use for formatting text:

namespace SharedStatics

{
static class AppConstants
{
public static Color LightBackground = Color.Yellow;
public static Color DarkForeground = Color.Blue;
public static double NormalFontSize = 18;
public static double TitleFontSize = 1.4 * NormalFontSize;
public static double ParagraphSpacing = 10;
public const FontAttributes Emphasis = FontAttributes.Italic;
public const FontAttributes TitleAttribute = FontAttributes.Bold;
public const TextAlignment TitleAlignment = TextAlignment.Center;
}
}

You could use Device.OnPlatform in these definitions if you need something different for each plat-
form.

The XAML file then uses 18 x: Static markup extensions to reference these items. Notice the XML
namespace declaration that associates the 1ocal prefix with the namespace of the project:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

Chapter 10 XAML markup extensions 203

xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmlns:local="clr-namespace:SharedStatics"
x:Class="SharedStatics.SharedStaticsPage"
BackgroundColor="{x:Static Tocal:AppConstants.LightBackground}">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0s="0, 20, 0, 0" />
</ContentPage.Padding>

<StackLayout Padding="10, 0"
Spacing="{x:Static local:AppConstants.ParagraphSpacing}">

<Label Text="The SharedStatics Program"
TextColor="{x:Static local:AppConstants.DarkForeground}"
FontSize="{x:Static Tocal:AppConstants.TitleFontSize}"
FontAttributes="{x:Static Tocal:AppConstants.TitleAttribute}"
HorizontalTextAlignment="{x:Static local:AppConstants.TitleAlignment}" />

<Label TextColor="{x:Static local:AppConstants.DarkForeground}"
FontSize="{x:Static Tocal:AppConstants.NormalFontSize}">
<Label.FormattedText>
<FormattedString>

<Span Text="x:Static"
FontSize="{x:Static Tocal:AppConstants.NormalFontSize}"
FontAttributes="{x:Static local:AppConstants.Emphasis}" />
<Span Text=
" XAML markup extension, an application can maintain a collection of
common property settings defined as constants, static properties or fields,
or enumeration members in a separate code file. These can then be
referenced within the XAML file." />
</FormattedString>
</Label.FormattedText>
</Label>

<Label TextColor="{x:Static local:AppConstants.DarkForeground}"
FontSize="{x:Static Tocal:AppConstants.NormalFontSize}">
<Label.FormattedText>
<FormattedString>
<Span Text=
"However, this is not the only technique to share property settings.
You'll soon discover that you can store objects in a " />
<Span Text="ResourceDictionary"
FontSize="{x:Static Tlocal:AppConstants.NormalFontSize}"
FontAttributes="{x:Static local:AppConstants.Emphasis}" />

<Span Text="StaticResource"
FontSize="{x:Static Tocal:AppConstants.NormalFontSize}"
FontAttributes="{x:Static local:AppConstants.Emphasis}" />
<Span Text=
markup extension, and even encapsultate multiple property settings in a " />
<Span Text="Style"
FontSize="{x:Static Tocal:AppConstants.NormalFontSize}"

Chapter 10 XAML markup extensions 204

FontAttributes="{x:Static local:AppConstants.Emphasis}" />

</FormattedString>
</Label.FormattedText>

</Label>
</StackLayout>
</ContentPage>

Each of the span objects with a Fontattributes setting repeats the FontSize setting that is set on
the Label itself because Span objects do not inherit font-related settings from the Label when an-
other font-related setting is applied.

And here it is:

Carrier ¥ 1:28 PM -

The SharedStatics Program

Through use of the x:Static XAML markup
extension, an application can maintain a
collection of common property settings
defined as constants, static properties,
static fields, or enumeration members in a
separate code file. These can then be
referenced within the XAML file.

However, this is not the only technique to
share property settings. You'll soon

discover that you can store objects ina
ResourceDictionary and access them
through the StaticResource markup
extension, and even encapsultate multiple
property settings in a Style object.

b 3ch Pl RE:]
The SharedStatics Program

Through use of the x:Static XAML markup
extension, an application can maintain a
collection of common property settings
defined as constants, static properties,
static fields, or enumeration members in
a separate code file. These can then be
referenced within the XAML file.

However, this is not the only technique
to share property settings. You'll soon
discover that you can store objects in
a ResourceDictionary and access them
through the StaticResource markup

extension, and even encapsultate multiple
property settings in a Style object

aill 77 - 130
The SharedStatics Program

Through use of the x:Static XAML
markup extension, an application can
maintain a collection of common
property settings defined as constants,
static properties, static fields, or
enumeration members in a separate
cade file. These can then be referenced
within the XAML file.

However, this is not the only technique

to share property settings. You'll scon
discover that you can store objects in a

ResourceDictionary and access them
through the StaticResource markup
extension, and even encapsultate
multiple property settings in a Style
object.

This technique allows you to use these common property settings on multiple pages, and if you
ever need to change the values, you need only change the Appsettings file.

It is also possible to use x: Static with static properties and fields defined in classes in external li-
braries. The following example, named SystemStatics, is rather contrived—it sets the Borderwidth of
a Button equal to the pT static field defined in the Math class and uses the static Environment .New-
Line property for line breaks in text. But it demonstrates the technique.

The Math and Environment classes are both defined in the .NET System namespace, so a new
XML namespace declaration is required to define a prefix named (for example) sys for system. Notice
that this namespace declaration specifies the CLR namespace as System but the assembly as
mscorlib, which originally stood for Microsoft Common Object Runtime Library but now stands for
Multilanguage Standard Common Object Runtime Library:

Chapter 10 XAML markup extensions 205

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:sys="clr-namespace:System;assembly=mscorlib"
x:Class="SystemStatics.SystemStaticsPage">
<StackLayout>
<Button Text=" Button with π border width "
BorderWidth="{x:Static sys:Math.PI}"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand">
<Button.BackgroundColor>
<OnPlatform x:TypeArguments="Color"
Android="#404040" />
</Button.BackgroundColor>
<Button.BorderColor>
<OnPTatform x:TypeArguments="Color"
Android="White"
WinPhone="Black" />
</Button.BorderColor>
</Button>

<Label VerticalOptions="CenterAndExpand"
HorizontalTextATignment="Center"
FontSize="Medium">
<Label.FormattedText>
<FormattedString>

<Span Text="Environment.NewLine"
FontSize="Medium"
FontAttributes="Italic" />

</FormattedString>
</Label.FormattedText>
</Label>
</StackLayout>
</ContentPage>

The button border doesn’t show up in Android unless the background color is set, and on both An-
droid and Windows Phone the border needs a nondefault color, so some additional markup takes care
of those problems. On iOS platforms, a button border tends to crowd the button text, so the text is de-
fined with spaces at the beginning and end.

Judging solely from the visuals, we really have to take it on trust that the button border width is
about 3.14 units wide, but the line breaks definitely work:

Chapter 10 XAML markup extensions 206

BUTTON WITH N BORDER WIDTH Button with m border width

Three lines of text
separated by
Environment.NewLine strings

Three lines of text
separated by
Environment.NewLine strings

The use of curly braces for markup extensions implies that you can't display text surrounded by
curly braces. The curly braces in this text will be mistaken for a markup extension:

<Label Text="{Text in curly braces}" />

That won't work. You can have curly braces elsewhere in the text string, but you can’t begin with a left
curly brace.

If you really need to, however, you can ensure that text is not mistaken for a XAML markup exten-
sion by beginning the text with an escape sequence that consists of a pair of left and right curly braces:

<Label Text="{}{Text in curly braces}" />

That will display the text you want.

Resource dictionaries

Xamarin.Forms also supports a second approach to sharing objects and values, and while this approach
has a little more overhead than the x:static markup extension, it is somewhat more versatile be-
cause everything—the shared objects and the visual elements that use them—can be expressed in
XAML.

VisualElement defines a property named Resources that is of type ResourceDictionary—a
dictionary with string keys and values of type object. Items can be added to this dictionary right in
XAML, and they can be accessed in XAML with the staticResource and DynamicResource markup
extensions.

Chapter 10 XAML markup extensions 207

Although x:Static and StaticResource have somewhat similar names, they are quite different:
x:Static references a constant, a static field, a static property, or an enumeration member, while
StaticResource retrieves an object from a ResourceDictionary.

While the x: static markup extension is intrinsic to XAML (and hence appears in XAML with an x
prefix), the staticResource and DynamicResource markup extensions are not. They were part of
the original XAML implementation in the Windows Presentation Foundation, and StaticResource is
also supported in Silverlight, Windows Phone 7 and 8, and Windows 8 and 10.

You'll use staticResource for most purposes and reserve DynamicResource for some special
applications, so let's begin with staticResource.

StaticResource for most purposes
Suppose you've defined three buttons in a StackLayout:

<StackLayout>
<Button Text=" Carpe diem
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand"
BorderWidth="3"
TextColor="Red"
FontSize="Large">
<Button.BackgroundColor>
<OnPlatform x:TypeArguments="Color"
Android="#404040" />
</Button.BackgroundColor>
<Button.BorderColor>
<OnPlatform x:TypeArguments="Color"
Android="White"
WinPhone="Black" />
</Button.BorderColor>
</Button>

<Button Text=" Sapere aude
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand"
BorderWidth="3"
TextColor="Red"
FontSize="Large">
<Button.BackgroundColor>
<OnPTlatform x:TypeArguments="Color"
Android="#404040" />
</Button.BackgroundColor>
<Button.BorderColor>
<OnPTlatform x:TypeArguments="Color"
Android="White"
WinPhone="Black" />
</Button.BorderColor>
</Button>

<Button Text=" Discere faciendo

Chapter 10 XAML markup extensions 208

HorizontalOptions="Center"
VerticalOptions="CenterAndExpand"
BorderWidth="3"
TextColor="Red"
FontSize="Large">
<Button.BackgroundColor>
<OnPlatform x:TypeArguments="Color
Android="#404040" />
</Button.BackgroundColor>
<Button.BorderColor>
<OnPlatform x:TypeArguments="Color
Android="White"
WinPhone="Black" />
</Button.BorderColor>
</Button>
</StackLayout>

Of course, this is somewhat unrealistic. There are no C1licked events set for these buttons, and gener-
ally button text is not in Latin. But here’s what they look like:

%0 Wa 0238

287 PM

Carpe diem

Sapere aude

| Discere faciendol

Aside from the text, all three buttons have the same properties set to the same values. Repetitious
markup such as this tends to rub programmers the wrong way. It's an affront to the eye and difficult to

maintain and change.

Eventually you'll see how to use styles to really cut down on the repetitious markup. For now, how-
ever, the goal is not to make the markup shorter but to consolidate the values in one place so that if
you ever want to change the TextColor property from Red to Blue, you can do so with one edit
rather than three.

Chapter 10 XAML markup extensions 209

Obviously, you can use x: static for this job by defining the values in code. But let's do the whole
thing in XAML by storing the values in a resource dictionary. Every class that derives from visualEle-
ment has a Resources property of type ResourceDictionary. Resources that are used throughout a
page are customarily stored in the Resources collection of the ContentPage.

The first step is to express the Resources property of ContentPage as a property element:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ResourceSharing.ResourceSharingPage">

<ContentPage.Resources>
</ContentPage.Resources>
</ContentPage>

If you're also defining a Padding property on the page by using property-element tags, the order
doesn’t matter.

For performance purposes, the Resources property is null by default, so you need to explicitly
instantiate the ResourcebDictionary
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ResourceSharing.ResourceSharingPage">

<ContentPage.Resources>
<ResourceDictionary>

</ResourceDictionary>
</ContentPage.Resources>

</ContentPage>

Between the ResourceDictionary tags, you define one or more objects or values. Each item in
the dictionary must be identified with a dictionary key that you specify with the XAML x:Key attribute.
For example, here's the syntax for including a LayoutOptions value in the dictionary with a descrip-
tive key that indicates that this value is defined for setting horizontal options:

<LayoutOptions x:Key="horzOptions">Center</LayoutOptions>

Because this is a LayoutOptions value, the XAML parser accesses the LayoutOptionsConverter
class to convert the content of the tags, which is the text “Center”.

A second way to store a LayoutOptions value in the dictionary is to let the XAML parser instanti-
ate the structure and set LayoutOptions properties from attributes you specify:
<LayoutOptions x:Key="vertOptions"

Alignment="Center"
Expands="True" />

Chapter 10 XAML markup extensions 210

The BorderWidth property is of type double, so the x:Double datatype element defined in the
XAML 2009 specification is ideal:

<x:Double x:Key="borderWidth">3</x:Double>

You can store a Color value in the resource dictionary with a text representation of the color as
content. The XAML parser uses the normal ColorTypeConverter for the text conversion:

<CoTlor x:Key="textColor">Red</Color>
You can also specify hexadecimal ARGB values following a hash sign.

You can't initialize a Color value by setting its R, G, and B properties because those are get-only.
But you can invoke a Color constructor using x : Arguments or one of the Color factory methods
using x:FactoryMethod and x:Arguments.

<Color x:Key="textColor"
x:FactoryMethod="FromHsla">
<x:Arguments>
<x:Double>0</x:Double>
<x:DoubTle>1</x:Double>
<x:Double>0.5</x:Double>
<x:DoubTle>1</x:Double>
</x:Arguments>
</Color>

Notice both the x:Key and x:FactoryMethod attributes.

The BackgroundColor and BorderColor properties of the three buttons shown above are set
to values from the onPlat form class. Fortunately you can put onPlatform objects right in the
dictionary:
<OnPTatform x:Key="backgroundColor"
x:TypeArguments="Color
Android="#404040" />

<OnPlatform x:Key="borderColor"
x:TypeArguments="Color
Android="White"
WinPhone="Black" />

Notice both the x:Key and x: TypeArguments attributes.

A dictionary item for the FontSize property is somewhat problematic. The FontSize property is
of type double, so if you're storing an actual numeric value in the dictionary, that's no problem. But
you can't store the word “Large” in the dictionary as if it were a double. Only when a “Large” string is
set to a FontSize attribute does the XAML parser use the FontSizeConverter. For that reason,
you'll need to store the Fontsize item as a string:

<x:String x:Key="fontSize">Large</x:String>

Here's the complete dictionary at this point:

Chapter 10 XAML markup extensions 211

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ResourceSharing.ResourceSharingPage">

<ContentPage.Resources>
<ResourceDictionary>
<LayoutOptions x:Key="horzOptions">Center</LayoutOptions>

<LayoutOptions x:Key="vertOptions"
Alignment="Center"
Expands="True" />

<x:Double x:Key="borderWidth">3</x:Double>
<Color x:Key="textColor">Red</Color>

<OnPlatform x:Key="backgroundColor"
x:TypeArguments="Color"
Android="#404040" />

<OnPlatform x:Key="borderColor"
x:TypeArguments="Color"
Android="White"
WinPhone="Black" />

<x:String x:Key="fontSize">Large</x:String>
</ResourceDictionary>
</ContentPage.Resources>

</ContentPage>

This is sometimes referred to as a resources section for the page. In real-life programming, very many
XAML files begin with a resources section.

You can reference items in the dictionary by using the staticResource markup extension, which
is supported by staticResourceExtension. The class defines a property named Key that you set to
the dictionary key. You can use a StaticResourceExtension as an element within property-element
tags, or you can use StaticResourceExtension Or StaticResource in curly braces. If you're using
the curly-brace syntax, you can leave out the Key and equal sign because Key is the content property

of StaticResourceExtension.

The following complete XAML file in the ResourceSharing project illustrates three of these options:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ResourceSharing.ResourceSharingPage">

<ContentPage.Resources>
<ResourceDictionary>
<LayoutOptions x:Key="horzOptions">Center</LayoutOptions>

<LayoutOptions x:Key="vertOptions"
Alignment="Center"

Chapter 10 XAML markup extensions 212

Expands="True" />
<x:Double x:Key="borderWidth">3</x:Double>
<Color x:Key="textColor">Red</Color>

<OnPlatform x:Key="backgroundColor"
x:TypeArguments="Color"
Android="#404040" />

<OnPlatform x:Key="borderColor"
x:TypeArguments="Color"
Android="White"
WinPhone="Black" />

<x:String x:Key="fontSize">Large</x:String>
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout>
<Button Text=" Carpe diem ">
<Button.HorizontalOptions>
<StaticResourceExtension Key="horzOptions" />
</Button.HorizontalOptions>

<Button.VerticalOptions>
<StaticResourceExtension Key="vertOptions" />
</Button.VerticalOptions>

<Button.BorderWidth>
<StaticResourceExtension Key="borderWidth" />
</Button.BorderWidth>

<Button.TextColor>
<StaticResourceExtension Key="textColor" />
</Button.TextColor>

<Button.BackgroundColor>
<StaticResourceExtension Key="backgroundColor" />
</Button.BackgroundColor>

<Button.BorderColor>
<StaticResourceExtension Key="borderColor" />
</Button.BorderColor>

<Button.FontSize>
<StaticResourceExtension Key="fontSize" />

</Button.FontSize>
</Button>
<Button Text=" Sapere aude "
HorizontalOptions="{StaticResource Key=horzOptions}"
VerticalOptions="{StaticResource Key=vertOptions}"
BorderWidth="{StaticResource Key=borderwidth}"

Chapter 10 XAML markup extensions 213

TextColor="{StaticResource Key=textColor}"
BackgroundColor="{StaticResource Key=backgroundColor}"
BorderColor="{StaticResource Key=borderColor}"
FontSize="{StaticResource Key=fontSize}" />
<Button Text=" Discere faciendo "
HorizontalOptions="{StaticResource horzOptions}"
VerticalOptions="{StaticResource vertOptions}"
BorderWidth="{StaticResource borderWidth}"
TextColor="{StaticResource textColor}"
BackgroundColor="{StaticResource backgroundColor}"
BorderColor="{StaticResource borderColor}"
FontSize="{StaticResource fontSize}" />
</StackLayout>
</ContentPage>

The simplest syntax in the third button is the most common, and indeed, that syntax is so ubiqui-
tous that many longtime XAML developers might be entirely unfamiliar with the other variations. But if
you use a version of StaticResource with the Key property, do not put an x prefix on it. The x:Key
attribute is only for defining dictionary keys for items in the ResourceDictionary.

Objects and values in the dictionary are shared among all the staticResource references. That's
not so clear in the preceding example, but it's something to keep in mind. For example, suppose you
store a Button object in the resource dictionary:

<ContentPage.Resources>
<ResourceDictionary>
<Button x:Key="button"
Text="Shared Button?"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand"
FontSize="Large" />
</ResourceDictionary>
</ContentPage.Resources>

You can certainly use that Button object on your page by adding it to the children collection of a
StackLayout with the StaticResourceExtension element syntax:
<StackLayout>

<StaticResourceExtension Key="button" />
</StackLayout>

However, you can't use that same dictionary item in hopes of putting another copy in the stackLay-
out:
<StackLayout>

<StaticResourceExtension Key="button" />

<StaticResourceExtension Key="button" />
</StackLayout>

That won't work. Both these elements reference the same Button object, and a particular visual ele-
ment can be in only one particular location on the screen. It can't be in multiple locations.

Chapter 10 XAML markup extensions 214

For this reason, visual elements are not normally stored in a resource dictionary. If you need multi-
ple elements on your page that have mostly the same properties, you'll want to use a Style, which is
explored in Chapter 12.

A tree of dictionaries

The ResourceDictionary class imposes the same rules as other dictionaries: all the items in the dic-
tionary must have keys, but duplicate keys are not allowed.

However, because every instance of visualElement potentially has its own resource dictionary,
your page can contain multiple dictionaries, and you can use the same keys in different dictionaries
just as long as all the keys within each dictionary are unique. Conceivably, every visual element in the
visual tree can have its own dictionary, but it really only makes sense for a resource dictionary to apply
to multiple elements, so resource dictionaries are only commonly found defined on Layout or Page
objects.

Using this technique you can construct a tree of dictionaries with dictionary keys that effectively
override the keys on other dictionaries. This is demonstrated in the ResourceTrees project. The XAML
file for the ResourceTreesPage class shows a Resources dictionary for the ContentPage that de-
fines resources with keys of horzOptions, vertOptions, and textColor.

A second Resources dictionary is attached to an inner StackLayout for resources named
textColor and FontSize:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ResourceTrees.ResourceTreesPage">

<ContentPage.Resources>

<ResourceDictionary>
<LayoutOptions x:Key="horzOptions">Center</LayoutOptions>
<LayoutOptions x:Key="vertOptions"
Alignment="Center'
Expands="True" />

<OnPTlatform x:Key="textColor"
x:TypeArguments="Color"
10S="Red"
Android="Pink"
WinPhone="Blue" />
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout>
<Button Text=" Carpe diem
HorizontalOptions="{StaticResource horzOptions}"
VerticalOptions="{StaticResource vertOptions}"
BorderWidth="{StaticResource borderWidth}"
TextColor="{StaticResource textColor}"

Chapter 10 XAML markup extensions 215

BackgroundColor="{StaticResource backgroundColor}"
BorderColor="{StaticResource borderColor}"
FontSize="{StaticResource fontSize}" />

<StackLayout>
<StackLayout.Resources>
<ResourceDictionary>
<Color x:Key="textColor">Default</Color>
<x:String x:Key="fontSize">Default</x:String>
</ResourceDictionary>
</StackLayout.Resources>

<Label Text="The first of two labels"
HorizontalOptions="{StaticResource horzOptions}"
TextColor="{StaticResource textColor}"
FontSize="{StaticResource fontSize}" />

<Button Text=" Sapere aude "
HorizontalOptions="{StaticResource horzOptions}"
BorderWidth="{StaticResource borderWidth}"
TextColor="{StaticResource textColor}"
BackgroundColor="{StaticResource backgroundColor}"
BorderColor="{StaticResource borderColor}"
FontSize="{StaticResource fontSize}" />

<Label Text="The second of two labels"
HorizontalOptions="{StaticResource horzOptions}"
TextColor="{StaticResource textColor}"
FontSize="{StaticResource fontSize}" />
</StackLayout>

<Button Text=" Discere faciendo "
HorizontalOptions="{StaticResource horzOptions}"
VerticalOptions="{StaticResource vertOptions}"
BorderWidth="{StaticResource borderWidth}"
TextColor="{StaticResource textColor}"
BackgroundColor="{StaticResource backgroundColor}"
BorderColor="{StaticResource borderColor}"
FontSize="{StaticResource fontSizel}" />
</StackLayout>
</ContentPage>

The Resources dictionary on the inner stackLayout applies only to items within that StackLay-
out, which are the items in the middle of this screenshot:

Chapter 10 XAML markup extensions 216

0 W03

The first of two labels

The second of two labels

The first of two labels

The second of two labels

| Discere faciendo |

Discere faciendo

Here's how it works:

When the XAML parser encounters a StaticResource on an attribute of a visual element, it begins
a search for that dictionary key. It first looks in the ResourceDictionary for that visual element, and
if the key is not found, it looks for the key in the visual element’s parent’'s ResourceDictionary, and
up and up through the visual tree until it reaches the ResourceDictionary on the page.

But something’s missing here! Where are the entries in the page’s ResourceDictionary for bor-
derWidth , backgroundColor, borderColor, and fontSize? They aren't in the Resource-
TreesPage.xaml file!

Those items are elsewhere. The Application class—from which every application’s App class de-
rives—also defines a Resources property of type ResourceDictionary. This is handy for defining
resources that apply to the entire application and not just to a particular page or layout. When the
XAML parser searches up the visual tree for a matching resource key, and that key is not found in the
ResourceDictionary for the page, it finally checks the ResourceDictionary defined by the ap-
plication class. Only if it's not found there is a xamlParseException raised for the StaticRe-
source key-not-found error.

You can add items to your App class's ResourceDictionary object in two ways:

One approach is to add the items in code in the app constructor. Make sure you do this before
instantiating the main ContentPage class:

public class App : Application
{

pubTic AppQ

{

Chapter 10 XAML markup extensions 217

Resources = new ResourceDictionary();
Resources.Add("borderwWidth™, 3.0);
Resources.Add("fontSize", "Large");
Resources.Add("backgroundColor",
Device.OnPlatform(Color.Default,
Color.FromRgb(0x40, 0x40, 0x40),
Color.Default));

Resources.Add("borderColor",
Device.OnPlatform(Color.Default,
Color.White,
Color.Black));

MainPage = new ResourceTreesPage();

However, the App class can also have a XAML file of its own, and the application-wide resources can
be defined in the Resources collection in that XAML file. To do this, you'll want to delete the App.cs
file created by the Xamarin.Forms solution template. There's no template item for an app class, so
you'll need to fake it. Add a new XAML page class—Forms Xaml Page in Visual Studio or Forms Con-
tentPage Xaml in Xamarin Studio—to the project. Name it App. And immediately—before you for-
get—go into the App.xaml file and change the root tags to Application, and go into the App.xaml.cs
file and change the base class to Application.

Now you have an app class that derives from application and has its own XAML file. In the
App.xaml file you can then instantiate a ResourceDictionary within Application.Resources
property-element tags and add items to it:

<Application xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ResourceTrees.App">
<AppTlication.Resources>
<ResourceDictionary>
<x:Double x:Key="borderWidth">3</x:Double>
<x:String x:Key="fontSize">Large</x:String>
<OnPTlatform x:Key="backgroundColor"
x:TypeArguments="Color
Android="#404040" />

<OnPTlatform x:Key="borderColor"
x:TypeArguments="Color
Android="White"
WinPhone="Black" />
</ResourceDictionary>
</Application.Resources>
</Application>

The constructor in the code-behind file needs to call InitializeComponent to parse the App.xaml

Chapter 10 XAML markup extensions 218

file at run time and add the items to the dictionary. This should be done prior to the normal job of in-
stantiating the ResourceTreesPage class and setting it to the MainPage property:

public partial class App : Application

{
public AppQ
{
InitializeComponent();
MainPage = new ResourceTreesPage();
}
protected override void OnStart()
{
// Handle when your app starts
}
protected override void OnSleep()
{
// Handle when your app sleeps
}
protected override void OnResume()
{
// Handle when your app resumes
}
}

Adding the lifecycle events is optional.

Be sure to call InitializeComponent before instantiating the page class. The constructor of the
page class calls its own InitializeComponent to parse the XAML file for the page, and the stat-
icResource markup extensions need access to the Resources collection in the App class.

Every Resources dictionary has a particular scope: For the Resources dictionary on the app class,
that scope is the entire application. A Resources dictionary on the ContentPage class applies to the
whole page. A Resources dictionary on a stackLayout applies to all the children in the stackLay-
out. You should define and store your resources based on how you use them. Use the Resources dic-
tionary in the App class for application-wide resources; use the Resources dictionary on the con-
tentPage for page-wide resources; but define additional Resources dictionaries deeper in the visual
tree for resources required only in one part of the page.

As you'll see in Chapter 12, the most important items in a Resources dictionary are usually objects
of type Style. In the general case, you'll have application-wide Style objects, style objects for the
page, and Style objects associated with smaller parts of the visual tree.

DynamicResource for special purposes

An alternative to StaticResource for referencing items from the Resources dictionary is Dynam-
icResource, and if you just substitute DynamicResource for StaticResource in the example

Chapter 10 XAML markup extensions 219

shown above, the program will seemingly run the same. However, the two markup extensions are very
different. staticResource accesses the item in the dictionary only once while the XAML is being
parsed and the page is being built. But DynamicResource maintains a link between the dictionary key
and the property set from that dictionary item. If the item in the resource dictionary referenced by the
key changes, DynamicResource will detect that change and set the new value to the property.

Skeptical? Let's try it out. The DynamicVsStatic project has a XAML file that defines a resource item
of type string with a key of currentDateTime, even though the item in the dictionary is the string
“Not actually a DateTime"!

This dictionary item is referenced four times in the XAML file, but one of the references is com-
mented out. In the first two examples, the Text property of a Label is set using StaticResource and
DynamicResource. In the second two examples, the Text property of a Span object is set similarly,
but the use of DynamicResource on the Span object appears in comments:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="DynamicVsStatic.DynamicVsStaticPage"
Padding="5, 0">

<ContentPage.Resources>
<ResourceDictionary>
<x:String x:Key="currentDateTime">Not actually a DateTime</x:String>
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout>
<Label Text="StaticResource on Label.Text:"
VerticalOptions="EndAndExpand"
FontSize="Medium" />

<Label Text="{StaticResource currentDateTime}"
VerticalOptions="StartAndExpand"
HorizontalTextAlignment="Center"
FontSize="Medium" />

<Label Text="DynamicResource on Label.Text:"
VerticalOptions="EndAndExpand"
FontSize="Medium" />

<Label Text="{DynamicResource currentDateTime}"
VerticalOptions="StartAndExpand"
HorizontalTextAlignment="Center"
FontSize="Medium" />

<Label Text="StaticResource on Span.Text:"
VerticalOptions="EndAndExpand"
FontSize="Medium" />

<Label VerticalOptions="StartAndExpand"
HorizontalTextAlignment="Center"

Chapter 10 XAML markup extensions 220

FontSize="Medium">
<Label.FormattedText>
<FormattedString>

</FormattedString>
</Label.FormattedText>
</Label>

<!-- This raises a run-time exception! -->

<!--<Label Text="DynamicResource on Span.Text:"
VerticalOptions="EndAndExpand"
FontSize="Medium" />

<Label VerticalOptions="StartAndExpand"
HorizontalTextATignment="Center"
FontSize="Medium">
<Label.FormattedText>
<FormattedString>

</FormattedString>
</Label.FormattedText>
</Label>-->
</StackLayout>
</ContentPage>

You'll probably expect all three of the references to the currentDateTime dictionary item to result
in the display of the text “Not actually a DateTime". However, the code-behind file starts a timer going.
Every second, the timer callback replaces that dictionary item with a new string representing an actual
DateTime value:

public partial class DynamicVsStaticPage : ContentPage

{
public DynamicVsStaticPage()
{
InitializeComponent();
Device.StartTimer(TimeSpan.FromSeconds(1),
O =
{
Resources["currentDateTime"] = DateTime.Now.ToString();
return true;
b
}
}

The result is that the Text properties set with StaticResource stay the same, while the one with
DynamicResource changes every second to reflect the new item in the dictionary:

Chapter 10 XAML markup extensions 221

3@ W4 0336

StaticResource on Label Text: StaticResource on Label.Text:

Not actually a DateTime

Not actually a DateTime

DynamicResource on Label.Text:

DynamicResource on Label Text:

1/27/2016 3:37:35 PM

1j27/2016 3:35:56 PM

StaticResource on Span.Text:
StaticResource on Span Text

Not actually a DateTime Not actually a DateTime

Here's another difference: if there is no item in the dictionary with the specified key name, static-
Resource Will raise a run-time exception, but DynamicResource will not.

You can try uncommenting the block of markup at the end of the DynamicVsStatic project, and
you will indeed encounter a run-time exception to the effect that the Text property could not be
found. Just offhand, that exception doesn’t sound quite right, but it's referring to a very real difference.

The problem is that the Text properties in Label and Span are defined in significantly different
ways, and that difference matters a lot for DynamicResource. This difference will be explored in the
next chapter, “The bindable infrastructure.”

Lesser-used markup extensions

Three markup extensions are not used as much as the others. These are:

] x:Null

(] x:Type

. X:Array

You use the x:Null extension to set a property to null. The syntax looks like this:
<SomeElement SomeProperty="{x:Null}" />

This doesn’t make much sense unless SomeProperty has a default value that is not null when it's de-
sirable to set the property to nul1. But as you'll see in Chapter 12, sometimes a property can acquire a

Chapter 10 XAML markup extensions 222

non-null value from a style, and x:Nul1l is pretty much the only way to override that.

The x: Type markup extension is used to set a property of type Type, the .NET class describing the
type of a class or structure. Here's the syntax:

<AnotherElement TypeProperty="{x:Type Color}" />

You'll also use x: Type in connection with x:Array. The x: Array markup extension is always used
with regular element syntax rather than curly-brace syntax. It has a required argument named Type
that you set with the x: Type markup extension. This indicates the type of the elements in the array.
Here's how an array might be defined in a resource dictionary:

<x:Array x:Key="array"

Type="{x:Type x:String}">
<x:String>0One String</x:String>
<x:String>Two String</x:String>
<x:String>Red String</x:String>
<x:String>Blue String</x:String>

</x:Array>

A custom markup extension

Let's create our own markup extension named Hs1ColorExtension. This will allow us to set any
property of type Color by specifying values of hue, saturation, and luminosity, but in a manner much
simpler than the use of the x: FactoryMethod tag demonstrated in Chapter 8, “Code and XAML in
harmony.”

Moreover, let's put this class in a separate Portable Class Library so that you can use it from multiple
applications. Such a library can be found with the other source code for this book. It's in a directory
named Libraries that is parallel to the separate chapter directories. The name of this PCL (and the
namespace of the classes within it) is Xamarin.FormsBook.Toolkit.

You can use this library yourself in your own applications by adding a reference to it. You can then
add a new XML namespace declaration in your XAML files like so to specify this library:

xmlns:toolkit="clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"
With this toolkit prefix you can then reference the Hs1ColorExtension class in the same way

you use other XAML markup extensions:

<BoxView Color="{toolkit:Hs1Color H=0.67, S=1, L=0.5}" />

Unlike other XAML markup extensions shown so far, this one has multiple properties, and if you're set-
ting them as arguments with the curly-brace syntax, they must be separated with commas.

Would something like that be useful? Let's first see how to create such a library for classes that
you'd like to share among applications:

Chapter 10 XAML markup extensions 223

In Visual Studio, from the File menu, select New and Project. In the New Project dialog, select
Visual C# and Cross-Platform at the left, and Class Library (Xamarin.Forms) from the list. Find a
location for the project and give it a name. For the PCL created for this example, the name is
Xamarin.FormsBook.Toolkit. Click OK. Along with all the overhead for the project, the template cre-
ates a code file named Xamarin.FormsBook.Toolkit.cs containing a class named xamarin.Forms-
Book.Toolkit. That's not a valid class name, so just delete that file.

In Xamarin Studio, from the File menu, select New and Solution. In the New Project dialog, select
Multiplatform and Library at the left, and Forms and Class Library from the list. Find a location for it
and give it a name (Xamarin.FormsBook.Toolkit for this example). Click OK. The solution template
creates several files, including a file named MyPage.cs. Delete that file.

You can now add classes to this project in the normal way:

In Visual Studio, right-click the project name, select Add and New Item. In the Add New Item dia-
log, if you're just creating a code-only class, select Visual C# and Code at the left, and select Class
from the list. Give it a name (HslColorExtension.cs for this example). Click the Add button.

In Xamarin Studio, in the tool menu for the project, select Add and New File. In the New File dia-
log, if you're just creating a code-only class, select General at the left and Empty Class in the list. Give
it a name (HslColorExtension.cs for this example). Click the New button.

The Xamarin.FormsBook.Toolkit library will be built up and accumulate useful classes during the
course of this book. But the first class in this library is Hs1ColorExtension. The HslColorExtension.cs
file (including the required using directives) looks like this:
using System;

using Xamarin.Forms;
using Xamarin.Forms.XamT;

namespace Xamarin.FormsBook.Toolkit

{
public class Hsl1ColorExtension : IMarkupExtension
{
public HsTColorExtension()
{
A=1;
}

public double H { set; get; }
public double S { set; get; }
public double L { set; get; }
public double A { set; get; }
public object ProvideValue(IServiceProvider serviceProvider)

{
return Color.FromHsla(H, S, L, A);

Chapter 10 XAML markup extensions 224

}

Notice that the class is public, so it's visible from outside the library, and that it implements the
IMarkupExtension interface, which means that it must include a Providevalue method. However,
the method doesn’t make use of the I1ServiceProvider argument at all, mainly because it doesn't
need to know about anything else external to itself. All it needs are the four properties to create a
Color value, and if the a value isn't set, a default value of 1 (fully opaque) is used.

This Xamarin.FormsBook.Toolkit solution contains only a PCL project. The project can be built to
generate a PCL assembly, but it cannot be run without an application that uses this assembly.

There are two ways to access this library from an application solution:

e From the PCL project of your application solution, add a reference to the library PCL assembly,
which is the dynamic-link library (DLL) generated from the library project.

e Include a link to the library project from your application solution, and add a reference to that
library project from the applicationt’'s PCL project.

The first option is necessary if you have only the DLL and not the project with source code. Perhaps
you're licensing the library and don't have access to the source. But if you have access to the project,
it's usually best to include a link to the library project in your solution so that you can easily make
changes to the library code and rebuild the library project.

The final project in this chapter is CustomExtensionDemo, which makes use of the Hs1ColorEx-
tension class in the new library. The CustomExtensionDemo solution contains a link to the Xama-
rin.FormsBook.Toolkit PCL project, and the References section in the CustomExtensionDemo pro-
ject lists the Xamarin.FormsBook.Toolkit assembly.

Now the application project is seemingly ready to access the library project to use the Hs1Col-
orExtension class within the application’s XAML file.

But first there's another step. Unless you've enabled XAML compilation, a reference to an external
library from XAML is insufficient to ensure that the library is included with the application. The library
needs to be accessed from actual code. For this reason, Xamarin.FormsBook.Toolkit also contains a
class and method that might seem from the name to be performing important initialization for the Ii-
brary:

namespace Xamarin.FormsBook.Toolkit

{
public static class Toolkit
{
public static void Init(Q)
{
}
}

Chapter 10 XAML markup extensions 225

Whenever you use anything from this library, try to get into the habit of calling this 1nit method
first thing in the app file:

namespace CustomExtensionDemo

{
public class App : Application
{
public AppQ
{
Xamarin.FormsBook.Toolkit.Toolkit.Init(Q);
MainPage = new CustomExtensionDemoPage();
}
}
}

The following XAML file shows the XML namespace declaration for the Xamarin.Forms-
Book.Toolkit library and three ways to access the custom XAML markup extension—by using an
HslColorExtension element set with property-element syntax on the Color property and by using
both Hs1ColorExtension and Hs1Color with the more common curly-brace syntax. Again, notice
the use of commas to separate the arguments within the curly braces:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:toolkit=
"clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"
x:Class="CustomExtensionDemo.CustomExtensionDemoPage">

<StackLayout>
<!-- Red -->
<BoxView HorizontalOptions="Center"
VerticalOptions="CenterAndExpand">
<BoxView.Color>
<toolkit:HsTColorExtension H="0" S="1" L="0.5" />
</BoxView.Color>
</BoxView>

<!-- Green -->
<BoxView HorizontalOptions="Center"
VerticalOptions="CenterAndExpand">
<BoxView.Color>
<toolkit:Hs1ColorExtension H="0.33" S="1" L="0.5" />
</BoxView.Color>
</BoxView>

<!-- Blue -->

<BoxView Color="{toolkit:Hs1Color H=0.67, S=1, L=0.5}"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand" />

<!-- Gray -->
<BoxView Color="{toolkit:Hs1Color H=0, S=0, L=0.5}"

Chapter 10 XAML markup extensions 226

HorizontalOptions="Center"
VerticalOptions="CenterAndExpand" />

<!-— Semitransparent white -->

<BoxView Color="{toolkit:Hs1Color H=0, S=0, L=1, A=0.5}"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand" />

<!-- Semitransparent black -->
<BoxView Color="{toolkit:Hs1Color H=0, S=0, L=0, A=0.5}"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand" />
</StackLayout>
</ContentPage>

The last two examples set the a property for 50 percent transparency, so the boxes show up as a
shade of gray (or not at all) depending on the background:

% W4 01234

Two major uses of XAML markup extensions are yet to come. In Chapter 12, you'll see the style
class, which is without a doubt the most popular item for including in resource dictionaries, and in
Chapter 16, you'll see the powerful markup extension named Binding.

Chapter 11
The bindable infrastructure

One of the most basic language constructs of C# is the class member known as the property. All of us
very early on in our first encounters with C# learned the general routine of defining a property. The
property is often backed by a private field and includes set and get accessors that reference the pri-
vate field and do something with a new value:

public class MyClass

{
double quality;
public double Quality
{
set
{
quality = value;
// Do something with the new value
get
{
return quality;
}
}
}

Properties are sometimes referred to as smart fields. Syntactically, code that accesses a property re-
sembles code that accesses a field. Yet the property can execute some of its own code when the prop-
erty is accessed.

Properties are also like methods. Indeed, C# code is compiled into intermediate language that im-
plements a property such as Quality with a pair of methods named set Quality and get Qual-
ity. Yet despite the close functional resemblance between properties and a pair of set and get meth-
ods, the property syntax reveals itself to be much more suitable when moving from code to markup.
It's hard to imagine XAML built on an underlying API that is missing properties.

So you may be surprised to learn that Xamarin.Forms implements an enhanced property definition
that builds upon C# properties. Or maybe you won't be surprised. If you already have experience with
Microsoft's XAML-based platforms, you'll encounter some familiar concepts in this chapter.

The property definition shown above is known as a CLR property because it's supported by the .NET
common language runtime. The enhanced property definition in Xamarin.Forms builds upon the CLR
property and is called a bindable property, encapsulated by the BindableProperty class and sup-
ported by the BindableObject class.

Chapter 11 The bindable infrastructure 228

The Xamarin.Forms class hierarchy

Before exploring the details of the important BindableObject class, let’s first discover how Binda-
bleObject fits into the overall Xamarin.Forms architecture by constructing a class hierarchy.

In an object-oriented programming framework such as Xamarin.Forms, a class hierarchy can often
reveal important inner structures of the environment. The class hierarchy shows how various classes
relate to one another and the properties, methods, and events that they share, including how bindable
properties are supported.

You can construct such a class hierarchy by laboriously going through the online documentation
and taking note of what classes derive from what other classes. Or you can write a Xamarin.Forms pro-
gram to do the work for you and display the class hierarchy on the phone. Such a program makes use
of .NET reflection to obtain all the public classes, structures, and enumerations in the Xama-
rin.Forms.Core and Xamarin.Forms.Xaml assemblies and arrange them in a tree. The ClassHierarchy
application demonstrates this technique.

As usual, the ClassHierarchy project contains a class that derives from ContentPage, named
ClassHierarchyPage, but it also contains two additional classes, named TypeInformation and

ClassAndSubclasses.

The program creates one TypeInformation instance for every public class (and structure and enu-
meration) in the Xamarin.Forms.Core and Xamarin.Forms.Xaml assemblies, plus any .NET class that
serves as a base class for any Xamarin.Forms class, with the exception of Object. (These .NET classes
areAttribute,Delegate,Enum,EventArgs,Exception,MulticastDelegate,and‘ValueType)
The TypeInformation constructor requires a Type object identifying a type but also obtains some
other information:

class TypeInformation

{
bool isBaseGenericType;
Type baseGenericTypeDef;

public TypeInformation(Type type, bool isXamarinForms)
{

Type = type;

IsXamarinForms = isXamarinForms;

TypeInfo typeInfo = type.GetTypeInfo();

BaseType = typeInfo.BaseType;

if (BaseType != null)

{
TypeInfo baseTypeInfo = BaseType.GetTypeInfo();
isBaseGenericType = baseTypeInfo.IsGenericType;

if (isBaseGenericType)
{
baseGenericTypeDef = baseTypeInfo.GetGenericTypeDefinition();

Chapter 11 The bindable infrastructure 229

public Type Type { private set; get; }
public Type BaseType { private set; get; }
public bool IsXamarinForms { private set; get; }

public bool IsDerivedDirectlyFrom(Type parentType)

{
if (BaseType != null && isBaseGenericType)
{
if (baseGenericTypeDef == parentType)
{
return true;
}
}
else if (BaseType == parentType)
{
return true;
}
return false;
}

A very important part of this class is the IsDerivedDirectlyFrom method, which will return true
if passed an argument that is this type's base type. This determination is complicated if generic classes
are involved, and that issue largely accounts for the complexity of the class.

The ClassAndSubclasses class is considerably shorter:

class ClassAndSubclasses

{

public ClassAndSubclasses(Type parent, bool isXamarinForms)
{

Type = parent;

IsXamarinForms = isXamarinForms;

Subclasses = new List<ClassAndSubclasses>();

public Type Type { private set; get; }
public bool IsXamarinForms { private set; get; }
public List<ClassAndSubclasses> Subclasses { private set; get; }

The program creates one instance of this class for every Type displayed in the class hierarchy, including
Object, so the program creates one more ClassAndSubclasses instance than the number of
TypeInformation instances. The ClassAndSubclasses instance associated with Object contains a
collection of all the classes that derive directly from Object, and each of those ClassAndSubclasses
instances contains a collection of all the classes that derive from that one, and so forth for the remain-
der of the hierarchy tree.

Chapter 11 The bindable infrastructure 230

The ClassHierarchyPage class consists of a XAML file and a code-behind file, but the XAML file
contains little more than a scrollable stackLayout ready for some Label elements:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ClassHierarchy.ClassHierarchyPage">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0s="5, 20, 0, 0"
Android="5, 0, 0, 0"
WinPhone="5, 0, 0, 0" />
</ContentPage.Padding>

<Scrol1View>
<StackLayout x:Name="stackLayout"
Spacing="0" />
</Scrol1View>
</ContentPage>

The code-behind file obtains references to the two Xamarin.Forms Assembly objects and then ac-
cumulates all the public classes, structures, and enumerations in the classList collection. It then
checks for the necessity of including any base classes from the .NET assemblies, sorts the result, and
then calls two recursive methods, AddChildrenToParent and AddItemToStackLayout:

public partial class ClassHierarchyPage : ContentPage
{

public ClassHierarchyPage()

{

InitializeComponent();
List<TypeInformation> classList = new List<TypeInformation>(Q);

// Get types in Xamarin.Forms.Core assembly.
GetPublicTypes(typeof(View).GetTypeInfo().Assembly, classList);

// Get types in Xamarin.Forms.Xaml assembly.
GetPublicTypes(typeof (Extensions).GetTypeInfo() .Assembly, classList);

// Ensure that all classes have a base type in the Tist.
// (i.e., add Attribute, ValueType, Enum, EventArgs, etc.)
int index = 0;

// Watch out! Loops through expanding classList!
do
{
// Get a child type from the Tist.
TypeInformation childType = classList[index];

if (childType.Type != typeof(Object))
{
bool hasBaseType = false;

Chapter 11 The bindable infrastructure

// Loop through the Tist looking for a base type.
foreach (TypeInformation parentType in classList)

{
if (childType.IsDerivedDirectlyFrom(parentType.Type))
{
hasBaseType = true;
}
}

// If there's no base type, add it.
if (!hasBaseType && childType.BaseType != typeof(Object))

{
classList.Add(new TypeInformation(childType.BaseType, false));
}
}
index++;

}

while (index < classList.Count);

// Now sort the Tist.
classList.Sort((tl, t2) =>
{
return String.Compare(tl.Type.Name, t2.Type.Name);
i9H

// Start the display with System.Object.
ClassAndSubclasses rootClass = new ClassAndSubclasses(typeof(Object), false);

// Recursive method to build the hierarchy tree.
AddChildrenToParent(rootClass, classList);

// Recursive method for adding items to StackLayout.

AddItemToStackLayout(rootClass, 0);

void GetPublicTypes(Assembly assembly,
List<TypeInformation> classList)

{
// Loop through all the types.
foreach (Type type in assembly.ExportedTypes)
{
TypeInfo typeInfo = type.GetTypeInfo();
// Public types only but exclude interfaces.
if (typeInfo.IsPublic & !typeInfo.IsInterface)
{
// Add type to Tist.
classList.Add(new TypeInformation(type, true));
}
}
}

void AddChildrenToParent(ClassAndSubclasses parentClass,
List<TypeInformation> classList)

231

Chapter 11 The bindable infrastructure 232

{
foreach (TypeInformation typeInformation in classList)
{
if (typeInformation.IsDerivedDirectlyFrom(parentClass.Type))
{
ClassAndSubclasses subClass =
new ClassAndSubclasses(typeInformation.Type,
typeInformation.IsXamarinForms);
parentClass.Subclasses.Add(subClass);
AddChildrenToParent(subClass, classList);
}
}
}

void AddItemToStackLayout(ClassAndSubclasses parentClass, int Tevel)
{
// If assembly is not Xamarin.Forms, display full name.
string name = parentClass.IsXamarinForms ? parentClass.Type.Name :
parentClass.Type.FullName;

TypeInfo typeInfo = parentClass.Type.GetTypeInfo();

// If generic, display angle brackets and parameters.
if (typelInfo.IsGenericType)

{
Type[] parameters = typeInfo.GenericTypeParameters;
name = name.Substring(0, name.Length - 2);
name += "<";
for (int i = 0; i < parameters.Length; i++)
{
name += parameters[i].Name;
if (i < parameters.Length - 1)
{
name += ", ";
}
}
name += ">";
}

// Create Label and add to StackLayout.
Label label = new Label

{
Text = String.Format("{0}{1}", new string(' ', 4 * level), name),
TextColor = parentClass.Type.GetTypeInfo().IsAbstract ?
Color.Accent : Color.Default
};

stackLayout.Children.Add(label);

// Now display nested types.
foreach (ClassAndSubclasses subclass in parentClass.Subclasses)

{
AddItemToStackLayout(subclass, level + 1);

Chapter 11 The bindable infrastructure 233

The recursive AddChildrenToParent method assembles the linked list of ClassAndSubclasses
instances from the flat classList collection. The AddItemToStackLayout method is also recursive
because it is responsible for adding the ClassesAndSubclasses linked list to the stackLayout ob-
ject by creating a Label view for each class, with a little blank space at the beginning for the proper
indentation. The method displays the Xamarin.Forms types with just the class names, but the .NET
types include the fully qualified name to distinguish them. The method uses the platform accent color
for classes that are not instantiable because they are abstract or static:

Carrier ¥ - { wayouL<
System.Object - | Absalutelayout
Animation | Grid
AnimationExtensions Relativelayout
ArrayExtension v StackLayout
System.Attribute
ContentPropertyAttribute ! scrollView
DependencyAttribute OpenGLView
HandlerAttribute Picker
RenderWithAttribute ProgressBar
TypeConverterAttribute SearchBar
XamlCompilationAttribute Slider

BindableObject Stepper

Behavior<T> — Switch
ColumnDefinition TableView

Element Buttor TimePicker
Application D WebView
BaseMenultem

Menultem Tabl
Toolbaritem

RowDefinition

Cell Entry ab
EntryCall 4 TableRoot
SwitchCell S TableSection
TextCell e
ImageCell DataTrigger
Gastuasvcognize : EventTrigger
I o
PinchGestureRecognizer MultiTrigger
TapGestureRecognizer | . T ger
ImageSource 4
FilelmageSource

Overall, you'll see that the Xamarin.Forms visual elements have the following general hierarchy:

System.Object
BindableObject
Element
VisualElement

View
Layout
Layout<T>

Page

Chapter 11 The bindable infrastructure 234

Aside from Object, all the classes in this abbreviated class hierarchy are implemented in the
Xamarin.Forms.Core.dll assembly and associated with a namespace of xamarin.Forms.

Let's examine some of these major classes in detail.

As the name of the BindableObject class implies, the primary function of this class is to support
data binding—the linking of two properties of two objects so that they maintain the same value. But
BindableObject also supports styles and the DynamicResource markup extension as well. It does
this in two ways: through BindableObject property definitions in the form of BindableProperty
objects and also by implementing the .NET INotifyPropertyChanged interface. All of this will be
discussed in much more detail in this chapter and future chapters.

Let's continue down the hierarchy: as you've seen, user-interface objects in Xamarin.Forms are often
arranged on the page in a parent-child hierarchy, and the Element class includes support for parent
and child relationships.

VisualElement is an exceptionally important class in Xamarin.Forms. A visual element is anything
in Xamarin.Forms that occupies an area on the screen. The visualElement class defines 28 public
properties related to size, location, background color, and other visual and functional characteristics,
such as IsEnabled and IsVisible.

In Xamarin.Forms the word view is often used to refer to individual visual objects such as buttons,
sliders, and text-entry boxes, but you can see that the view class is the parent to the layout classes as
well. Interestingly, view adds only three public members to what it inherits from visualElement.
These are HorizontalOptions and VerticalOptions—which make sense because these properties
don't apply to pages—and GestureRecognizers to support touch input.

The descendants of Layout are capable of having children views. A child view appears on the
screen visually within the boundaries of its parent. Classes that derive from Layout can have only one
child of type view, but the generic Layout<T> class defines a Children property, which is a collection
of multiple child views, including other layouts. You've already seen the stackLayout, which arranges
its children in a horizontal or vertical stack. Although the Layout class derives from view, layouts are
so important in Xamarin.Forms that they are often considered a category in themselves.

ClassHierarchy lists all the public classes, structures, and enumerations defined in the Xama-
rin.Forms.Core and Xamarin.Forms.Xaml assemblies, but it does not list interfaces. Those are im-
portant as well, but you'll just have to explore them on your own. (Or enhance the program to list
them.)

Nor does ClassHierarchy list the many public classes that help implement Xamarin.Forms on the
various platforms. In the final chapter of this book, you'll see a version that does.

Chapter 11 The bindable infrastructure

A peek into BindableObject and BindableProperty

235

The existence of classes named BindableObject and BindableProperty is likely to be a little

confusing at first. Keep in mind that BindableObject is much like Object in that it serves as a base
class to a large chunk of the Xamarin.Forms API, and particularly to E1ement and hence
VisualElement.

BindableObject provides support for objects of type BindableProperty. A BindableProperty
object extends a CLR property. The best insights into bindable properties come when you create a few
of your own—as you'll be doing before the end of this chapter—but you can also glean some under-
standing by exploring the existing bindable properties.

Toward the beginning of Chapter 7, “XAML vs. code,” two buttons were created with many of the
same property settings, except that the properties of one button were set in code using the C# 3.0 ob-
ject initialization syntax and the other button was instantiated and initialized in XAML.

Here's a similar (but code-only) program named PropertySettings that also creates and initializes

two buttons in two different ways. The properties of the first Label are set the old-fashioned way,

while the properties of the second Label are set with a more verbose technique:

public class PropertySettingsPage : ContentPage

{

public PropertySettingsPage()

{

Label 1
Tabell.
Tabell.
Tabell.
Tabell.
Tabell.
Tabell.
Tabell.
Tabell.
Tabell.

Label 1
Tabel2.
Tabel2.
Tlabel2.
Tabel2.
Tabel2.
Tabel2.
Tabel2.
Tabel2.

Tabel2.

abell = new Label(Q);

Text = "Text with CLR properties";

IsVisible = true;

Opacity = 0.75;

HorizontalTextAlignment = TextAlignment.Center;
VerticalOptions = LayoutOptions.CenterAndExpand;

TextColor = Color.Blue;

BackgroundColor = Color.FromRgb(255, 128, 128);

FontSize = Device.GetNamedSize(NamedSize.Medium, new Label());
FontAttributes = FontAttributes.Bold | FontAttributes.Italic;

abel2 = new Label(Q);
SetValue(Label.TextProperty, "Text with bindable properties");
SetValue(Label.IsVisibleProperty, true);
SetValue(lLabel.OpacityProperty, 0.75);
SetValue(lLabel.HorizontalTextAlignmentProperty, TextAlignment.Center);
SetValue(Label.VerticalOptionsProperty, LayoutOptions.CenterAndExpand);
SetValue(Label.TextColorProperty, Color.Blue);
SetValue(Label.BackgroundColorProperty, Color.FromRgb(255, 128, 128));
SetValue(Label.FontSizeProperty,

Device.GetNamedSize(NamedSize.Medium, new Label()));
SetValue(Label.FontAttributesProperty,

FontAttributes.Bold | FontAttributes.Italic);

Content = new StacklLayout

{

Chapter 11 The bindable infrastructure

Children =
{
Tabell,
Tabel2
}

Text with CLR properties

Text with bindable properties

236

30 W Qa7

Text with CLR properties

Text with bindable properties

Yet the alternative syntax seems very odd. For example:

Tlabel2.SetValue(lLabel.TextProperty, "Text with bindable properties™);

What is that setvalue method? Setvalue is defined by BindableObject, from which every visual
object derives. BindableObject also defines a Getvalue method.

That first argument to setvalue has the name Label.TextProperty, which indicates that
TextProperty is static, but despite its name, it's not a property at all. It's a static field of the Label
class. TextProperty is also read-only, and it's defined in the Label class something like this:

public static readonly BindableProperty TextProperty;

That's an object of type BindableProperty. Of course, it may seem a little disturbing that a field is
named TextProperty, but there it is. Because it's static, however, it exists independently of any Label

objects that might or might not exist.

If you look in the documentation of the Label class, you'll see that it defines 10 properties, includ-
ing Text, TextColor, FontSize, FontAttributes, and others. You'll also see 10 corresponding

Chapter 11 The bindable infrastructure 237

public static read-only fields of type BindableProperty with the names TextProperty, TextCol-
orProperty, FontSizeProperty, FontAttributesProperty, and so forth.

These properties and fields are closely related. Indeed, internal to the Label class, the Text CLR
property is defined like this to reference the corresponding TextProperty object:

public string Text
{

set { SetValue(lLabel.TextProperty, value); }

get { return (string)GetValue(Label.TextProperty); }
}

So you see why it is that your application calling Setvalue with a Label.TextProperty argument is
exactly equivalent to setting the Text property directly, and perhaps just a tinier bit faster!

The internal definition of the Text property in Label isn't secret information. This is standard code.
Although any class can define a BindableProperty object, only a class that derives from Binda-
bleObject can call the setvalue and Getvalue methods that actually implement the property in
the class. Casting is required for the Getvalue method because it's defined as returning object.

All the real work involved with maintaining the Text property is going on in those setvalue and
GetValue calls. The BindableObject and BindableProperty objects effectively extend the func-
tionality of standard CLR properties to provide systematic ways to:

e Define properties

e Give properties default values

e Store their current values

e Provide mechanisms for validating property values

e Maintain consistency among related properties in a single class

e Respond to property changes

e Trigger notifications when a property is about to change and has changed
e Support data binding

e Support styles

e Support dynamic resources

The close relationship of a property named Text with a BindableProperty named TextProp-
erty is reflected in the way that programmers speak about these properties: Sometimes a programmer
says that the Text property is "backed by” a BindableProperty named TextProperty because
TextProperty provides infrastructure support for Text. But a common shortcut is to say that Text is
itself a “bindable property,” and generally no one will be confused.

Chapter 11 The bindable infrastructure 238

Not every Xamarin.Forms property is a bindable property. Neither the Content property of
ContentPage nor the Children property of Layout<T> is a bindable property. Of the 28 properties
defined by visualElement, 26 are backed by bindable properties, but the Bounds property and the
Resources properties are not.

The span class used in connection with FormattedsString does not derive from BindableOb-
ject. Therefore, Span does not inherit Setvalue and Getvalue methods, and it cannot implement
BindableProperty objects.

This means that the Text property of Label is backed by a bindable property, but the Text prop-
erty of span is not. Does it make a difference?

Of course it makes a difference! If you recall the DynamicVsStatic program in the previous chapter,
you discovered that DynamicResource worked on the Text property of Label but not the Text
property of Span. Can it be that DynamicResource works only with bindable properties?

This supposition is pretty much confirmed by the definition of the following public method defined
by Element:

public void SetDynamicResource(BindableProperty property, string key);

This is how a dictionary key is associated with a particular property of an element when that property is
the target of a DynamicResource markup extension.

This setDynamicResource method also allows you to set a dynamic resource link on a property in
code. Here's the page class from a code-only version of DynamicVsStatic called DynamicVsStatic-
Code. It's somewhat simplified to exclude the use of a Formattedstring and Span object, but other-
wise it pretty accurately mimics how the previous XAML file is parsed and, in particular, how the Text
properties of the Label elements are set by the XAML parser:

public class DynamicVsStaticCodePage : ContentPage

{
public DynamicVsStaticCodePage()

{
Padding = new Thickness(5, 0);

// Create resource dictionary and add 1item.
Resources = new ResourceDictionary

{
{ "currentDateTime", "Not actually a DateTime" }
b
Content = new Stacklayout
{
Children =
{
new Label
{
Text = "StaticResource on Label.Text:",

VerticalOptions = LayoutOptions.EndAndExpand,

Chapter 11 The bindable infrastructure 239

FontSize = Device.GetNamedSize(NamedSize.Medium, typeof(Label))

1,
new Label
{
Text = (string)Resources["currentDateTime"],
VerticalOptions = LayoutOptions.StartAndExpand,
HorizontalTextAlignment = TextAlignment.Center,
FontSize = Device.GetNamedSize(NamedSize.Medium, typeof(Label))
1,
new Label
{
Text = "DynamicResource on Label.Text:",
VerticalOptions = LayoutOptions.EndAndExpand,
FontSize = Device.GetNamedSize(NamedSize.Medium, typeof(Label))
}

1

// Create the final label with the dynamic resource.
Label 1abel = new Label

{
VerticalOptions = LayoutOptions.StartAndExpand,
HorizontalTextAlignment = TextAlignment.Center,
FontSize = Device.GetNamedSize(NamedSize.Medium, typeof(Label))
b

Tabel.SetDynamicResource(lLabel.TextProperty, "currentDateTime");
((StackLayout)Content) .Children.Add(1abel);

// Start the timer going.
Device.StartTimer(TimeSpan.FromSeconds(1),
O =
{

Resources["currentDateTime"] = DateTime.Now.ToString();
return true;

s
3

The Text property of the second Label is set directly from the dictionary entry and makes the use of
the dictionary seem a little pointless in this context. But the Text property of the last Label is bound
to the dictionary key through a call to setDynamicResource, which allows the property to be up-
dated when the dictionary contents change:

Chapter 11 The bindable infrastructure 240

StaticResource on Label. Text:

StaticResource on Label.Text:
Not actually a DateTime

Not actually a DateTime

DynamicResource on Label.Text:
1/27/2016 451:32 PM

DynamicResource on Label.Text:
1/27/2016 4:49:39 PM

Consider this: What would the signature of this setDynamicResource method be if it could not
refer to a property using the BindableProperty object? It's easy to reference a property value in
method calls, but not the property itself. There are a couple of ways, such as the PropertyInfo class
in the System.Reflection namespace or the LINQ Expression object. But the BindableProperty
object is designed specifically for this purpose, as well as the essential job of handling the underlying
link between the property and the dictionary key.

Similarly, when we explore styles in the next chapter, you'll encounter a Setter class used in con-
nection with styles. setter defines a property named property of type BindableProperty, which
mandates that any property targeted by a style must be backed by a bindable property. This allows a
style to be defined prior to the elements targeted by the style.

Likewise for data bindings. The BindableObject class defines a SetBinding method that is very
similar to the SetDynamicResource method defined on Element:

public void SetBinding(BindableProperty targetProperty, BindingBase binding);

Again, notice the type of the first argument. Any property targeted by a data binding must be backed
by a bindable property.

For these reasons, whenever you create a custom view and need to define public properties, your
default inclination should be to define them as bindable properties. Only if after careful consideration
you conclude that it is not necessary or appropriate for the property to be targeted by a style or a data
binding should you retreat and define an ordinary CLR property instead.

Chapter 11 The bindable infrastructure 241

So whenever you create a class that derives from BindableObject, one of the first pieces of code
you should be typing in that class begins “public static readonly BindableProperty”"—perhaps the most
characteristic sequence of four words in all of Xamarin.Forms programming.

Defining bindable properties

Suppose you'd like an enhanced Labe1l class that lets you specify font sizes in units of points. Let’s call
this class A1tLabel for “alternative Label." It derives from Label and includes a new property
named PointSize.

Should Pointsize be backed by a bindable property? Of course! (Although the real advantages of
doing so won't be demonstrated until upcoming chapters.)

The code-only AltLabel class is included in the Xamarin.FormsBook.Toolkit library, so it's acces-
sible to multiple applications. The new PointSize property is implemented with a BindableProp-
erty object named PointSizeProperty and a CLR property named pPointSize that references

PointSizeProperty:

public class AltlLabel : Label

{
public static readonly BindableProperty PointSizeProperty .. ;
public double PointSize
{
set { SetValue(PointSizeProperty, value); }
get { return (double)GetValue(PointSizeProperty); }
}
}

Both the field and the property definition must be public.

Because PointSizeProperty is defined as static and readonly, it must be assigned either in a
static constructor or right in the field definition, after which it cannot be changed. Generally, a Binda-
bleProperty object is assigned in the field definition by using the static BindableProperty.Cre-
ate method. Four arguments are required (shown here with the argument names):

e propertyName The text name of the property (in this case "PointSize")

e returnType The type of the property (a double in this example)

e declaringType The type of the class defining the property (A1tLabel)
e defaultvalue A default value (let's say 8 points)

The second and third arguments are generally defined with typeof expressions. Here's the assignment
statement with these four arguments passed to BindableProperty.Create:

Chapter 11 The bindable infrastructure 242

public class AltLabel : Label

{
public static readonly BindableProperty PointSizeProperty =
BindableProperty.Create("PointSize", // propertyName

typeof (double), // returnType
typeof(AltLabel), // declaringType
8.0, // defaultValue
)

}

Notice that the default value is specified as 8.0 rather than just 8. Because BindableProp-
erty.Create is designed to handle properties of any type, the defaultvalue parameter is defined
as object. When the C# compiler encounters just an 8 as that argument, it will assume that the 8 is an
int and pass an int to the method. The problem won't be revealed until run time, however, when the
BindableProperty.Create method will be expecting the default value to be of type double and
respond by raising a TypeInitializationException.

You must be explicit about the type of the value you're specifying as the default. Not doing so is a
very common error in defining bindable properties. A very common error.

BindableProperty.Create also has six optional arguments. Here they are with the argument
names and their purpose:

e defaultBindingMode Used in connection with data binding

e validatevalue A callback to check for a valid value

e propertyChanged A callback to indicate when the property has changed

e propertyChanging A callback to indicate when the property is about to change

e coercevalue A callback to coerce a set value to another value (for example, to restrict the
values to a range)

e defaultvalueCreator A callback to create a default value. This is generally used to instanti-
ate a default object that can’t be shared among all instances of the class; for example, a collec-
tion object such as List or Dictionary.

Do not perform any validation, coercion, or property-changed handling in the CLR property. The CLR
property should be restricted to Setvalue and Getvalue calls. Everything else should be done in the
callbacks provided by the bindable property infrastructure.

It is very rare that a particular call to BindableProperty.Create would need all of these optional
arguments. For that reason, these optional arguments are commonly indicated with the named argu-
ment feature introduced in C# 4.0. To specify a particular optional argument, use the argument name
followed by a colon. For example:

Chapter 11 The bindable infrastructure 243

public class AltLabel : Label

{
public static readonly BindableProperty PointSizeProperty =
BindableProperty.Create("PointSize", // propertyName

typeof (double), // returnType
typeof(AltLabel), // declaringType
8.0, // defaultValue
propertyChanged: OnPointSizeChanged);

}

Without a doubt, propertyChanged is the most important of the optional arguments because the
class uses this callback to be notified when the property changes, either directly from a call to set-
vValue or through the CLR property.

In this example, the property-changed handler is called onPointSizeChanged. It will be called only
when the property truly changes and not when it's simply set to the same value. However, because on-
PointSizeChanged is referenced from a static field, the method itself must also be static. Here's what
it looks like:

public class AltlLabel : Label

{
;tatic void OnPointSizeChanged(BindableObject bindable, object oldValue, object newValue)
{
3

3

This seems a little odd. We might have multiple A1tLabel instances in a program, yet whenever the
PointSize property changes in any one of these instances, this same static method is called. How
does the method know exactly which AltLabel instance has changed?

The method can tell which instance’s property has changed because that instance is always the first
argument to the property-changed handler. Although that first argument is defined as a BindableOb-
ject, in this case it's actually of type AltLabel and indicates which a1tLabel instance’s property has
changed. This means that you can safely cast the first argument to an AltLabel instance:

static void OnPointSizeChanged(BindableObject bindable, object oldvalue, object newvalue)

{
AltlLabel altLabel = (AltLabel)bindable;

}

You can then reference anything in the particular instance of A1tLabel whose property has changed.
The second and third arguments are actually of type double for this example and indicate the previ-
ous value and the new value.

Often it's convenient for this static method to call an instance method with the arguments con-
verted to their actual types:

Chapter 11 The bindable infrastructure 244

public class AltLabel : Label

{
static void OnPointSizeChanged(BindableObject bindable, object oldValue, object newValue)
{
((AltLabeTl)bindable).0nPointSizeChanged((double)oldValue, (double)newValue);
}
void OnPointSizeChanged(double oldvalue, double newValue)
{
}
}

The instance method can then make use of any instance properties or methods of the underlying base
class as it would normally.

For this class, this OnPointSizeChanged method needs to set the FontSize property based on
the new point size and a conversion factor. In addition, the constructor needs to initialize the Font-
Size property based on the default Pointsize value. This is done through a simple SetLabelFont-
Size method. Here's the final complete class:

public class AltlLabel : Label

{
public static readonly BindableProperty PointSizeProperty =
BindableProperty.Create("PointSize", // propertyName
typeof(double), // returnType
typeof (AltLabel), // declaringType
8.0, // defaultValue

propertyChanged: OnPointSizeChanged);

public AltLabel()

{
SetlLabelFontSize((double)PointSizeProperty.DefaultValue);
}
public double PointSize
{
set { SetValue(PointSizeProperty, value); }
get { return (double)GetValue(PointSizeProperty); }
}

static void OnPointSizeChanged(BindableObject bindable, object oldvValue, object newValue)

{
((ATtLabel)bindable) .0OnPointSizeChanged((double)oldValue, (double)newValue);

}
void OnPointSizeChanged(double oldValue, double newValue)
{
SetLabelFontSize(newValue);
}

void SetlLabelFontSize(double pointSize)

Chapter 11 The bindable infrastructure 245
FontSize = 160 * pointSize / 72;

It is also possible for the instance OnPointSizeChanged property to access the PointSize property
directly rather than use newvalue. By the time the property-changed handler is called, the underlying
property value has already been changed. However, you don't have direct access to that underlying
value, as you do when a private field backs a CLR property. That underlying value is private to Binda-
bleObject and accessible only through the Getvalue call.

Of course, nothing prevents code that's using AltLabel from setting the Fontsize property and
overriding the PointSize setting, but let's hope such code is aware of that. Here's some code that is—
a program called PointSizedText, which uses A1tLabel to display point sizes from 4 through 12:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:toolkit=
"clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"
x:Class="PointSizedText.PointSizedTextPage">
<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0s="5, 20, 0, 0"
Android="5, 0, 0, 0"
WinPhone="5, 0, 0, 0" />
</ContentPage.Padding>

<StackLayout x:Name="stackLayout">
<tooTkit:AltLabel Text="Text of 4 points" PointSize="4" />
<tooTkit:AltLabel Text="Text of 5 points" PointSize="5" />
<tooTkit:AltLabel Text="Text of 6 points" PointSize="6" />
<tooTkit:AltLabel Text="Text of 7 points" PointSize="7" />
<tooTkit:AltLabel Text="Text of 8 points" PointSize="8" />
<tooTkit:AltLabel Text="Text of 9 points" PointSize="9" />
<tooTkit:AltLabel Text="Text of 10 points" PointSize="10" />
<toolkit:AltLabel Text="Text of 11 points" PointSize="11" />
<toolkit:AltLabel Text="Text of 12 points" PointSize="12" />
</StackLayout>
</ContentPage>

And here are the screenshots:

Chapter 11 The bindable infrastructure 246

Text of 6 points Text of 6 points.
Text of 7 paints

Text of 8 points pol

Text of 9 points. 2xt of 9 points
Text of 10 peints
Text of 11 points

Text of 12 points

Text of 7 points
Text of 8 points

Text of 9 points
10 S X
Lt Text of 10 points
Text of 11 points .

Text of 11 points

Text of 12 points .
s Text of 12 points

The read-only bindable property

Suppose you're working with an application in which it's convenient to know the number of words in
the text that is displayed by a Label element. Perhaps you'd like to build that facility right into a class
that derives from Label. Let’s call this new class CountedLabel.

By now, your first thought should be to define a BindableProperty object named WordCount-
Property and a corresponding CLR property named WordCount.

But wait: It only makes sense for this WordCount property to be set from within the CountedLabel
class. That means the WwordCount CLR property should not have a public set accessor. It should be de-
fined this way:

public int WordCount
{
private set { SetValue(WordCountProperty, value); }
get { return (double)GetValue(WordCountProperty); }
}

The get accessor is still public, but the set accessor is private. Is that sufficient?

Not exactly. Despite the private set accessor in the CLR property, code external to CountedLabel
can still call setvalue with the CountedLabel.WordCountProperty bindable property object. That
type of property setting should be prohibited as well. But how can that work if the WordCountProp-
erty object is public?

The solution is to make a read-only bindable property by using the BindableProperty.Create-
ReadOnly method. The

Chapter 11 The bindable infrastructure 247

Xamarin.Forms API itself defines several read-only bindable properties—for example, the width and
Height properties defined by visualElement.

Here's how you can make one of your own:

The first step is to call BindableProperty.CreateReadOnly with the same arguments as for
BindableProperty.Create. However, the CreateReadOnly method returns an object of Binda-
blePropertyKey rather than BindableProperty. Define this object as static and readonly, as
with the BindableProperty, but make it be private to the class:

public class CountedLabel : Label

{
static readonly BindablePropertyKey WordCountKey =
BindableProperty.CreateReadOnly("WordCount", // propertyName
typeof(int), // returnType
typeof(CountedLabel), // declaringType
0); // defaultValue
}

Don't think of this BindablePropertyKey object as an encryption key or anything like that. It's much
simpler—really just an object that is private to the class.

The second step is to make a public BindableProperty object by using the BindableProperty
property of the BindablePropertyKey:

public class CountedlLabel : Label

{

public static readonly BindableProperty WordCountProperty = WordCountKey.BindableProperty;

}

This BindableProperty object is public, but it's a special kind of BindableProperty: It cannot be
used in a Setvalue call. Attempting to do so will raise an InvalidOperationException.

However, there is an overload of the setvalue method that accepts a BindablePropertyKey ob-
ject. The CLR set accessor can call setvalue using this object, but this set accessor must be private
to prevent the property from being set outside the class:

public class CountedlLabel : Label

{
public int WordCount
{
private set { SetValue(WordCountKey, value); }
get { return (int)GetValue(WordCountProperty); }
}
}

The WwordCount property can now be set from within the CountedLabel class. But when should the

Chapter 11 The bindable infrastructure 248

class set it? This CountedLabel class derives from Label, but it needs to detect when the Text prop-
erty has changed so that it can count up the words.

Does Label have a TextChanged event? No it does not. However, BindableObject implements
the INotifyPropertyChanged interface. This is a very important .NET interface, particularly for appli-
cations that implement the Model-View-ViewModel (MVVM) architecture. In Chapter 18 you'll see how
to use it in your own data classes.

The INotifyPropertyChanged interface is defined in the System.ComponentModel namespace
like so:

public interface INotifyPropertyChanged

{
event PropertyChangedEventHandler PropertyChanged;

Every class that derives from BindableObject automatically fires this PropertyChanged event
whenever any property backed by a BindableProperty changes. The PropertyChangedEventArgs
object that accompanies this event includes a property named PropertyName of type string that
identifies the property that has changed.

So all that's necessary is for CountedLabel to attach a handler for the PropertyChanged event
and check for a property name of “Text". From there it can use whatever technique it wants for calcu-
lating a word count. The complete CountedLabel class uses a lambda function on the Property-
Changed event. The handler calls sSplit to break the string into words and see how many pieces re-
sult. The sp1it method splits the text based on spaces, dashes, and em dashes (Unicode \u2014):

public class CountedlLabel : Label

{
static readonly BindablePropertyKey WordCountKey =
BindableProperty.CreateReadOnly("WordCount", // propertyName
typeof(int), // returnType
typeof (CountedLabel), // declaringType
0); // defaultValue

public static readonly BindableProperty WordCountProperty = WordCountKey.BindableProperty;

public CountedLabel()

{
// Set the WordCount property when the Text property changes.
PropertyChanged += (object sender, PropertyChangedEventArgs args) =>

{

if (args.PropertyName == "Text")

{
if (String.IsNul10rEmpty(Text))
{

WordCount = 0;

}
else
{

WordCount = Text.Split(' ', '-', '\u2014').Length;

Chapter 11 The bindable infrastructure 249

}
}
1

}
public int WordCount
{

private set { SetValue(WordCountKey, value); }

get { return (int)GetValue(WordCountProperty); }
}

The class includes a using directive for the System.ComponentModel namespace for the Property-
ChangedEventArgs argument to the handler. Watch out: Xamarin.Forms defines a class named pProp-
ertyChangingEventArgs (present tense). That's not what you want for the PropertyChanged han-
dler. You want PropertyChangedEventArgs (past tense).

Because this call of the sp1it method splits the text at blank characters, dashes, and em dashes,
you might assume that CountedLabel will be demonstrated with text that contains some dashes and
em dashes. This is true. The BaskervillesCount program is a variation of the Baskervilles program
from Chapter 3, but here the paragraph of text is displayed with a CountedLabel, and a regular
Label is included to display the word count:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:toolkit=
"clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"
x:Class="BaskervillesCount.BaskervillesCountPage"
Padding="5, 0">

<StackLayout>
<toolkit:CountedLabel x:Name="countedLabel"

VerticalOptions="CenterAndExpand"
Text=

"Mr. Sherlock Holmes, who was usually very late in

the mornings, save upon those not infrequent

occasions when he was up all night, was seated at

the breakfast table. I stood upon the hearth-rug

and picked up the stick which our visitor had left

behind him the night before. It was a fine, thick

piece of wood, bulbous-headed, of the sort which

is known as a “Penang lawyer.” Just

under the head was a broad silver band, nearly an

inch across, “To James Mortimer, M.R.C.S.,

from his friends of the C.C.H.,” was engraved

upon it, with the date “1884.” It was

just such a stick as the old-fashioned family

practitioner used to carry—dignified, solid,

and reassuring." />

<Label x:Name="wordCountLabel"
Text="77?"

Chapter 11 The bindable infrastructure 250

FontSize="Large"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center" />

</StackLayout>
</ContentPage>

That regular Label is set in the code-behind file:

public partial class BaskervillesCountPage : ContentPage

{
public BaskervillesCountPage()
{
InitializeComponent();
int wordCount = countedLabel.WordCount;
wordCountLabel.Text = wordCount + " words";
}
}

The word count that it calculates is based on the assumption that all hyphens in the text separate
two words and that “hearth-rug” and “bulbous-headed” should be counted as two words each. That's
not always true, of course, but word counts are not quite as algorithmically simple as this code might

imply:

Mr. Sherlock Holmes, who was usually very late
in the mornings, save upon those not
infrequent occasions when he was up all night,
was seated at the breakfast table. | stood upon
the hearth-rug and picked up the stick which
aur visitor had left behind him the night before.
It was a fine, thick piece of wood, bulbous-
headed, of the sort which is known as a
“Penang lawyer.” Just under the head was a
broad silver band, nearly an inch across, “To
James Mortimer, M.R.C.S., from his friends of
the C.C.H.," was engraved upon it, with the
date “1884." It was just such a stick as the old-
fashioned family practitioner used to carry—
dignified, solid, and reassuring.

120 words

Mr. Sherlack Holmes, wha was usually very late in
the mornings, save upon those not infrequent
occasions when he was up all night, was seated at
the breakfast table. | stood upen the hearth-rug
and picked up the stick which our visitor had left
behind him the night before. It was a fine, thick
piece of wood, bulbous-headed, of the sort which
is known as a “Penang lawyer.” Just under the
head was a broad silver band, nearly an inch
across, "To James Mortimer, MR.CS., from his
friends of the C.CH." was engraved upon it, with
the date "1884." It was just such a stick as the old-
fashioned family practitioner used to carry—
dignified, solid, and reassuring.

120 words

How would the program be structured if the text changed dynamically while the program was run-
ning? In that case, it would be necessary to update the word count whenever the WordCount property
of the CountedLabel object changed. You could attach a PropertyChanged handler on the Count-
edLabel object and check for the property named “WordCount”.

Chapter 11 The bindable infrastructure 251

However, exercise caution if you try to set such an event handler from XAML—for example, like so:

<toolkit:CountedLabel x:Name="countedLabel"
VerticalOptions="CenterAndExpand"
PropertyChanged="0nCountedLabelPropertyChanged"
Text=" .. " />

You'll probably want to code the event handler in the code-behind file like this:

void OnCountedLabelPropertyChanged(object sender,
PropertyChangedEventArgs args)
{

wordCountLabel.Text = countedLabel.WordCount + " words";

}

That handler will fire when the Text property is set by the XAML parser, but the event handler is trying
to set the Text property of the second Label, which hasn't been instantiated yet, which means that
the wordCountLabel field is still set to null. This is an issue that will come up again in Chapter 15
when working with interactive controls, but it will be pretty much solved when we work with data
binding in Chapter 16.

There is another variation of a bindable property coming up in Chapter 14 on the AbsoluteLay-
out: this is the attached bindable property, and it is very useful in implementing certain types of lay-
outs, as you'll also discover in Chapter 26, “Custom layouts.”

Meanwhile, let's look at one of the most important applications of bindable properties: styles.

Chapter 12

Styles

Xamarin.Forms applications often contain multiple elements with identical property settings. For exam-
ple, you might have several buttons with the same colors, font sizes, and layout options. In code, you
can assign identical properties to multiple buttons in a loop, but loops aren’t available in XAML. If you
want to avoid a lot of repetitious markup, another solution is required.

The solution is the style class, which is a collection of property settings consolidated in one con-
venient object. You can set a style object to the style property of any class that derives from visu-
alElement. Generally, you'll apply the same style object to multiple elements, and the style is shared
among these elements.

The style is the primary tool for giving visual elements a consistent appearance in your Xama-
rin.Forms applications. Styles help reduce repetitious markup in XAML files and allow applications to be
more easily changed and maintained.

Styles were designed primarily with XAML in mind, and they probably wouldn't have been invented
in a code-only environment. However, you'll see in this chapter how to define and use styles in code
and how to combine code and markup to change program styling dynamically at run time.

The basic Style

In Chapter 10, "XAML markup extensions," you saw a trio of buttons that contained a lot of identical
markup. Here they are again:

<StackLayout>
<Button Text=" Carpe diem
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand"
BorderWidth="3"
TextColor="Red"
FontSize="Large">
<Button.BackgroundColor>
<OnPTlatform x:TypeArguments="Color"
Android="#404040" />
</Button.BackgroundColor>
<Button.BorderColor>
<OnPlatform x:TypeArguments="Color"
Android="White"
WinPhone="Black" />
</Button.BorderColor>
</Button>

Chapter 12 Styles

<Button Text=" Sapere aude "
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand"
BorderWidth="3"
TextColor="Red"
FontSize="Large">
<Button.BackgroundColor>
<OnPlatform x:TypeArguments="Color"
Android="#404040" />
</Button.BackgroundColor>
<Button.BorderColor>
<OnPlatform x:TypeArguments="Color"
Android="White"
WinPhone="Black" />
</Button.BorderColor>
</Button>

<Button Text=" Discere faciendo "
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand"
BorderWidth="3"
TextColor="Red"
FontSize="Large">
<Button.BackgroundColor>
<OnPlatform x:TypeArguments="Color"
Android="#404040" />
</Button.BackgroundColor>
<Button.BorderColor>
<OnPlatform x:TypeArguments="Color"
Android="White"
WinPhone="Black" />
</Button.BorderColor>
</Button>
</StackLayout>

With the exception of the Text property, all three buttons have the same property settings.

253

One partial solution to this repetitious markup involves defining property values in a resource dic-

tionary and referencing them with the StaticResource markup extension. As you saw in the
ResourceSharing project in Chapter 10, this technique doesn't reduce the markup bulk, but it does

consolidate the values in one place.

To reduce the markup bulk, you'll need a style. A Style object is almost always defined in a
ResourceDictionary. Generally, you'll begin with a Resources section at the top of the page:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"

x:Class="BasicStyle.BasicStylePage">

<ContentPage.Resources>
<ResourceDictionary>

</ResourceDictionary>

Chapter 12 Styles 254

</ContentPage.Resources>
</ContentPage>

Instantiate a style with separate start and end tags:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="BasicStyle.BasicStylePage">

<ContentPage.Resources>
<ResourceDictionary>
<Style x:Key="buttonStyle" TargetType="Button">

</Style>
</ResourceDictionary>
</ContentPage.Resources>

</ContentPage>

Because the Style is an object in a ResourceDictionary, you'll need an x:Key attribute to give it a
descriptive dictionary key. You must also set the TargetType property. This is the type of the visual
element that the style is designed for, which in this case is Button.

As you'll see in the next section of this chapter, you can also define a style in code, in which case
the style constructor requires an object of type Type for the TargetType property. The TargetType
property does not have a public set accessor; hence the TargetType property cannot be changed
after the style is created.

Style also defines another important get-only property named Setters of type IList<Setter>,
which is a collection of setter objects. Each Setter is responsible for defining a property setting in
the style. The setter class defines just two properties:

e Property of type BindableProperty
e Value of type Object

Properties set in the Style must be backed by bindable properties! But when you set the Property
property in XAML, don't use the entire fully qualified bindable property name. Just specify the text
name, which is the same as the name of the related CLR property. Here's an example:

<Setter Property="HorizontalOptions" Value="Center" />

The XAML parser uses the familiar TypeConverter classes when parsing the value settings of these
Setter instances, so you can use the same property settings that you use normally.

Setters is the content property of Style, so you don't need the Style.Setters tags to add
Setter objects to the style:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"

Chapter 12 Styles 255

x:Class="BasicStyle.BasicStylePage">

<ContentPage.Resources>
<ResourceDictionary>
<Style x:Key="buttonStyle" TargetType="Button">
<Setter Property="HorizontalOptions" Value="Center" />
<Setter Property="VerticalOptions" Value="CenterAndExpand" />
<Setter Property="BorderWidth" Value="3" />
<Setter Property="TextColor" Value="Red" />
<Setter Property="FontSize" Value="Large" />

</Style>
</ResourceDictionary>
</ContentPage.Resources>

</ContentPage>

Two more Setter objects are required for BackgroundColor and BorderColor. These involve
onPlatform and might at first seem to be impossible to express in markup. However, it's possible to
express the Value property of setter as a property element, with the onPlatform markup between
the property element tags:

<Setter Property="BackgroundColor">
<Setter.Value>
<OnPlatform x:TypeArguments="Color"
Android="#404040" />
</Setter.Value>
</Setter>
<Setter Property="BorderColor">
<Setter.Value>
<OnPlatform x:TypeArguments="Color"
Android="White"
WinPhone="Black" />
</Setter.Value>
</Setter>

The final step is to set this Style object to the Style property of each Button. Use the familiar
StaticResource markup extension to reference the dictionary key. Here is the complete XAML file in
the BasicStyle project:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="BasicStyle.BasicStylePage">

<ContentPage.Resources>
<ResourceDictionary>
<Style x:Key="buttonStyle" TargetType="Button">
<Setter Property="HorizontalOptions" Value="Center" />
<Setter Property="VerticalOptions" Value="CenterAndExpand" />
<Setter Property="BorderWidth" Value="3" />
<Setter Property="TextColor" Value="Red" />
<Setter Property="FontSize" Value="Large" />
<Setter Property="BackgroundColor">

Chapter 12 Styles 256

<Setter.Value>
<OnPlatform x:TypeArguments="Color"
Android="#404040" />
</Setter.Value>
</Setter>
<Setter Property="BorderColor">
<Setter.Value>
<OnPlatform x:TypeArguments="Color"
Android="White"
WinPhone="Black" />
</Setter.Value>
</Setter>
</Style>
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout>
<Button Text=" Carpe diem
Style="{StaticResource buttonStyle}" />

"

<Button Text=" Sapere aude
Style="{StaticResource buttonStyle}" />

"

<Button Text=" Discere faciendo
Style="{StaticResource buttonStyle}" />
</StackLayout>
</ContentPage>

Now all these property settings are in one style object that is shared among multiple Button
elements:

30 W w236
236 PM

| Discere faciendol

Discere faciendo

Chapter 12 Styles 257

The visuals are the same as those in the ResourceSharing program in Chapter 10, but the markup is a
lot more concise.

Even after working with style objects in markup, it's easy to be flummoxed with an unwieldy
Value property. Suppose you'd like to define a setter for the TextColor using the
Color.FromHsla static method. You can define such a color by using the x: FactoryMethod attrib-
ute, but how can you possibly set such an unwieldy chunk of markup to the value property of the
Setter object? As you saw earlier, the solution is almost always property-element syntax:

<ResourceDictionary>
<Style x:Key="buttonStyle" TargetType="Button">

<Setter Property="TextColor">
<Setter.Value>
<Color x:FactoryMethod="FromHsla">
<x:Arguments>
<x:DoubTe>0.83</x:Double>
<x:Double>1</x:Double>
<x:DoubTe>0.75</x:Double>
<x:DoubTle>1</x:Double>
</x:Arguments>
</Color>
</Setter.Value>
</Setter>

</Style>
</ResourceDictionary>

Here's another way to do it: Define the Color value as a separate item in the resource dictionary,
and then use staticResource to set it to the value property of the setter:

<ResourceDictionary>
<Color x:Key="btnTextColor"
x:FactoryMethod="FromHsla">
<X:Arguments>
<x:DoubTe>0.83</x:Double>
<x:Double>1</x:Double>
<x:DoubTe>0.75</x:Double>
<x:Double>1</x:Double>
</X:Arguments>
</Color>

<Style x:Key="buttonStyle" TargetType="Button">
<Setter Property="TextColor" Value="{StaticResource btnTextColor}" />

</Style>
</ResourceDictionary>

This is a good technique if you're sharing the same Color value among multiple styles or multiple
setters.

Chapter 12 Styles 258

You can override a property setting from a style by setting a property directly in the visual ele-
ment. Notice that the second Button has its TextColor property set to Maroon:
<StackLayout>

<Button Text=" Carpe diem
Style="{StaticResource buttonStyle}" />

<Button Text=" Sapere aude
TextColor="Maroon"
Style="{StaticResource buttonStyle}" />

<Button Text=" Discere faciendo "
Style="{StaticResource buttonStyle}" />
</StackLayout>

The center Button will have maroon text while the other two buttons get their TextColor settings
from the style. A property directly set on the visual element is sometimes called a local setting or a
manual setting, and it always overrides the property setting from the style.

The style object in the BasicStyle program is shared among the three buttons. The sharing of
styles has an important implication for the setter objects. Any object set to the value property of a
Setter must be shareable. Don't try to do something like this:
<!-- Invalid XAML! -->
<Style x:Key="frameStyle" TargetType="Frame">

<Setter Property="OutlineColor" Value="Accent" />
<Setter Property="Content">
<Setter.Value>
<Label Text="Text in a Frame" />
</Setter.Value>
</Setter>
</Style>

This XAML doesn't work for two reasons: Content is not backed by a BindableProperty and there-
fore cannot be used in a setter. But the obvious intent here is for every Frame—or at least every
Frame on which this style is applied—to get that same Label object as content. A single Label object
can't appear in multiple places on the page. A much better way to do something like this is to derive a
class from Frame and set a Label as the Content property, or to derive a class from ContentView
that includes a Frame and Label.

You might want to use a style to set an event handler for an event such as C1icked. That would be
useful and convenient, but it is not supported. Event handlers must be set on the elements themselves.
(However, the style class does support objects called triggers, which can respond to events or prop-
erty changes. Triggers are discussed in Chapter 23, “Triggers and behaviors.”)

You cannot set the GestureRecognizers property in a style. That would be useful as well, but
GestureRecognizers is not backed by a bindable property.

If a bindable property is a reference type, and if the default value is nul1, you can use a style to set
the property to a non-null object. But you might also want to override that style setting with a local

Chapter 12 Styles

259

setting that sets the property back to null. You can set a property to null in XAML with the

{x:Null} markup extension.

Styles in code

Although styles are mostly defined and used in XAML, you should know what they look like when de-
fined and used in code. Here's the page class for the code-only BasicStyleCode project. The construc-
tor of the BasicStyleCodePage class uses object-initialization syntax to mimic the XAML syntax in
defining the style object and applying it to three buttons:

public class BasicStyleCodePage : ContentPage

{

public BasicStyleCodePage()

{

Resources = new ResourceDictionary

{

{ "buttonStyle", new Style(typeof(Button))

{

Setters =

{

new

{

},

new

i

new

new

i

new

Setter

Property = View.HorizontalOptionsProperty,
Value = LayoutOptions.Center

Setter

Property = View.VerticalOptionsProperty,
Value = LayoutOptions.CenterAndExpand

Setter

Property = Button.BorderWidthProperty,
Value = 3

Setter

Property = Button.TextColorProperty,
Value = Color.Red

Setter

Property = Button.FontSizeProperty,
Value = Device.GetNamedSize(NamedSize.Large, typeof(Button))

Setter
Property = VisualElement.BackgroundColorProperty,

Value = Device.OnPlatform(Color.Default,
Color.FromRgb(0x40, 0x40, 0x40),

Chapter 12 Styles 260

Color.Default)

1,
new Setter
{
Property = Button.BorderColorProperty,
Value = Device.OnPlatform(Color.Default,
Color.White,
Color.BTlack)
}
}
}
}
b
Content = new StacklLayout
{
Children =
{
new Button
{
Text = " Carpe diem ",
Style = (Style)Resources["buttonStyle"]
1,
new Button
{
Text = " Sapere aude ",
Style = (Style)Resources["buttonStyle"]
1,
new Button
{
Text = " Discere faciendo ",
Style = (Style)Resources["buttonStyle"]
}
}
b

}

It's much more obvious in code than in XAML that the Property property of the setter is of type
BindableProperty.

The first two Setter objects in this example are initialized with the BindableProperties objects
named View.HorizontalOptionsProperty and View.VerticalOptionsProperty. You could use
Button.HorizontalOptionsProperty and Button.VerticalOptionsProperty instead because
Button inherits these properties from view. Or you can change the class name to any other class that
derives from view.

As usual, the use of a ResourceDictionary in code seems pointless. You could eliminate the dic-
tionary and just assign the style objects directly to the style properties of the buttons. However,
even in code, the style is a convenient way to bundle all the property settings together into one
compact package.

Chapter 12 Styles 261

Style inheritance

The TargetType of the style serves two different functions: One of these functions is described in
the next section on implicit styles. The other function is for the benefit of the XAML parser. The XAML
parser must be able to resolve the property names in the setter objects, and for that it needs a class
name provided by the TargetType.

All the properties in the style must be defined by or inherited by the class specified in the Target-
Type property. The type of the visual element on which the style is set must be the same as the Tar-
getType or a derived class of the TargetType.

If you need a style only for properties defined by view, you can set the TargetType to View and
still use the style on buttons or any other view derivative, as in this modified version of the BasicStyle
program:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="BasicStyle.BasicStylePage">

<ContentPage.Resources>
<ResourceDictionary>
<Style x:Key="viewStyle" TargetType="View">
<Setter Property="HorizontalOptions" Value="Center" />
<Setter Property="VerticalOptions" Value="CenterAndExpand" />
<Setter Property="BackgroundColor" Value="Pink" />
</Style>
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout>
<Button Text=" Carpe diem
Style="{StaticResource viewStyle}" />

<Label Text ="A bit of text"
Style="{StaticResource viewStyle}" />

<Button Text=" Sapere aude "

Style="{StaticResource viewStyle}" />

<Label Text ="Another bit of text"
Style="{StaticResource viewStyle}" />
<Button Text=" Discere faciendo "
Style="{StaticResource viewStyle}" />
</StackLayout>
</ContentPage>

As you can see, the same style is applied to all the Button and Label children of the stackLayout:

Chapter 12 Styles 262

30 W U240

2:30PM

Carpe diem

Abit of text

Sapere aude

Ancther bit of text Another bit of text

Discere faciendo Discere faciendo

But suppose you now want to expand on this style, but differently for Button and Label. Is that
possible?

Yes, it is. Styles can derive from other styles. The style class includes a property named Basedon of
type style. In code, you can set this Basedon property directly to another style object. In XAML you
set the BasedoOn attribute to a StaticResource markup extension that references a previously cre-
ated style. The new style can include Setter objects for new properties or use them to override
properties in the earlier Style. The BasedOn style must target the same class or an ancestor class of
the new style’s TargetType.

Here's the XAML file for a project named Stylelnheritance. The application has a reference to the
Xamarin.FormsBook.Toolkit assembly for two purposes: It uses the Hs1Color markup extension to
demonstrate that markup extensions are legitimate value settings in setter objects and to demon-
strate that a style can be defined for a custom class, in this case AltLabel.

The ResourceDictionary contains four styles: The first has a dictionary key of “visualStyle”. The
Style with the dictionary key of “baseStyle” derives from “visualStyle”. The styles with keys of “la-
belStyle” and “buttonStyle” derive from “baseStyle":

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:toolkit=
"clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"
x:Class="StyleInheritance.StyleInheritancePage">

<ContentPage.Resources>
<ResourceDictionary>
<Style x:Key="visualStyle" TargetType="VisualElement">

Chapter 12 Styles 263

<Setter Property="BackgroundColor"
Value="{toolkit:Hs1Color H=0, S=1, L=0.8}" />
</Style>

<Style x:Key="baseStyle" TargetType="View"
BasedOn="{StaticResource visualStyle}">
<Setter Property="HorizontalOptions" Value="Center" />
<Setter Property="VerticalOptions" Value="CenterAndExpand" />

</Style>

<Style x:Key="labelStyle" TargetType="toolkit:AltLabel"
BasedOn="{StaticResource baseStyle}">
<Setter Property="TextColor" Value="Black" />
<Setter Property="PointSize" Value="12" />
</Style>

<Style x:Key="buttonStyle" TargetType="Button"
BasedOn="{StaticResource baseStyle}">
<Setter Property="TextColor" Value="Blue" />
<Setter Property="FontSize" Value="Large" />
<Setter Property="BorderColor" Value="Blue" />
<Setter Property="BorderWidth" Value="2" />
</Style>
</ResourceDictionary>
</ContentPage.Resources>

<ContentPage.Style>
<StaticResourceExtension Key="visualStyle" />
</ContentPage.Style>

<StackLayout>
<Button Text=" Carpe diem
Style="{StaticResource buttonStyle}" />

<tooTkit:AltLabel Text ="A bit of text"
Style="{StaticResource TabelStylel}" />

<Button Text=" Sapere aude
Style="{StaticResource buttonStyle}" />

<toolkit:AltLabel Text ="Another bit of text"
Style="{StaticResource labelStyle}" />
<Button Text=" Discere faciendo "
Style="{StaticResource buttonStyle}" />
</StackLayout>
</ContentPage>

Immediately after the Resources section is some markup that sets the style property of the page
itself to the “visualStyle” style:
<ContentPage.Style>

<StaticResourceExtension Key="visualStyle" />
</ContentPage.Style>

Chapter 12 Styles 264

Because pPage derives from visualElement but not View, this is the only style in the resource diction-
ary that can be applied to the page. However, the style can't be applied to the page until after the rRe-
sources section, so using the element form of staticResource is a good solution here. The entire
background of the page is colored based on this style, and the style is also inherited by all the other
styles:

3 O Wl i 248 il 7 B - 249

Carpediom

A bit of text A bit of text

247 PM

A bit of text

Sapere aude

Another bit of text Another bit of text

DISCERE FACIENDO Discere faciendo

Another bit of text

Discere faciendo

If the style for the AltLabel only included setter objects for properties defined by Label, the
TargetType could be Label instead of AltLabel. But the Style has a Setter for the PointSize
property. That property is defined by A1tLabel, so the TargetType must be toolkit:AltLabel.

A setter can be defined for the PointSize property because Pointsize is backed by a bindable
property. If you change the accessibility of the BindableProperty object in AltLabel from public
to private, the property will still work for many routine uses of A1tLabel, but now PointSize can-
not be set in a style setter. The XAML parser will complain that it cannot find PointSizeProperty,
which is the bindable property that backs the PointSize property.

You discovered in Chapter 10 how StaticResource works: When the XAML parser encounters a
StaticResource markup extension, it searches up the visual tree for a matching dictionary key. This
process has implications for styles. You can define a style in one Resources section and then override
it with another style with the same dictionary key in a different Resources section lower in the visual
tree. When you set the Basedon property to a staticResource markup extension, the style you're
deriving from must be defined in the same Resources section (as demonstrated in the
Stylelnheritance program) or a Resources section higher in the visual tree.

This means that you can structure your styles in XAML in two hierarchical ways: You can use
BasedOn to derive styles from other styles, and you can define styles at different levels in the visual

Chapter 12 Styles 265

tree that derive from styles higher in the visual tree or replace them entirely.

For larger applications with multiple pages and lots of markup, the recommendation for defining
styles is very simple—define your styles as close as possible to the elements that use those styles.

Adhering to this recommendation aids in maintaining the program and becomes particularly im-
portant when working with implicit styles.

Implicit styles

Every entry in a ResourceDictionary requires a dictionary key. This is an indisputable fact. If you try
to pass a null key to the Add method of a ResourceDictionary object, you'll raise an Argument-
NullException.

However, there is one special case where a programmer is not required to supply this dictionary key.
A dictionary key is instead generated automatically.

This special case is for a Style object added to a ResourceDictionary without an x:Key setting.
The ResourceDictionary generates a key based on the TargetType, which is always required. (A
little exploration will reveal that this special dictionary key is the fully qualified name associated with
the TargetType of the style. For a TargetType of Button, for example, the dictionary key is
“Xamarin.Forms.Button”. But you don't need to know that.)

You can also add a style to a ResourceDictionary without a dictionary key in code: an overload
of the Add method accepts an argument of type style but doesn't require anything else.

A style object in a ResourceDictionary that has one of these generated keys is known as an
implicit style, and the generated dictionary key is very special. You can't refer to this key directly using
StaticResource. However, if an element within the scope of the Resourcebictionary has the
same type as the dictionary key, and if that element does not have its style property explicitly set to
another style object, then this implicit style is automatically applied.

The following XAML from the ImplicitStyle project demonstrates this. It is the same as the
BasicStyle XAML file except that the style has no x:Key setting and the style properties on the
buttons aren’t set using StaticResource:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ImplicitStyle.ImplicitStylePage">

<ContentPage.Resources>
<ResourceDictionary>
<Style TargetType="Button">
<Setter Property="HorizontalOptions" Value="Center" />
<Setter Property="VerticalOptions" Value="CenterAndExpand" />
<Setter Property="BorderWidth" Value="3" />
<Setter Property="TextColor" Value="Red" />

Chapter 12 Styles 266

<Setter Property="FontSize" Value="Large" />
<Setter Property="BackgroundColor">
<Setter.Value>
<OnPlatform x:TypeArguments="Color"
Android="#404040" />
</Setter.Value>
</Setter>

<Setter Property="BorderColor">
<Setter.Value>
<OnPlatform x:TypeArguments="Color"
Android="White"
WinPhone="Black" />
</Setter.Value>
</Setter>
</Style>
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout>
<Button Text=" Carpe diem " />

<Button Text=" Sapere aude " />
<Button Text=" Discere faciendo " />
</StackLayout>

</ContentPage>

Despite the absence of any explicit connection between the buttons and the style, the style is defi-
nitely applied:

251 PM

| Discere faciendol

Discere faciendo

Chapter 12 Styles 267

An implicit style is applied only when the class of the element matches the TargetType of the
Style exactly. If you include an element that derives from Button in the StackLayout, it would not
have the style applied.

You can use local property settings to override properties set through the implicit style, just as you
can override property settings in a style set with StaticResource.

You will find implicit styles to be very powerful and extremely useful. Whenever you have several
views of the same type and you determine that you want them all to have an identical property setting
or two, it's very easy to quickly define an implicit style. You don't have to touch the elements them-
selves.

However, with great power comes at least some programmer responsibility. Because no style is ref-
erenced in the elements themselves, it can be confusing when simply examining the XAML to deter-
mine whether some elements are styled or not. Sometimes the appearance of a page indicates that an
implicit style is applied to some elements, but it's not quite obvious where the implicit style is defined.
If you then want to change that implicit style, you have to manually search for it up the visual tree.

For this reason, you should define implicit styles as close as possible to the elements they are applied
to. If the views getting the implicit style are in a particular StackLayout, then define the implicit style
in the Resources section on that StackLayout. A comment or two might help avoid confusion as
well.

Interestingly, implicit styles have a built-in restriction that might persuade you to keep them close
to the elements they are applied to. Here's the restriction: You can derive an implicit style from a
Style with an explicit dictionary key, but you can't go the other way around. You can't use Basedon
to reference an implicit style.

If you define a chain of styles that use Basedon to derive from one another, the implicit style (if any)
is always at the end of the chain. No further derivations are possible.

This implies that you can structure your styles with three types of hierarchies:

e From styles defined on the Application and Page down to styles defined on layouts lower in
the visual tree.

e From styles defined for base classes such as VisualElement and View to styles defined for
specific classes.

e From styles with explicit dictionary keys to implicit styles.

This is demonstrated in the StyleHierarchy project, which uses a similar (but somewhat simplified)
set of styles as you saw earlier in the Stylelnheritance project. However, these styles are now spread
out over three Resources sections.

Chapter 12 Styles 268

Using a technique you saw in the ResourceTrees program in Chapter 10, the StyleHierarchy pro-
ject was given a XAML-based rpp class. The App.xaml class has a ResourceDictionary containing a
style with just one property setter:

<Application xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="StyleHierarchy.App">

<AppTlication.Resources>
<ResourceDictionary>
<Style x:Key="visualStyle" TargetType="VisualElement">
<Setter Property="BackgroundColor" Value="Pink" />
</Style>
</ResourceDictionary>
</Application.Resources>
</Application>

In a multipage application, this style would be used throughout the application.

The code-behind file for the App class calls InitializeComponent to process the XAML file and
sets the MainPage property:

public partial class App : Application

{
pubTic AppQ
{
InitializeComponent();
MainPage = new StyleHierarchyPage();
}
}

The XAML file for the page class defines one style for the whole page that derives from the style
in the App class and also two implicit styles that derive from the style for the page. Notice that the
Style property of the page is set to the Style defined in the App class:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="StyleHierarchy.StyleHierarchyPage"
Style="{StaticResource visualStyle}">

<ContentPage.Resources>
<ResourceDictionary>
<Style x:Key="baseStyle" TargetType="View"
BasedOn="{StaticResource visualStyle}">
<Setter Property="HorizontalOptions" Value="Center" />
<Setter Property="VerticalOptions" Value="CenterAndExpand" />
</Style>
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout>
<StackLayout.Resources>

Chapter 12 Styles 269

<ResourceDictionary>
<Style TargetType="Label"
BasedOn="{StaticResource baseStyle}">
<Setter Property="TextColor" Value="Black" />
<Setter Property="FontSize" Value="Large" />
</Style>

<Style TargetType="Button"
BasedOn="{StaticResource baseStyle}">
<Setter Property="TextColor" Value="Blue" />
<Setter Property="FontSize" Value="Large" />
<Setter Property="BorderColor" Value="Blue" />
<Setter Property="BorderWidth" Value="2" />
</Style>
</ResourceDictionary>
</StackLayout.Resources>

<Button Text=" Carpe diem " />
<Label Text ="A bit of text" />
<Button Text=" Sapere aude " />
<Label Text ="Another bit of text" />
<Button Text=" Discere faciendo " />
</StackLayout>
</ContentPage>

The implicit styles are defined as close to the target elements as possible.

Here's the result:

Chapter 12 Styles 270

- 303
301 PM

Carpe diem

Abit of text A bit of text A bit of text

Sapere aude

Another bit of text Another bit of text Another bit of text

DISCERE FACIENDO . .
Discere faciendo

The incentive to separate Style objects into separate dictionaries doesn't make a lot of sense for
very tiny programs like this one, but for larger programs, it becomes just as important to have a struc-
tured hierarchy of style definitions as it is to have a structured hierarchy of class definitions.

Sometimes you'll have a style with an explicit dictionary key (for example “myButtonStyle”), but
you'll want that same style to be implicit as well. Simply define a style based on that key with no key or
setters of its own:

<Style TargetType="Button"
BasedOn="{StaticResource myButtonStyle}" />

That's an implicit style that is identical to myButtonsStyle.

Dynamic styles

A style is generally a static object that is created and initialized in XAML or code and then remains
unchanged for the duration of the application. The style class does not derive from BindableOb-
ject and does not internally respond to changes in its properties. For example, if you assign a style
object to an element and then modify one of the setter objects by giving it a new value, the new
value won't show up in the element. Similarly, the target element won't change if you add a Setter or
remove a Setter from the setters collection. For these new property setters to take effect, you need
to use code to detach the style from the element by setting the style property to null and then re-
attach the style to the element.

Chapter 12 Styles 271

However, your application can respond to style changes dynamically at run time through the use of
DynamicResource. You'll recall that DynamicResource is similar to StaticResource in that it uses a
dictionary key to fetch an object or a value from a resource dictionary. The difference is that static-
Resource is a one-time dictionary lookup while DynamicResource maintains a link to the actual dic-
tionary key. If the dictionary entry associated with that key is replaced with a new object, that change is
propagated to the element.

This facility allows an application to implement a feature sometimes called dynamic styles. For ex-
ample, you might include a facility in your program for stylistic themes (involving fonts and colors, per-
haps), and you might make these themes selectable by the user. The application can switch between
these themes because they are implemented with styles.

There's nothing in a style itself that indicates a dynamic style. A style becomes dynamic solely by
being referenced using DynamicResource rather than staticResource.

The DynamicStyles project demonstrates the mechanics of this process. Here is the XAML file for
the DynamicStylesPage class:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="DynamicStyles.DynamicStylesPage">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0s="0, 20, 0, 0"
Android="0"
WinPhone="0" />
</ContentPage.Padding>

<ContentPage.Resources>
<ResourceDictionary>
<Style x:Key="baseButtonStyle" TargetType="Button">
<Setter Property="FontSize" Value="Large" />
</Style>

<Style x:Key="buttonStylel" TargetType="Button"
BasedOn="{StaticResource baseButtonStyle}">
<Setter Property="HorizontalOptions" Value="Center" />
<Setter Property="VerticalOptions" Value="CenterAndExpand" />
<Setter Property="TextColor" Value="Red" />
</Style>

<Style x:Key="buttonStyle2" TargetType="Button"
BasedOn="{StaticResource baseButtonStyle}">
<Setter Property="HorizontalOptions" Value="Start" />
<Setter Property="VerticalOptions" Value="EndAndExpand" />
<Setter Property="TextColor" Value="Green" />
<Setter Property="FontAttributes" Value="Italic" />
</Style>

<Style x:Key="buttonStyle3" TargetType="Button"

Chapter 12 Styles 272

BasedOn="{StaticResource baseButtonStyle}">
<Setter Property="HorizontalOptions" Value="End" />
<Setter Property="VerticalOptions" Value="StartAndExpand" />
<Setter Property="TextColor" Value="Blue" />
<Setter Property="FontAttributes" Value="Bold" />
</Style>
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout>
<Button Text=" Switch to Style #1 "
Style="{DynamicResource buttonStyle}"
Clicked="0OnButtonlClicked" />

<Button Text=" Switch to Style #2 "
Style="{DynamicResource buttonStyle}"
Clicked="0OnButton2Clicked" />

<Button Text=" Switch to Style #3 "
Style="{DynamicResource buttonStyle}"
Clicked="0OnButton3Clicked" />

<Button Text=" Reset "
Style="{DynamicResource buttonStyle}"
Clicked="OnResetButtonClicked" />
</StackLayout>
</ContentPage>

The Resources section defines four styles: a simple style with the key "baseButtonStyle”, and then
three styles that derive from that style with the keys "buttonStylel”, "buttonStyle2”, and "buttonStyle3".

However, the four Button elements toward the bottom of the XAML file all use DynamicResource
to reference a style with the simpler key “buttonStyle”. Where is the style with that key? It does not
exist. However, because the four button style properties are set with DynamicResource, the missing
dictionary key is not a problem. No exception is raised. But no style is applied, which means that the
buttons have a default appearance:

Chapter 12 Styles

SWITCH TO STYLE &1
SWITCH TO STYLE #2
SWITCH TO STYLE #3

RESET

Switch to Style #1

Switch to Style #2
Switch to Style #3

Reset

273

Each of the four Button elements has a C1icked handler attached, and in the code-behind file, the

first three handlers set a dictionary entry with the key “buttonStyle” to one of the three numbered

styles already defined in the dictionary:

public partial class DynamicStylesPage : ContentPage

{
public DynamicStylesPage()

{

InitializeComponent();

void OnButtonlClicked(object sender, EventArgs args)
{

Resources["buttonStyle"] = Resources["buttonStylel"];

void OnButton2Clicked(object sender, EventArgs args)

{
Resources["buttonStyle"] = Resources["buttonStyle2"];

void OnButton3Clicked(object sender, EventArgs args)

{
Resources["buttonStyle"] = Resources["buttonStyle3"];

void OnResetButtonClicked(object sender, EventArgs args)
{

Resources["buttonStyle"] = null;

Chapter 12 Styles 274

When you press one of the first three buttons, all four buttons get the selected style. Here's the pro-
gram running on all three platforms showing the results (from left to right) when buttons 1, 2, and 3
are pressed:

il % E -, 312

Switch to Style #1

Switch to Style #1

Switch to Style #2

Switch to Style #2

Switch to Style #3

Switch to Style #3

Pressing the fourth button returns everything to the initial conditions by setting the value associ-
ated with the "buttonStyle” key to nul1. (You might also consider calling Remove or Clear on the Re-
sourceDictionary object to remove the key entirely, but that doesn't work in the version of Xama-
rin.Forms used for this chapter.)

Suppose you want to derive another style from the style with the key “buttonStyle”. How do you
do this in XAML, considering that the "buttonStyle” dictionary entry doesn't exist until one of the first
three buttons is pressed?

You can't do it like this:

<!-- This won't work! -->
<Style x:Key="newButtonStyle" TargetType="Button"
BasedOn="{StaticResource buttonStyle}">

</Style>

StaticResource will raise an exception if the “buttonStyle” key does not exist, and even if the key
does exist, the use of StaticResource won't allow changes in the dictionary entry to be reflected in
this new style.

However, changing StaticResource to DynamicResource won't work either:

<!-- This won't work either! -->
<Style x:Key="newButtonStyle" TargetType="Button"

Chapter 12 Styles 275

BasedOn="{DynamicResource buttonStyle}">
</Style>

DynamicResource works only with properties backed by bindable properties, and that is not the case
here. style doesn't derive from BindableObject, so it can't support bindable properties.

Instead, style defines a property specifically for the purpose of inheriting dynamic styles. The
property is BaseResourceKey, which is intended to be set directly to a dictionary key that might not
yet exist or whose value might change dynamically, which is the case with the “buttonStyle” key:

<!-- This works!! -->
<Style x:Key="newButtonStyle" TargetType="Button"
BaseResourceKey="buttonStyle">

</Style>

The use of BaseResourceKey is demonstrated by the DynamicStylesinheritance project, which is
very similar to the DynamicStyles project. Indeed, the code-behind processing is identical. Toward the
bottom of the Resources section, a new style is defined with a key of "newButtonStyle” that uses
BaseResourceKey to reference the “buttonStyle” entry and add a couple of properties, including one
that uses onPlatform:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="DynamicStylesInheritance.DynamicStylesInheritancePage">
<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0s="0, 20, 0, 0"
Android="0"
WinPhone="0" />
</ContentPage.Padding>

<ContentPage.Resources>
<ResourceDictionary>
<Style x:Key="baseButtonStyle" TargetType="Button">
<Setter Property="FontSize" Value="Large" />
</Style>

<Style x:Key="buttonStylel" TargetType="Button"
BasedOn="{StaticResource baseButtonStyle}">
<Setter Property="HorizontalOptions" Value="Center" />
<Setter Property="VerticalOptions" Value="CenterAndExpand" />
<Setter Property="TextColor" Value="Red" />
</Style>

<Style x:Key="buttonStyle2" TargetType="Button"
BasedOn="{StaticResource baseButtonStyle}">
<Setter Property="HorizontalOptions" Value="Start" />
<Setter Property="VerticalOptions" Value="EndAndExpand" />
<Setter Property="TextColor" Value="Green" />
<Setter Property="FontAttributes" Value="Italic" />

Chapter 12 Styles 276

</Style>

<Style x:Key="buttonStyle3" TargetType="Button"
BasedOn="{StaticResource baseButtonStyle}">
<Setter Property="HorizontalOptions" Value="End" />
<Setter Property="VerticalOptions" Value="StartAndExpand" />
<Setter Property="TextColor" Value="Blue" />
<Setter Property="FontAttributes" Value="Bold" />
</Style>

<!-- New style definition. -->
<Style x:Key="newButtonStyle" TargetType="Button"
BaseResourceKey="buttonStyle">
<Setter Property="BackgroundColor">
<Setter.Value>
<OnPlatform x:TypeArguments="Color"
10S="#C0COCO"
Android="#404040"
WinPhone="Gray" />
</Setter.Value>
</Setter>
<Setter Property="BorderColor" Value="Red" />
<Setter Property="BorderWidth" Value="3" />
</Style>
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout>
<Button Text=" Switch to Style #1 "
Style="{StaticResource newButtonStyle}"
Clicked="0OnButtonlClicked" />

<Button Text=" Switch to Style #2 "
Style="{StaticResource newButtonStyle}"
Clicked="0OnButton2Clicked" />

<Button Text=" Switch to Style #3 "
Style="{StaticResource newButtonStyle}"
Clicked="0OnButton3Clicked" />

<Button Text=" Reset "
Style="{DynamicResource buttonStyle}"
Clicked="0OnResetButtonClicked" />
</StackLayout>
</ContentPage>

Notice that the first three Button elements reference the “newButtonStyle” dictionary entry with
StaticResource. DynamicResource is not needed here because the Style object associated with
the "newButtonStyle” will not itself change except for the style that it derives from. The style with
the key “newButtonStyle” maintains a link with “buttonStyle” and internally alters itself when that un-
derlying style changes. When the program begins to run, only the properties defined in the “newBut-
tonStyle” are applied to those three buttons:

Chapter 12 Styles

324 PM

Switch to Style #1

Switch to Style #2

Switch to Style #3

The Reset button continues to reference the “buttonStyle” entry.

As in the DynamicStyles program, the code-behind file sets that dictionary entry when you click

W4 od32s

SWITCH TO STYLE &1

SWITCH TO STYLE #2

SWITCH TO STYLE #3

RESET

277

one of the first three buttons, so all the buttons pick up the "buttonStyle” properties as well. Here are

the results for (from left to right) clicks of buttons 3, 2, and 1:

Switch to Style #1

Switch to Style #2

Switch to Style #3

Chapter 12 Styles 278

Device styles

Xamarin.Forms includes six built-in dynamic styles. These are known as device styles, and they are
members of a nested class of Device named Styles. This Styles class defines 12 static and
readonly fields that help reference these six styles in code:

e BodyStyle of type Style.

e BodyStyleKey of type string and equal to "BodyStyle.”

e TitleStyle of type style.

e TitleStyleKey of type string and equal to "TitleStyle.”

e SubtitleStyle of type style.

e SubtitleStyleKey of type string and equal to “SubtitleStyle.”

e CaptionStyle of type Style.

e CaptionStyleKey of type string and equal to "CaptionStyle.”

e ListItemTextStyle of type Style.

e IListItemTextStyleKey of type string and equal to “ListltemTextStyle.”
e ListItemDetailTextStyle of type Style.

e ListItemDetailTextStyleKey of type string and equal to “ListitemDetailTextStyle.”

All six styles have a TargetType of Label and are stored in a dictionary—but not a dictionary that ap-
plication programs can access directly.

In code, you use the fields in this list for accessing the device styles. For example, you can set the
Device.Styles.BodyStyle object directly to the Style property of a Label for text that might be
appropriate for the body of a paragraph. If you're defining a style in code that derives from one of
these device styles, set the BaseResourceKey to Device.Styles.BodyStyleKey or simply
“BodyStyle” if you're not afraid of misspelling it.

In XAML, you'll simply use the text key "BodyStyle” with DynamicResource for setting this style to
the Style property of a Label or to set BaseResourceKey when deriving a style from De-
vice.Styles.BodyStyle.

The DeviceStylesList program demonstrates how to access these styles—and to define a new style
that inherits from subtitlesStyle—both in XAML and in code. Here's the XAML file:
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="DeviceStylesList.DeviceStylesListPage">

Chapter 12 Styles

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="10, 20, 10, 0"
Android="10, 0"
WinPhone="10, 0" />
</ContentPage.Padding>

<ContentPage.Resources>
<ResourceDictionary>
<Style x:Key="newSubtitleStyle" TargetType="Label"
BaseResourceKey="SubtitleStyle">
<Setter Property="TextColor" Value="Accent" />
<Setter Property="FontAttributes" Value="Italic" />
</Style>
</ResourceDictionary>
</ContentPage.Resources>

<Scrol1View>
<StackLayout Spacing="20">

<!-- Device styles set with DynamicResource -->
<StackLayout>
<StackLayout HorizontalOptions="Start">
<Label Text="Device styles set with DynamicResource" />
<BoxView Color="Accent" HeightRequest="3" />
</StackLayout>

<Label Text="No Style whatsoever" />

<Label Text="Body Style"
Style="{DynamicResource BodyStyle}" />

<Label Text="Title Style"
Style="{DynamicResource TitleStyle}" />

<Label Text="Subtitle Style"
Style="{DynamicResource SubtitleStyle}" />

<!l-- Uses style derived from device style. -->
<Label Text="New Subtitle Style"
Style="{StaticResource newSubtitleStyle}" />

<Label Text="Caption Style"
Style="{DynamicResource CaptionStyle}" />

<Label Text="List Item Text Style"
Style="{DynamicResource ListItemTextStyle}" />

<Label Text="List Item Detail Text Style"
Style="{DynamicResource ListItemDetailTextStyle}" />
</StackLayout>

<!-- Device styles set in code -->
<StackLayout x:Name="codelLabelStack">

279

Chapter 12 Styles

<StackLayout HorizontalOptions="Start">
<Label Text="Device styles set in code:" />
<BoxView Color="Accent" HeightRequest="3" />
</StackLayout>
</StackLayout>

</StackLayout>
</Scrol1View>
</ContentPage>

280

The stackLayout contains two Label and BoxView combinations (one at the top and one at the bot-
tom) to display underlined headers. Following the first of these headers, Label elements reference the
device styles with DynamicResource. The new subtitle style is defined in the Resources dictionary for

the page.

The code-behind file accesses the device styles by using the properties in the Device.Styles class
and creates a new style by deriving from subtitlestyle:

public partial class DeviceStyleslListPage : ContentPage

{

public DeviceStylesListPage()

{

InitializeComponent();

var styleltems = new[]

{

new { style = (Style)null, name = "No style whatsoever" },

new { style = Device.Styles.BodyStyle, name = "Body Style" },

new { style = Device.Styles.TitleStyle, name = "Title Style" },

new { style = Device.Styles.SubtitleStyle, name = "Subtitle Style" },

// Derived style
new { style = new Style(typeof(Label))
{
BaseResourceKey = Device.Styles.SubtitleStyleKey,
Setters =
{
new Setter
{
Property = Label.TextColorProperty,
Value = Color.Accent
1,
new Setter
{
Property = Label.FontAttributesProperty,
Value = FontAttributes.Italic

}
}, name = "New Subtitle Style" },

new { style = Device.Styles.CaptionStyle, name = "Caption Style" },
new { style Device.Styles.ListItemTextStyle, name = "List Item Text
new { style Device.Styles.ListItemDetailTextStyle,

name = "List Item Detail Text Style" },

Style" },

Chapter 12 Styles 281

b
foreach (var styleItem in styleltems)
{
codelLabelStack.Children.Add(new Label
{
Text = styleltem.name,
Style = styleIltem.style
s
}

The code and XAML result in identical styles, of course, but each platform implements these device
styles in a different way:

Carrier ¥ 322PM

] e styles set with DynamicResource
Device styles set with DynamicResource

No Style whatsoever No Style whatsoever

Body Style o Body Style

Title Style . .

Subtitle Style ' f T Itl e Style
New Subtitle Style

Caption Style ‘_ : . - SU bt|t|e Style
List Item Text Style New Subtitle Styie

List Item Detail Text Style
Caption Style

List Item Text Style
List Item Datail Text Style

Device styles set in code:
No style whatsoever
Body Style

Title Style "
Subtitle Style | No style whatsoever
New Subtitle Style S . | Body Style

Caption Style

List Item Text Style e Title Style

List Item Detail Text Style

Device styles set in code:

The dynamic nature of these styles is easily demonstrated on iOS: While the DeviceStyles program
is running, tap the Home button and run Settings. Pick the General item, then Accessibility, and
Larger Text. A slider is available to make text smaller or larger. Change that slider, double tap the
Home button to show the current applications, and select DeviceStyles again. You'll see the text set
from device styles (or the styles that derive from device styles) change size, but none of the unstyled
text in the application changes size. New objects have replaced the device styles in the dictionary.

The dynamic nature of device styles is not quite as obvious on Android because changes to the
Font size item of the Display section in Settings affect all font sizes in a Xamarin.Forms program.

On a Windows 10 Mobile device, the Text scaling item in the Ease of Access and More Options
section of Settings also affects all text.

Chapter 12 Styles 282

The next chapter includes a program that demonstrates how to make a little e-book reader that lets
you read a chapter of Alice in Wonderland. This program uses device styles for controlling the format-
ting of all the text, including the book and chapter titles.

But what this little e-book reader also includes are illustrations, and that requires an exploration into
the subject of bitmaps.

Chapter 13
Bitmaps

The visual elements of a graphical user interface can be roughly divided between elements used for
presentation (such as text) and those capable of interaction with the user, such as buttons, sliders, and
list boxes.

Text is essential for presentation, but pictures are often just as important as a way to supplement
text and convey crucial information. The web, for example, would be inconceivable without pictures.
These pictures are often in the form of rectangular arrays of picture elements (or pixels) known as
bitmaps.

Just as a view named Label displays text, a view named Image displays bitmaps. The bitmap for-
mats supported by iOS, Android, and the Windows Runtime are a little different, but if you stick to
JPEG, PNG, GIF, and BMP in your Xamarin.Forms applications, you'll probably not experience any
problems.

Image defines a Source property that you set to an object of type ImageSource, which references
the bitmap displayed by Image. Bitmaps can come from a variety of sources, so the ImageSource class
defines four static creation methods that return an TmageSource object:

e TImageSource.FromUri for accessing a bitmap over the web.

e TImageSource.FromResource for a bitmap stored as an embedded resource in the application
PCL.

e TImageSource.FromFile for a bitmap stored as content in an individual platform project.
e ImageSource.FromStream for loading a bitmap by using a .NET Stream object.

ImageSource also has three descendant classes, named UriImageSource, FileImageSource,
and streamImageSource, that you can use instead of the first, third, and fourth static creation meth-
ods. Generally, the static methods are easier to use in code, but the descendant classes are sometimes
required in XAML.

In general, you'll use the ImageSource.FromUri and ImageSource.FromResource methods to
obtain platform-independent bitmaps for presentation purposes and ImageSource.FromFile to load
platform-specific bitmaps for user-interface objects. Small bitmaps play a crucial role in MenuTtem and
ToolbarItem objects, and you can also add a bitmap to a Button.

This chapter begins with the use of platform-independent bitmaps obtained from the Image-
Source.FromUri and ImageSource.FromResource methods. It then explores some uses of the Im-
ageSource.FromStream method. The chapter concludes with the use of ImageSource.FromFile to
obtain platform-specific bitmaps for toolbars and buttons.

Chapter 13 Bitmaps 284

Platform-independent bitmaps

Here's a code-only program named WebBitmapCode with a page class that uses Tmage-
Source.FromUri to access a bitmap from the Xamarin website:

public class WebBitmapCodePage : ContentPage

{
public WebBitmapCodePage()
{
string uri = "https://developer.xamarin.com/demo/IMG_1415.JPG";
Content = new Image
{
Source = ImageSource.FromUri(new Uri(uri))
b
}
}

If the URI passed to TmageSource.FromUri does not point to a valid bitmap, no exception is raised.

Even this tiny program can be simplified. ImageSource defines an implicit conversion from string
or Uri to an ImageSource object, so you can set the string with the URI directly to the Source prop-
erty of Image:

public class WebBitmapCodePage : ContentPage

{
public WebBitmapCodePage()
{
Content = new Image
{
Source = "https://developer.xamarin.com/demo/IMG_1415.JPG"
};
}
}

Or, to make it more verbose, you can set the Source property of Tmage to a UriTmageSource ob-
ject with its Uri property set to a Uri object:

public class WebBitmapCodePage : ContentPage

{
public WebBitmapCodePage()
{
Content = new Image
{
Source = new UriImageSource
{
Uri = new Uri("https://developer.xamarin.com/demo/IMG_1415.IPG")
}
b
}

Chapter 13 Bitmaps 285

The UriImageSource class might be preferred if you want to control the caching of web-based im-
ages. The class implements its own caching that uses the application’s private storage area available on
each platform. UriImageSource defines a CachingEnabled property that has a default value of
true and a CachingVvalidity property of type TimeSpan that has a default value of one day. This
means that if the image is reaccessed within a day, the cached image is used. You can disable caching
entirely by setting CachingEnabled to false, or you can change the caching expiry time by setting
the CachingVvalidity property to another TimeSpan value.

Regardless which way you do it, by default the bitmap displayed by the Tmage view is stretched to
the size of its container—the ContentPage in this case—while respecting the bitmap's aspect ratio:

This bitmap is square, so blank areas appear above and below the image. As you turn your phone or
emulator between portrait and landscape mode, a rendered bitmap can change size, and you'll see
some blank space at the top and bottom or the left and right, where the bitmap doesn't reach. You can
color that area by using the BackgroundColor property that Image inherits from visualElement.

The bitmap referenced in the WebBitmapCode program is 4,096 pixels square, but a utility is in-
stalled on the Xamarin website that lets you download a much smaller bitmap file by specifying the URI
like so:

Content = new Image

{
Source = "https://developer.xamarin.com/demo/IMG_1415.JPG?width=25"
};

Chapter 13 Bitmaps 286

Now the downloaded bitmap is 25 pixels square, but it is again stretched to the size of its container.
Each platform implements an interpolation algorithm in an attempt to smooth the pixels as the image
is expanded to fit the page:

However, if you now set HorizontalOptions and VerticalOptions on the Tmage to Center—
or put the Tmage element in a StackLayout—this 25-pixel bitmap collapses into a very tiny image.
This phenomenon is discussed in more detail later in this chapter.

You can also instantiate an Image element in XAML and load a bitmap from a URL by setting the
Source property directly to a web address. Here's the XAML file from the WebBitmapXaml program:
<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"

xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="WebBitmapXaml.WebBitmapXamlPage">

<Image Source="https://developer.xamarin.com/demo/IMG_3256.JPG" />
</ContentPage>
A more verbose approach involves explicitly instantiating a UriImageSource object and setting the
Uri property:

<Image>
<Image.Source>
<UriImageSource Uri="https://developer.xamarin.com/demo/IMG_3256.]PG" />
</Image.Source>
</Image>

Regardless, here’s how it looks on the screen:

Chapter 13 Bitmaps 287

Fit and fill

If you set the BackgroundColor property of Image on any of the previous code and XAML examples,
you'll see that Image actually occupies the entire rectangular area of the page. Image defines an as-
pect property that controls how the bitmap is rendered within this rectangle. You set this property to
a member of the Aspect enumeration:

e AspectFit — the default
e Fill — stretches without preserving the aspect ratio
e AspectFill — preserves the aspect ratio but crops the image

The default setting is the enumeration member Aspect . AspectFit, meaning that the bitmap fits
into its container’'s boundaries while preserving the bitmap's aspect ratio. As you've already seen, the
relationship between the bitmap’s dimensions and the container’s dimensions can result in background
areas at the top and bottom or at the right and left.

Try this in the WebBitmapXaml project:

<Image Source="https://developer.xamarin.com/demo/IMG_3256.JPG"
Aspect="Fill1" />

Now the bitmap is expanded to the dimensions of the page. This results in the picture being stretched
vertically, so the car appears rather short and stocky:

Chapter 13 Bitmaps 288

W4 0139

If you turn the phone sideways, the image is stretched horizontally, but the result isn't quite as extreme
because the picture’s aspect ratio is somewhat landscape to begin with.

The third option is AspectFill:

<Image Source="https://developer.xamarin.com/demo/IMG_3256.JPG"
Aspect="AspectFill" />

With this option the bitmap completely fills the container, but the bitmap’s aspect ratio is maintained
at the same time. The only way this is possible is by cropping part of the image, and you'll see that the
image is indeed cropped, but in a different way on the three platforms. On iOS and Android, the image
is cropped on either the top and bottom or the left and right, leaving only the central part of the bit-
map visible. On the Windows Runtime platforms, the image is cropped on the right or bottom, leaving
the upper-left corner visible:

Chapter 13 Bitmaps 289

Embedded resources

Accessing bitmaps over the Internet is convenient, but sometimes it's not optimum. The process re-
quires an Internet connection, an assurance that the bitmaps haven't been moved, and some time for
downloading. For fast and guaranteed access to bitmaps, they can be bound right into the application.

If you need access to images that are not platform specific, you can include bitmaps as embedded
resources in the shared Portable Class Library project and access them with the TmageSource.From-
Resource method. The ResourceBitmapCode solution demonstrates how to do it.

The ResourceBitmapCode PCL project within this solution has a folder named Images that con-
tains two bitmaps, named ModernUserlnterface.jpg (a very large bitmap) and ModernUserInter-
face256.jpg (the same picture but with a 256-pixel width).

When adding any type of embedded resource to a PCL project, make sure to set the Build Action
of the resource to EmbeddedResource. This is crucial.

In code, you set the source property of an Tmage element to the TmageSource object returned
from the static ImageSource.FromResource method. This method requires the resource ID. The re-
source ID consists of the assembly name followed by a period, then the folder name followed by an-
other period, and then the filename, which contains another period for the filename extension. For this
example, the resource ID for accessing the smaller of the two bitmaps in the ResourceBitmapCode
program is:

ResourceBitmapCode.Images.ModernUserInterface256.jpg

Chapter 13 Bitmaps 290

The code in this program references that smaller bitmap and also sets the HorizontalOptions
and VerticalOptions on the Image element to Center:

public class ResourceBitmapCodePage : ContentPage

{
public ResourceBitmapCodePage()
{
Content = new Image
{
Source = ImageSource.FromResource(
"ResourceBitmapCode.Images.ModernUserInterface256.jpg"),
VerticalOptions = LayoutOptions.Center,
HorizontalOptions = LayoutOptions.Center
b
}
}

As you can see, the bitmap in this instance is not stretched to fill the page:

A bitmap is not stretched to fill its container if:

e it is smaller than the container, and

e thevVerticalOptions and HorizontalOptions properties of the Image element are not set
to Fill, or if Image is a child of a StackLayout.

If you comment out the verticalOptions and HorizontalOptions settings, or if you reference
the large bitmap (which does not have the "256" at the end of its filename), the image will again
stretch to fill the container.

Chapter 13 Bitmaps 291

When a bitmap is not stretched to fit its container, it must be displayed in a particular size. What is
that size?

On iOS and Android, the bitmap is displayed in its pixel size. In other words, the bitmap is rendered
with a one-to-one mapping between the pixels of the bitmap and the pixels of the video display. The
iPhone 6 simulator used for these screenshots has a screen width of 750 pixels, and you can see that
the 256-pixel width of the bitmap is about one-third that width. The Android phone here is a Nexus 5,
which has a pixel width of 1080, and the bitmap is about one-quarter that width.

On the Windows Runtime platforms, however, the bitmap is displayed in device-independent
units—in this example, 256 device-independent units. The Nokia Lumia 925 used for these screenshots
has a pixel width of 768, which is approximately the same as the iPhone 6. However, the screen width
of this Windows 10 Mobile phone in device-independent units is 341, and you can see that the ren-
dered bitmap is much wider than on the other platforms.

This discussion on sizing bitmaps continues in the next section.

How would you reference a bitmap stored as an embedded resource from XAML? Unfortunately,
there is no ResourceImageSource class. If there were, you would probably try instantiating that class
in XAML between Image.Source tags. But that's not an option.

You might consider using x: FactoryMethod to call ImageSource.FromResource, but that won't
work. As currently implemented, the ImageSource.FromResource method requires that the bitmap
resource be in the same assembly as the code that calls the method. When you use x:FactoryMethod
to call ImageSource.FromResource, the call is made from the Xamarin.Forms.Xaml assembly.

What will work is a very simple XAML markup extension. Here's one in a project named Stacked-
Bitmap:

namespace StackedBitmap

{
[ContentProperty ("Source")]
public class ImageResourceExtension : IMarkupExtension
{
public string Source { get; set; }
public object ProvideValue (IServiceProvider serviceProvider)
{
if (Source == null)
return null;
return ImageSource.FromResource(Source);
}
}
}

ImageResourceExtension has a single property named Source that you set to the resource ID. The
ProvideValue method simply calls ImageSource.FromResource with the Source property. As is
common for single-property markup extensions, Source is also the content property of the class. That

Chapter 13 Bitmaps 292

means that you don't need to explicitly include “Source=" when you're using the curly-braces syntax
for XAML markup extensions.

But watch out: You cannot move this ImageResourceExtension class to a library such as Xama-
rin.FormsBook.Toolkit. The class must be part of the same assembly that contains the embedded re-
sources you want to load, which is generally the application’s Portable Class Library.

Here's the XAML file from the StackedBitmap project. An Tmage element shares a StackLayout
with two Label elements:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:local="clr-namespace:StackedBitmap "
x:Class="StackedBitmap.StackedBitmapPage">

<StackLayout>
<Label Text="320 x 240 Pixel Bitmap"
FontSize="Medium"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center" />

<Image Source="{local:ImageResource StackedBitmap.Images.Sculpture_320x240.jpg}"
BackgroundColor="Aqua"
SizeChanged="0nImageSizeChanged" />

<Label x:Name="Tlabel"
FontSize="Medium"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center" />
</StackLayout>
</ContentPage>

The 1ocal prefix refers to the stackedBitmap namespace in the StackedBitmap assembly. The
Source property of the Image element is set to the ImageResource markup extension, which refer-
ences a bitmap stored in the Images folder of the PCL project and flagged as an EmbeddedResource.
The bitmap is 320 pixels wide and 240 pixels high. The Image also has its BackgroundColor property
set; this will allow us to see the entire size of Image within the stackLayout.

The Image element has its SizeChanged event set to a handler in the code-behind file:

public partial class StackedBitmapPage : ContentPage

{
public StackedBitmapPage()
{
InitializeComponent();
}

void OnImageSizeChanged(object sender, EventArgs args)
{
Image image = (Image)sender;
Tlabel.Text = String.Format("Render size = {0:F0} x {1:FO}",
image.Width, image.Height);

Chapter 13 Bitmaps 293

The size of the Image element is constrained vertically by the stackLayout, so the bitmap is dis-
played in its pixel size (on iOS and Android) and in device-independent units on Windows Phone. The
Label displays the size of the Image element in device-independent units, which differ on each
platform:

320 x 240 Pixel Bitmap

Rendered size = 375 x 120

Rendered size = 341 x 240

The width of the Image element displayed by the bottom Label includes the aqua background and
equals the width of the page in device-independent units. You can use Aspect settings of Fi11 or As-
pectFill to make the bitmap fill that entire aqua area.

If you prefer that the size of the Image element be the same size as the rendered bitmap in device-
independent units, you can set the HorizontalOptions property of the Image to something other
than the default value of Fi11:

<Image Source="{local:ImageResource StackedBitmap.Images.Sculpture_320x240.jpg}"
HorizontalOptions="Center"
BackgroundColor="Aqua"
SizeChanged="0nImageSizeChanged" />

Now the bottom Label displays only the width of the rendered bitmap. Settings of the Aspect prop-
erty have no effect:

Chapter 13 Bitmaps 294

0 Pixel Bitmap

320 x 240 Pixel Bitmap

Rendered size = 160 x 120

Rendered size = 320 x 240

Let's refer to this rendered Image size as its natural size because it is based on the size of the bit-
map being displayed.

The iPhone 6 has a pixel width of 750 pixels, but as you discovered when running the WhatSize
program in Chapter 5, applications perceive a screen width of 375. There are two pixels to the device-
independent unit, so a bitmap with a width of 320 pixels is displayed with a width of 160 units.

The Nexus 5 has a pixel width of 1080, but applications perceive a width of 360, so there are three
pixels to the device-independent unit, as the Image width of 107 units confirms.

On both iOS and Android devices, when a bitmap is displayed in its natural size, there is a one-to-
one mapping between the pixels of the bitmap and the pixels of the display. On Windows Runtime de-
vices, however, that's not the case. The Nokia Lumia 925 used for these screenshots has a pixel width of
768. When running the Windows 10 Mobile operating system, there are 2.25 pixels to the device-inde-
pendent unit, so applications perceive a screen width of 341. But the 320 x 240 pixel bitmap is dis-
played in a size of 320 x 240 device-independent units.

This inconsistency between the Windows Runtime and the other two platforms is actually beneficial
when you're accessing bitmaps from the individual platform projects. As you'll see, iOS and Android
include a feature that lets you supply different sizes of bitmaps for different device resolutions. In ef-
fect, this allows you to specify bitmap sizes in device-independent units, which means that Windows
devices are consistent with those schemes.

But when using platform-independent bitmaps, you'll probably want to size the bitmaps consist-
ently on all three platforms, and that requires a deeper plunge into the subject.

Chapter 13 Bitmaps 295

More on sizing

So far, you've seen two ways to size Image elements:

If the Image element is not constrained in any way, it will fill its container while maintaining the bit-
map'’s aspect ratio, or fill the area entirely if you set the Aspect property to Fill or AspectFill.

If the bitmap is less than the size of its container and the Image is constrained horizontally or verti-
cally by setting HorizontalOptions or VerticalOptions to something other than Fi11, or if the
Image is put in a StackLayout, the bitmap is displayed in its natural size. That's the pixel size on iOS
and Android devices, but the size in device-independent units on Windows devices.

You can also control size by setting WidthRequest or HeightRequest to an explicit dimension in
device-independent units. However, there are some restrictions.

The following discussion is based on experimentation with the StackedBitmap sample. It pertains
to Image elements that are vertically constrained by being a child of a vertical sStackLayout or having
the verticalOptions property set to something other than ri11. The same principles apply to an
Image element that is horizontally constrained.

If an Image element is vertically constrained, you can use widthRequest to reduce the size of the
bitmap from its natural size, but you cannot use it to increase the size. For example, try setting
WidthRequest to 100:
<Image Source="{local:ImageResource StackedBitmap.Images.Sculpture_320x240.jpg}"

WidthRequest="100"
HorizontalOptions="Center"

BackgroundColor="Aqua"
SizeChanged="0nImageSizeChanged" />

The resultant height of the bitmap is governed by the specified width and the bitmap’s aspect ratio,
so now the Image is displayed with a size of 100 x 75 device-independent units on all three platforms:

Chapter 13 Bitmaps 296

% O Wa 0307

320 x 240 Pixel Bitmap

320 x 240 Pixel Bitmap

Rendered size = 100 x 75

Rendered size = 100 x 75

The HorizontalOptions setting of Center does not affect the size of the rendered bitmap. If you
remove that line, the Image element will be as wide as the screen (as the aqua background color will
demonstrate), but the bitmap will remain the same size.

You cannot use WidthRequest to increase the size of the rendered bitmap beyond its natural size.
For example, try setting WidthRequest to 1000:

<Image Source="{local:ImageResource StackedBitmap.Images.Sculpture_320x240.jpg}"
WidthRequest="1000"
HorizontalOptions="Center"
BackgroundColor="Aqua"
SizeChanged="0nImageSizeChanged" />

Even with HorizontalOptions set to Center, the resultant Image element is now wider than the
rendered bitmap, as indicated by the background color:

Chapter 13 Bitmaps 297

% @ ®a 0370

320 x 240 Pixel Bitmap

0 Pixel Bitmap

320 x 240 Pixel Bitmap

Rendered size = 375 x 120

Rendered size = 341 x 240

But the bitmap itself is displayed in its natural size. The vertical stackLayout is effectively preventing
the height of the rendered bitmap from exceeding its natural height.

To overcome that constraint of the vertical stackLayout, you need to set HeightRequest. How-
ever, you'll also want to leave HorizontalOptions at its default value of Fi11. Otherwise, the Hori-
zontalOptions setting will prevent the width of the rendered bitmap from exceeding its natural size.

Just as with widthRequest, you can set HeightRequest to reduce the size of the rendered bit-
map. The following code sets HeightRequest to 100 device-independent units:
<Image Source="{local:ImageResource StackedBitmap.Images.Sculpture_320x240.jpg}"
HeightRequest="100"

BackgroundColor="Aqua"
SizeChanged="0nImageSizeChanged" />

Notice also that the HorizontalOptions setting has been removed.

The rendered bitmap is now 100 device-independent units high with a width governed by the as-
pect ratio. The Image element itself stretches to the sides of the StackLayout:

Chapter 13 Bitmaps 298

%0 Wa 0335

320 x 240 Pixel Bitmap

Rendered size = 375 x 100

In this particular case, you can set HorizontalOptions to Center without changing the size of the
rendered bitmap. The Image element will then be the size of the bitmap (133 x 100), and the aqua
background will disappear.

It's important to leave HorizontalOptions at its default setting of Fi11 when setting the
HeightRequest to a value greater than the bitmap’s natural height, for example 250:
<Image Source="{local:ImageResource StackedBitmap.Images.Sculpture_320x240.jpg}"
HeightRequest="250"

BackgroundColor="Aqua"
SizeChanged="0nImageSizeChanged" />

Now the rendered bitmap is larger than its natural size:

Chapter 13 Bitmaps 299

0 w403

320 x 240 Pixel Bitmap

Rendered size = 375 x 250

Rendered size = 341 x 250

However, this technique has a built-in danger, which is revealed when you set the HeightRequest
to 400:

<Image Source="{local:ImageResource StackedBitmap.Images.Sculpture_320x240.jpg}"
HeightRequest="400"
BackgroundColor="Aqua"
SizeChanged="0nImageSizeChanged" />

Here's what happens: The Image element does indeed get a height of 400 device-independent units.
But the width of the rendered bitmap in that Image element is limited by the width of the screen,
which means that the height of the rendered bitmap is less than the height of the Image element:

Chapter 13 Bitmaps 300

322PM

320 x 240 Pixel Bitmap

Rendered size = 375 x 400

In a real program you probably wouldn’t have the BackgroundColor property set, and instead a
wasteland of blank screen will occupy the area at the top and bottom of the rendered bitmap.

What this implies is that you should not use HeightRequest to control the size of bitmaps in a ver-
tical stackLayout unless you write code that ensures that HeightRequest is limited to the width of
the stackLayout times the ratio of the bitmap's height to width.

If you know the pixel size of the bitmap that you'll be displaying, one easy approach is to set
WidthRequest and HeightRequest to that size:

<Image Source="{local:ImageResource StackedBitmap.Images.Sculpture_320x240.jpg}"
WidthRequest="320"
HeightRequest="240"
HorizontalOptions="Center"
BackgroundColor="Aqua"
SizeChanged="0nImageSizeChanged" />

Now the bitmap is displayed in that size in device-independent units on all the platforms:

Chapter 13 Bitmaps 301

320 x 240 Pixel Bitmap

Rendered size = 320 x 240

Rendered size = 320 x 240

The problem here is that the bitmap is not being displayed at its optimal resolution. Each pixel of the
bitmap occupies at least two pixels of the screen, depending on the device.

If you want to size bitmaps in a vertical stackLayout so that they look approximately the same size
on a variety of devices, use WidthRequest rather than HeightRequest. You've seen that WidthRe-
quest in a vertical StackLayout can only decrease the size of bitmaps. This means that you should
use bitmaps that are larger than the size at which they will be rendered. This will give you a more opti-
mal resolution when the image is sized in device-independent units. You can size the bitmap by using
a desired metrical size in inches together with the number of device-independent units to the inch for
the particular device, which we found to be 160 for these three devices.

Here's a project very similar to StackedBitmap called DevicelndBitmapSize. It's the same bitmap
but now 1200 x 900 pixels, which is wider than the portrait-mode width of even high-resolution 1920
x 1080 displays. The platform-specific requested width of the bitmap corresponds to 1.5 inches:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xaml1"
xmlns:local="clr-namespace:DeviceIndBitmapSize"
x:Class="DeviceIndBitmapSize.DevicelndBitmapSizePage">

<StackLayout>
<Label Text="1200 x 900 Pixel Bitmap"
FontSize="Medium"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center" />

<!-- 1.5 inch image width -->
<Image Source="{local:ImageResource DeviceIndBitmapSize.Images.Sculpture_1200x900.jpg}"
WidthRequest="240"

Chapter 13 Bitmaps 302

HorizontalOptions="Center"
SizeChanged="0OnImageSizeChanged" />
</Image>

<Label x:Name="Tlabel"
FontSize="Medium"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center" />
</StackLayout>
</ContentPage>

If the preceding analysis about sizing is correct and all goes well, this bitmap should look approxi-
mately the same size on all three platforms relative to the width of the screen, as well as provide higher
fidelity resolution than the previous program:

el Bignap 1200 x 900 Pixel Bitmap

1200 x 900 Pixel Bitmap

Rendered size = 240 x 180

Rendered size = 240 x 180

With this knowledge about sizing bitmaps, it is now possible to make a little e-book reader with pic-
tures, because what is the use of a book without pictures?

This e-book reader displays a scrollable stackLayout with the complete text of Chapter 7 of Lewis
Carroll's Alice’s Adventures in Wonderland, including three of John Tenniel's original illustrations. The
text and illustrations were downloaded from the University of Adelaide’s website. The illustrations are
included as embedded resources in the MadTeaParty project. They have the same names and sizes as
those on the website. The names refer to page numbers in the original book:

e imagell3,jpg — 709 x 553
e imagel22jpg — 485 x 545

e imagel29.jpg — 670 x 596

Chapter 13 Bitmaps 303

Recall that the use of WidthRequest for Image elements in a StackLayout can only shrink the size of
rendered bitmaps. These bitmaps are not wide enough to ensure that they will all shrink to a proper
size on all three platforms, but it's worthwhile examining the results anyway because this is much closer
to a real-life example.

The MadTeaParty program uses an implicit style for Image to set the WwidthRequest property to a
value corresponding to 1.5 inches. Just as in the previous example, this value is 240.

For the three devices used for these screenshots, this width corresponds to:
e 480 pixels on the iPhone 6

e 720 pixels on the Android Nexus 5

e 540 pixels on the Nokia Lumia 925 running Windows 10 Mobile

This means that all three images will shrink in size on the iPhone 6, and they will all have a rendered
width of 240 device-independent units.

However, none of the three images will shrink in size on the Nexus 5 because they all have narrower
pixel widths than the number of pixels in 1.5 inches. The three images will have a rendered width of
(respectively) 236, 162, and 223 device-independent units on the Nexus 5. (That's the pixel width di-
vided by 3.)

On the Windows 10 Mobile device, two will shrink and one will not.

Let's see if the predictions are correct. The XAML file includes a BackgroundColor setting on the
root element that colors the entire page white, as is appropriate for a book. The style definitions are
confined to a Resources dictionary in the stackLayout. A style for the book title is based on the de-
vice TitleStyle but with black text and centered, and two implicit styles for Label and Image serve
to style most of the Label elements and all three Tmage elements. Only the first and last paragraphs of
the chapter’s text are shown in this listing of the XAML file:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:sys="clr-namespace:System;assembly=mscorlib"
xmlns:local="clr-namespace:MadTeaParty"
x:Class="MadTeaParty.MadTeaPartyPage"
BackgroundColor="White">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0s="5, 20, 5, 0"
Android="5, 0"
WinPhone="5, 0" />
</ContentPage.Padding>

<Scrol1View>
<StackLayout Spacing="10">
<StackLayout.Resources>

Chapter 13 Bitmaps

<ResourceDictionary>
<Style x:Key="titlelLabel"
TargetType="Label"
BaseResourceKey="TitleStyle">

<Setter Property="TextColor" Value="Black"
<Setter Property="HorizontalTextAlignment"

</Style>

<!-- Implicit styles -->
<Style TargetType="Label"
BaseResourceKey="BodyStyle">

<Setter Property="TextColor" Value="Black"

</Style>

<Style TargetType="Image">

/>

Value="Center" />

/>

<Setter Property="WidthRequest" Value="240" />

</Style>

<!-- 1/4 inch indent for poetry -->

<Thickness x:Key="poemIndent">40, 0, 0, O</Thickness>

</ResourceDictionary>
</StackLayout.Resources>

304

<!-- Text and images from http://ebooks.adelaide.edu.au/c/carroll/lewis/alice/ -->

<StackLayout Spacing="0">
<Label Text="Alice’s Adventures in Wonderland"
Style="{DynamicResource titlelLabel}"
FontAttributes="Italic" />

<Label Text="by Lewis Carroll1"
Style="{DynamicResource titlelLabel}" />
</StackLayout>

<Label Style="{DynamicResource SubtitleStyle}"
TextColor="Black"
HorizontalTextAlignment="Center">
<Label.FormattedText>
<FormattedString>

</FormattedString>
</Label.FormattedText>
</Label>

<Label Text=
"There was a table set out under a tree in front of the
house, and the March Hare and the Hatter were having tea at
it: a Dormouse was sitting between them, fast asleep, and
the other two were using it as a cushion, resting their
elbows on it, and talking over its head. ‘Very uncomfortable
for the Dormouse,’ thought Alice; ‘only, as it’s asleep, I
suppose it doesn’t mind.’" />

Chapter 13 Bitmaps 305

<Label>
<Label.FormattedText>
<FormattedString>
<Span Text=
"Once more she found herself in the Tong hall, and close to
the Tittle glass table. ‘Now, I’11 manage better this time,’
she said to herself, and began by taking the 1ittle golden
key, and unlocking the door that led into the garden. Then
she went to work nibbling at the mushroom (she had kept a
piece of it in her pocket) till she was about a foot high:
then she walked down the 1ittle passage: and " />

<Span Text=
— she found herself at last in the beautiful garden,
among the bright flower-beds and the cool fountains." />
</FormattedString>
</Label.FormattedText>
</Label>
</StackLayout>
</Scrol1View>

</ContentPage>

The three Image elements simply reference the three embedded resources and are given a setting
of the WwidthRequest property through the implicit style:

<Image Source="{local:ImageResource MadTeaParty.Images.imagell3.jpg}" />
<Image Source="{local:ImageResource MadTeaParty.Images.imagel22.jpg}" />
<Image Source="{local:ImageResource MadTeaParty.Images.imagel?29.jpg}" />

Here's the first picture:

Chapter 13 Bitmaps

“You might just as well say,” added the
Dormouse, who seemed to be talking in his
sleep, ‘that | breathe when | sleep” is the
same thing as *I sleap when | breathe™"

‘It is the same thing with you, said the Hatter,
and here the conversation drapped, and the
party sat silent for a minute, while Alice thought
over all she could remsmber about ravens and
writing-desks, which wasn't much,

The Hatter was the first to break the silence.
‘What day of the month s it?' he said, turning
to Alice: he had taken his watch out of his
pocket, and was looking at it uneasily, shaking
it every now and then, and holding it to his ear.

Alice considered a little, and then said ‘The
fourth.’

“Two days wrong! sighed the Hatter. *| told you
butter wouldn't suit the works!" he added

=)
“You might just as well say, added the March Hare, that
“Ilike what | get”is the same thing as "l get what | ke

“Vou might just as well say’ added the Dormouss, who
seemed to be talking in his sleep, that ' breathe when |
sleep” is the samelhlng as " sleep when | breathe®

‘It s the same thing with you, said the Hatter, and here
the conversation dropped, and the party sat silent for a
minute, while Alice thought cver all she could remember
about ravens and writing-desks, which wasn't much,

The Hatter was the first o break the silence. What day
of the month is it he said, turning to Alice: he had taken
his watch out of his packet, and was looking at it
uneasily, shaking it every now and then, and holding it to
his ear.

Alice considered a little, and then said The fourth:
“Twao days wrong! sighed the Hatter. 1 tokd you butter

wouldn't suit the works!’ he added looking angrily at the
March Hare

“You might just as well say," added the Dormouse,
who seemed to be talking in his sleep, ‘that "I
breathe when | sleep” is the same thing as “I sleep
when | breathe*!'

‘It is the same thing with you, said the Hatter, and
here the conversation dropped, and the party sat
silent for a minute, while Alice thought aver all
she could remember about ravens and writing-
desks, which wasn't much,

The Hatter was the first to break the silence.
"What day of the month is it?" he said, turning to
Alice: he had taken his watch out of his pocket,
and was looking at it uneasily, shaking it every
now and then, and holding it to his ear.

Alice considered a little, and then said ‘The
fourth.

306

It's fairly consistent among the three platforms, even though it's displayed in its natural width of 709
pixels on the Nexus 5, but that's very close to the 720 pixels that a width of 240 device-independent

units implies.

The difference is much greater with the second image:

Hatter, ‘when the Queen jumped up and
bawled out, “He's murdering the time! Off with
his head!™

‘How dreadfully savage!' exclaimed Alice.
‘And ever since that,’ the Hatter went onin a

mournful tone, “he won't do a thing | ask! It's
always six o'clock now.”

A bright idea came into Alice's head. 'Is that
the reason so many tea-things are put out
here?" she asked.

Yes, that's it,' said the Hatter with a Sigh, ‘it's
always tea-time, and we've no time to wash the
things between whiles.’

“Then you keep moving round, | suppose?” sald
lice.

% W4 043
Twinkle, twinkle —~

Here the Dormouse shook tself, and began singing in Its
sleep Twinkle, twinkle, twinkle, twinkle —* and went on
solong that they had to pinch it to make it stop.

“Well, 1'd hardly finished the first verse, said the Hatter

“when the Queen jumped up and bawled out, "He's
murdering the time! Off with his head!™

*How dreadfully savage! exclaimed Alice.
“And ever since that; the Hatter went onin a moumful

tone, ‘he won't do a thing | ask! It's always six o'clock
now

A bright idea came into Alice’s head. ‘Is that the reason
50 many tea-things are put out here? she asked.

“Yes, that's it, said the Hatter with a sigh: ‘it's always tea-
time, and we've no time to wash the things between
whil

“Then you keep moving round, | suppase? said Alice

“Well, I'd hardly finished the first verse,’ said the
Hatter, ‘when the Queen jumped up and bawled
out, “He's murdering the time! Off with his head!™

"How dreadfully savage!" exclaimed Alice.

*And ever since that,” the Hatter went on in a
mournful tone, ‘he won't do a thing | ask! It's
always six o'clock now.”

A bright idea came into Alice’s head. ‘Is that the
reason so many tea-things are put out here?' she
asked.

‘Yes, that's it," said the Hatter with a sigh: ‘it's

This is displayed in its pixel size on the Nexus 5, which corresponds to 162 device-independent units,
but is displayed with a width of 240 units on the iPhone 6 and the Nokia Lumia 925.

Chapter 13 Bitmaps 307

Although the pictures don't look bad on any of the platforms, getting them all about the same size
would require starting out with larger bitmaps.

Browsing and waiting

Another feature of Image is demonstrated in the ImageBrowser program, which lets you browse the
stock photos used for some of the samples in this book. As you can see in the following XAML file, an
Image element shares the screen with a Label and two Button views. Notice that a Property-
Changed handler is set on the Image. You learned in Chapter 11, “The bindable infrastructure,” that
the PropertyChanged handler is implemented by BindableObject and is fired whenever a bindable
property changes value.

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ImageBrowser.ImageBrowserPage">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0s="0, 20, 0, 0" />
</ContentPage.Padding>

<StackLayout>
<Image x:Name="image"
VerticalOptions="CenterAndExpand"
PropertyChanged="0OnImagePropertyChanged" />

<Label x:Name="filenamelLabel"
HorizontalOptions="Center" />

<ActivityIndicator x:Name="activityIndicator" />

<StackLayout Orientation="Horizontal">
<Button x:Name="prevButton"
Text="Previous"
IsEnabled="false"
HorizontalOptions="CenterAndExpand"
Clicked="0nPreviousButtonClicked" />

<Button x:Name="nextButton"
Text="Next"
IsEnabled="false"
HorizontalOptions="CenterAndExpand"
Clicked="0OnNextButtonClicked" />
</StackLayout>
</StackLayout>
</ContentPage>

Also on this page is an ActivityIndicator. You generally use this element when a program is
waiting for a long operation to complete (such as downloading a bitmap) but can’t provide any infor-
mation about the progress of the operation. If your program knows what fraction of the operation has
completed, you can use a ProgressBar instead. (ProgressBar is demonstrated in the next chapter.)

Chapter 13 Bitmaps 308

The ActivityIndicator has a Boolean property named IsRunning. Normally, that property is
false and the ActivityIndicator is invisible. Set the property to t rue to make the ActivityIn-
dicator visible. All three platforms implement an animated visual to indicate that the program is
working, but it looks a little different on each platform. On iOS it's a spinning wheel, and on Android
it's a spinning partial circle. On Windows devices, a series of dots moves across the screen.

To provide browsing access to the stock images, the ImageBrowser needs to download a JSON file
with a list of all the filenames. Over the years, various versions of .NET have introduced several classes
capable of downloading objects over the web. However, not all of these are available in the version of
.NET that is available in a Portable Class Library that has the profile compatible with Xamarin.Forms. A
class that is available is WwebRequest and its descendent class Ht tpWebRequest.

The WebRequest .Create method returns a WwebRequest method based on a URI. (The return
value is actually an HttpiWebRequest object.) The BeginGetResponse method requires a callback
function that is called when the stream referencing the URI is available for access. The Stream is ac-
cessible from a call to EndGetResponse and GetResponseStream.

Once the program gets access to the stream object in the following code, it uses the bataCon-
tractJsonSerializer class together with the embedded ImageList class defined near the top of
the ImageBrowserPage class to convert the JSON file to an ImageList object:

public partial class ImageBrowserPage : ContentPage
{
[DataContract]
class Imagelist
{
[DataMember (Name = "photos")]
public List<string> Photos = null;

WebRequest request;
Imagelist imagelList;
int imageListIndex = 0;

public ImageBrowserPage()

{
InitializeComponent();
// Get 1ist of stock photos.
Uri uri = new Uri("https://developer.xamarin.com/demo/stock.json");
request = WebRequest.Create(uri);
request.BeginGetResponse (WebRequestCallback, null);
}

void WebRequestCallback(IAsyncResult result)
{
Device.BeginInvokeOnMainThread(() =>
{
try
{

Chapter 13 Bitmaps 309

Stream stream = request.EndGetResponse(result).GetResponseStream();

// Deserialize the JSON into imagelList;
var jsonSerializer = new DataContractJsonSerializer(typeof(ImagelList));
imageList = (ImagelList)jsonSerializer.ReadObject(stream);

if (imageList.Photos.Count > 0)
FetchPhoto();
}
catch (Exception exc)

{

filenamelLabel.Text = exc.Message;

b

void OnPreviousButtonClicked(object sender, EventArgs args)
{

imageListIndex--;

FetchPhoto();

void OnNextButtonClicked(object sender, EventArgs args)
{

imagelListIndex++;

FetchPhoto();

void FetchPhoto()
{
// Prepare for new image.
image.Source = null;
string url = imagelList.Photos[imageListIndex];

// Set the filename.
filenamelLabel.Text = url.Substring(url.LastIndexOf('/"') + 1);

// Create the UriImageSource.
UriImageSource imageSource = new UriImageSource
{
Uri = new UriCurl + "?Width=1080"),
Cachevalidity = TimeSpan.FromDays (30)
};

// Set the Image source.
image.Source = imageSource;

// Enable or disable buttons.
prevButton.IsEnabled = imageListIndex > 0;
nextButton.IsEnabled = imagelListIndex < imagelList.Photos.Count - 1;

void OnImagePropertyChanged(object sender, PropertyChangedEventArgs args)
{

Chapter 13 Bitmaps 310

if (args.PropertyName == "IsLoading")
{

activityIndicator.IsRunning = ((Image)sender).IslLoading;

3

The entire body of the WebRequestCallback method is enclosed in a lambda function that is the
argument to the Device.BeginInvokeOnMainThread method. WebRequest downloads the file ref-
erenced by the URI in a secondary thread of execution. This ensures that the operation doesn't block
the program'’s main thread, which is handling the user interface. The callback method also executes in
this secondary thread. However, user-interface objects in a Xamarin.Forms application can be accessed
only from the main thread.

The purpose of the Device.BeginInvokeOnMainThread method is to get around this problem.
The argument to this method is queued to run in the program'’s main thread and can safely access
user-interface objects.

As you click the two buttons, calls to FetchPhoto use UriImageSource to download a new bit-
map. This might take a second or so. The Image class defines a Boolean property named IsLoading
that is true when Image is in the process of loading (or downloading) a bitmap. IsLoading is backed
by the bindable property IsLoadingProperty. That also means that whenever IsLoading changes
value, a PropertyChanged event is fired. The program uses the PropertyChanged event handler—
the OnTmagePropertyChanged method at the very bottom of the class—to set the TsRunning prop-
erty of the ActivityIndicator to the same value as the IsLoading property of Image.

You'll see in Chapter 16, “Data binding,” how your applications can link properties like IsLoading
and IsRunning so that they maintain the same value without any explicit event handlers.

Here's ImageBrowser in action:

Chapter 13 Bitmaps 311

IMG_0074.JPG IMG_0437.JPG

Previous

Some of the images have an EXIF orientation flag set, and if the particular platform ignores that
flag, the image is displayed sideways.

If you run this program in landscape mode, you'll discover that the buttons disappear. A better lay-
out option for this program is a Grid, which is demonstrated in Chapter 17.

Streaming bitmaps

If the ImageSource class didn't have FromUri or FromResource methods, you would still be able to
access bitmaps over the web or stored as resources in the PCL. You can do both of these jobs—as well
as several others—with ImageSource.FromStream or the St reamImageSource class.

The ImageSource.FromStream method is somewhat easier to use than StreamImageSource, but
both are a little odd. The argument to ImageSource.FromStream is not a Stream object but a Func
object (a method with no arguments) that returns a Stream object. The stream property of Stream-
ImageSource is likewise not a Stream object but a Func object that has a CancellationToken ar-
gument and returns a Task<Stream> object.

Accessing the streams

The BitmapStreams program contains a XAML file with two Image elements waiting for bitmaps, each
of which is set in the code-behind file by using ImageSource.FromStream:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"

Chapter 13 Bitmaps 312

x:Class="BitmapStreams.BitmapStreamsPage">
<StackLayout>
<Image x:Name="imagel"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand" />

<Image x:Name="image2"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand" />
</StackLayout>
</ContentPage>

The first Image is set from an embedded resource in the PCL; the second is set from a bitmap accessed
over the web.

In the BlackCat program in Chapter 4, “Scrolling the stack,” you saw how to obtain a st ream object
for any resource stored with a Build Action of EmbeddedResource in the PCL. You can use this same
technique for accessing a bitmap stored as an embedded resource:

public partial class BitmapStreamsPage : ContentPage

{
public BitmapStreamsPage()
{
InitializeComponent();
// Load embedded resource bitmap.
string resourceID = "BitmapStreams.Images.IMG_0722_512.jpg";
imagel.Source = ImageSource.FromStream(() =>
{
Assembly assembly = GetType() .GetTypeInfo().Assembly;
Stream stream = assembly.GetManifestResourceStream(resourcelD);
return stream;
s
}
}

The argument to ImageSource.FromStrean is defined as a function that returns a stream object,
so that argument is here expressed as a lambda function. The call to the GetType method returns the
type of the BitmapStreamsPage class, and GetTypeInfo provides more information about that type,
including the Assembly object containing the type. That's the BitmapStream PCL assembly, which is
the assembly with the embedded resource. GetManifestResourceStream returns a Stream object,
which is the return value that ImageSource.FromStream wants.

If you ever need a little help with the names of these resources, the GetManifestResourceNames
returns an array of string objects with all the resource IDs in the PCL. If you can't figure out why your
GetManifestResourceStream isn't working, first check to make sure your resources have a Build
Action of EmbeddedResource, and then call GetManifestResourceNames to get all the resource
IDs.

Chapter 13 Bitmaps 313

To download a bitmap over the web, you can use the same wWwebRequest method demonstrated
earlier in the ImageBrowser program. In this program, the BeginGetResponse callback is a lambda
function:

public partial class BitmapStreamsPage : ContentPage

{
public BitmapStreamsPage()
{
// Load web bitmap.
Uri uri = new Uri("https://developer.xamarin.com/demo/IMG_0925.JPG?width=512");
WebRequest request = WebRequest.Create (uri);
request.BeginGetResponse((IAsyncResult arg) =>
{
Stream stream = request.EndGetResponse(arg).GetResponseStream();
if (Device.0S == TargetPlatform.WinPhone ||
Device.0S == TargetPlatform.Windows)
{
MemoryStream memStream = new MemoryStream();
stream.CopyTo(memStream) ;
memStream.Seek (0, SeekOrigin.Begin);
stream = memStream;
}
ImageSource imageSource = ImageSource.FromStream(() => stream);
Device.BeginInvokeOnMainThread(() => image2.Source = imageSource);
}, null);
}
}

The BeginGetResponse callback also contains two more embedded lambda functions! The first line of
the callback obtains the stream object for the bitmap. This stream object is not quite suitable for
Windows Runtime so the contents are copied to a MemoryStream.

The next statement uses a short lambda function as the argument to ImageSource.FromStream
to define a function that returns that stream. The last line of the BeginGetResponse callback is a call
to Device.BeginInvokeOnMainThread to set the ImageSource object to the Source property of
the Image.

Chapter 13 Bitmaps 314

4 % O ®.0s20

520 PM

Rl T S

It might seem as though you have more control over the downloading of images by using
WebRequest and ImageSource.FromStream than with ImageSource.FromUri, but the
ImageSource.FromUri method has a big advantage: it caches the downloaded bitmaps in a storage
area private to the application. As you've seen, you can turn off the caching, but if you're using Image-
Source.FromStream instead of ImageSource.FromUri, you might find the need to cache the im-
ages, and that would be a much bigger job.

Generating bitmaps at run time

All three platforms support the BMP file format, which dates back to the very beginning of Microsoft
Windows. Despite its ancient heritage, the BMP file format is now fairly standardized with more exten-
sive header information.

Although there are some BMP options that allow some rudimentary compression, most BMP files
are uncompressed. This lack of compression is usually regarded as a disadvantage of the BMP file for-
mat, but in some cases it's not a disadvantage at all. For example, if you want to generate a bitmap al-
gorithmically at run time, it's much easier to generate an uncompressed bitmap instead of one of the
compressed file formats. (Indeed, even if you had a library function to create a JPEG or PNG file, you'd
apply that function to the uncompressed pixel data.)

You can create a bitmap algorithmically at run time by filling a MemoryStream with the BMP file
headers and pixel data and then passing that MemoryStream to the ImageSource.FromStream
method. The BmpMaker class in the Xamarin.FormsBook.Toolkit library demonstrates this. It creates a
BMP in memory using a 32-bit pixel format—=8 bits each for red, green, blue, and alpha (opacity) chan-

Chapter 13 Bitmaps

315

nels. The BmpMaker class was coded with performance in mind, in hopes that it might be used for ani-
mation. Maybe someday it will be, but in this chapter the only demonstration is a simple color

gradient.

The constructor creates a byte array named buffer that stores the entire BMP file beginning with
the header information and followed by the pixel bits. The constructor then uses a MemoryStream for

writing the header information to the beginning of this buffer:

public class BmpMaker

{
const int headerSize = 54;
readonly byte[] buffer;

public BmpMaker(int width, int height)

{
Width = width;
Height = height;
int numPixels = Width * Height;
int numPixelBytes = 4 * numPixels;
int fileSize = headerSize + numPixelBytes;
buffer = new byte[fileSize];
// Write headers in MemoryStream and hence the buffer.
using (MemoryStream memoryStream = new MemoryStream(buffer))
{
using (BinaryWriter writer = new BinaryWriter(memoryStream, Encoding.UTF8))
{
// Construct BMP header (14 bytes).
writer.Write(new char[] { 'B', 'M' }); // Signature
writer.Write(fileSize); // File size
writer.Write((short)0); // Reserved
writer.Write((short)0); // Reserved
writer.Write(headerSize); // Offset to pixels
// Construct BitmapInfoHeader (40 bytes).
writer.Write(40); // Header size
writer.Write(Width); // Pixel width
writer.Write(Height); // Pixel height
writer.Write((short)1l); // Planes
writer.Write((short)32); // Bits per pixel
writer.Write(0); // Compression
writer.Write(numPixelBytes); // Image size in bytes
writer.Write(0); // X pixels per meter
writer.Write(0); // Y pixels per meter
writer.Write(0); // Number colors in color table
writer.Write(0); // Important color count
}
}
}

public int Width
{

Chapter 13 Bitmaps

private set;
get;

public int Height

{

private set;
get;

public void SetPixel(int row, int col, Color color)

{

public void SetPixel(int row, int col, int r, int g, int b, int a

{

SetPixel(row, col, (int)(255 * color.R),
(int) (255 * color.Q),
(int) (255 * color.B),
(int) (255 * color.A));

int index = (row * Width + col) * 4 + headerSize;

buffer[index + 0] = (byte)b;
buffer[index + 1] = (byte)g;
buffer[index + 2] = (byte)r;
buffer[index + 3] = (byte)a;

public ImageSource Generate()

{

// Create MemoryStream from buffer with bitmap.
MemoryStream memoryStream = new MemoryStream(buffer);

// Convert to StreamImageSource.
ImageSource imageSource = ImageSource.FromStream(() =>
{
return memoryStream;
b

return imageSource;

316

= 255)

After creating a BmpMaker object, a program can then call one of the two setpPixel methods to
set a color at a particular row and column. When making very many calls, the SetPixel call that uses
a Color value is significantly slower than the one that accepts explicit red, green, and blue values.

The last step is to call the Generate method. This method instantiates another MemoryStream ob-
ject based on the buffer array and uses it to create a FileImageSource object. You can call Gener-
ate multiple times after setting new pixel data. The method creates a new MemoryStream each time
because ImageSource.FromStreanm closes the stream object when it's finished with it.

The DiyGradientBitmap program—"DIY" stands for "Do It Yourself"—demonstrates how to use

Chapter 13 Bitmaps 317

BmpMaker to make a bitmap with a simple gradient and display it to fill the page. The XAML file in-
cludes the Tmage element:
<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="DiyGradientBitmap.DiyGradientBitmapPage">
<ContentPage.Padding>
<OnPTatform x:TypeArguments="Thickness"
i0s="0, 20, 0, 0" />
</ContentPage.Padding>

<Image x:Name="image"
Aspect="Fi11" />

</ContentPage>

The code-behind file instantiates a BmpMaker and loops through the rows and columns of the bit-
map to create a gradient that ranges from red at the top to blue at the bottom:

public partial class DiyGradientBitmapPage : ContentPage

{
public DiyGradientBitmapPage()
{
InitializeComponent();
int rows = 128;
int cols = 64;
BmpMaker bmpMaker = new BmpMaker(cols, rows);
for (int row = 0; row < rows; row++)
for (int col = 0; col < cols; col++)
{
bmpMaker.SetPixel(row, col, 2 * row, 0, 2 * (128 - row));
}
ImageSource imageSource = bmpMaker.Generate();
image.Source = imageSource;
}
}

Here's the result:

Chapter 13 Bitmaps 318

3k O W ls22

Now use your imagination and see what you can do with BmpMaker.

Platform-specific bitmaps

As you've seen, you can load bitmaps over the web or from the shared PCL project. You can also load
bitmaps stored as resources in the individual platform projects. The tools for this job are the Tmage-
Source.FromFile static method and the corresponding FileImageSource class.

You'll probably use this facility mostly for bitmaps connected with user-interface elements. The
Icon property in MenuItem and ToolBarItem is of type FileImageSource. The Image property in
Button is also of type FileImageSource.

Two other uses of FileImageSource won't be discussed in this chapter: the Page class defines an
Icon property of type FileImageSource and a BackgroundImage property of type string, but
which is assumed to be the name of a bitmap stored in the platform project.

The storage of bitmaps in the individual platform projects allows a high level of platform specificity.
You might think you can get the same degree of platform specificity by storing bitmaps for each plat-
form in the PCL project and using the Device.OnPlatform method or the OnPlatform class to select
them. However, as you'll soon discover, all three platforms have provisions for storing bitmaps of dif-
ferent pixel resolutions and then automatically accessing the optimum one. You can take advantage of
this valuable feature only if the individual platforms themselves load the bitmaps, and this is the case
only when you use ImageSource.FromFile and FileImageSource.

Chapter 13 Bitmaps 319

The platform projects in a newly created Xamarin.Forms solution already contain several bitmaps. In
the iOS project, you'll find these in the Resources folder. In the Android project, they're in subfolders
of the Resources folder. In the various Windows projects, they're in the Assets folder and subfolders.
These bitmaps are application icons and splash screens, and you'll want to replace them when you pre-
pare to bring an application to market.

Let's write a small project called PlatformBitmaps that accesses an application icon from each plat-
form project and displays the rendered size of the Tmage element. If you're using FileImageSource
to load the bitmap (as this program does), you need to set the File property to a string with the
bitmap’s filename. Almost always, you'll be using Device.OnPlatform in code or OnPlatform in
XAML to specify the three filenames:

public class PlatformBitmapsPage : ContentPage

{
public PlatformBitmapsPage()
{
Image image = new Image
{
Source = new FileImageSource
{
File = Device.OnPlatform(iOS: "Icon-Small1-40.png",
Android: "icon.png",
WinPhone: "Assets/StorelLogo.png™)
1,
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.CenterAndExpand
};
Label Tabel = new Label
{
FontSize = Device.GetNamedSize(NamedSize.Medium, typeof(Label)),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.CenterAndExpand
};
image.SizeChanged += (sender, args) =>
{
Tlabel.Text = String.Format("Rendered size = {0} x {1}",
image.Width, image.Height);
};
Content = new StacklLayout
{
Children =
{
image,
Tabel
}
};
}

Chapter 13 Bitmaps 320

When you access a bitmap stored in the Resources folder of the iOS project or the Resources
folder (or subfolders) of the Android project, do not preface the filename with a folder name. These
folders are the standard repositories for bitmaps on these platforms. But bitmaps can be anywhere in
the Windows or Windows Phone project (including the project root), so the folder name (if any) is
required.

In all three cases, the default icon is the famous hexagonal Xamarin logo (fondly known as the
Xamagon), but each platform has different conventions for its icon size, so the rendered sizes are
different:

Rendered size = 50 x 50

Rendered size = 40 x 40

If you begin exploring the icon bitmaps in the iOS and Android projects, you might be a little con-
fused: there seem to be multiple bitmaps with the same names (or similar names) in the iOS and An-
droid projects.

It's time to dive deeper into the subject of bitmap resolution.

Bitmap resolutions

The i0OS bitmap filename specified in PlatformBitmaps is Icon-Small-40.png, but if you look in the Re-
sources folder of the iOS project, you'll see three files with variations of that name. They all have dif-
ferent sizes:

e Icon-Small-40.png — 40 pixels square
e Icon-Small-40@2x.png — 80 pixels square

e Icon-Small-40@3x.png — 120 pixels square

Chapter 13 Bitmaps 321

As you discovered earlier in this chapter, when an Image is a child of a stackLayout, iOS displays the
bitmap in its pixel size with a one-to-one mapping between the pixels of the bitmap and the pixels of
the screen. This is the optimum display of a bitmap.

However, on the iPhone 6 simulator used in the screenshot, the Image has a rendered size of 40 de-
vice-independent units. On the iPhone 6 there are two pixels per device-independent unit, which
means that the actual bitmap being displayed in that screenshot is not Icon-Small-40.png but Icon-
Small-40@2x.png, which is two times 40, or 80 pixels square.

If you instead run the program on the iPhone 6 Plus—which has a device-independent unit equal to
three pixels—you'll again see a rendered size of 40 pixels, which means that the Icon-Small-40@3x.png
bitmap is displayed. Now try it on the iPad 2 simulator. The iPad 2 has a screen size of just 768 x 1024,
and device-independent units are the same as pixels. Now the Icon-Small-40.png bitmap is displayed,
and the rendered size is still 40 pixels.

This is what you want. You want to be able to control the rendered size of bitmaps in device-inde-
pendent units because that's how you can achieve perceptibly similar bitmap sizes on different devices
and platforms. When you specify the Icon-Small-40.png bitmap, you want that bitmap to be rendered
as 40 device-independent units—or about one-quarter inch—on all iOS devices. But if the program is
running on an Apple Retina device, you don't want a 40-pixel-square bitmap stretched to be 40 de-
vice-independent units. For maximum visual fidelity, you want a higher resolution bitmap displayed,
with a one-to-one mapping of bitmap pixels to screen pixels.

If you look in the Android Resources directory, you'll find four different versions of a bitmap named
icon.png. These are stored in different subfolders of Resources:

drawable/icon.png — 72 pixels square

drawable-hdpi/icon.png — 72 pixels square

drawable-xdpi/icon.png — 96 pixels square
e drawable-xxdpi/icon.png — 144 pixels square

Regardless of the Android device, the icon is rendered with a size of 48 device-independent units. On
the Nexus 5 used in the screenshot, there are three pixels to the device-independent unit, which means
that the bitmap actually displayed on that screen is the one in the drawable-xxdpi folder, which is 144
pixels square.

What's nice about both iOS and Android is that you only need to supply bitmaps of various sizes—
and give them the correct names or store them in the correct folders—and the operating system
chooses the optimum image for the particular resolution of the device.

The Windows Runtime platform has a similar facility. In the UWP project you'll see filenames that
include scale-200; for example, Square150x150Logo.scale-200.png. The number after the word scale is
a percentage, and although the filename seems to indicate that this is a 150x150 bitmap, the image is

Chapter 13 Bitmaps 322

actually twice as large: 300x300. In the Windows project you'll see filenames that include scale-100
and in the WinPhone project you'll see scale-240.

However, you've seen that Xamarin.Forms on the Windows Runtime displays bitmaps in their de-
vice-independent sizes, and you'll still need to treat the Windows platforms a little differently. But on
all three platforms you can control the size of bitmaps in device-independent units.

When creating your own platform-specific images, follow the guidelines in the next three sections.

Device-independent bitmaps for iOS

The iOS naming scheme for bitmaps involves a suffix on the filename. The operating system fetches a
particular bitmap with the underlying filename based on the approximate pixel resolution of the de-
vice:

e No suffix for 160 DPI devices (1 pixel to the device-independent unit)
e @2x suffix for 320 DPI devices (2 pixels to the DIU)
e @3x suffix: 480 DPI devices (3 pixels to the DIU)

For example, suppose you want a bitmap named Mylmage.jpg to show up as about one inch square
on the screen. You should supply three versions of this bitmap:

e Mylmage.jpg — 160 pixels square
e Mylmage@2x.jpg — 320 pixels square
e Mylmage@3x.jpg — 480 pixels square

The bitmap will render as 160 device-independent units. For rendered sizes smaller than one inch, de-
crease the pixels proportionally.

When creating these bitmaps, start with the largest one. Then you can use any bitmap-editing utility
to reduce the pixel size. For some images, you might want to fine-tune or completely redraw the
smaller versions.

As you might have noticed when examining the various icon files that the Xamarin.Forms template
includes with the iOS project, not every bitmap comes in all three resolutions. If iOS can't find a bitmap
with the particular suffix it wants, it will fall back and use one of the others, scaling the bitmap up or
down in the process.

Device-independent bitmaps for Android

For Android, bitmaps are stored in various subfolders of Resources that correspond to a pixel resolu-
tion of the screen. Android defines six different directory names for six different levels of device resolu-
tion:

e drawable-Idpi (low DPI) for 120 DPI devices (0.75 pixels to the DIU)

Chapter 13 Bitmaps 323

¢ drawable-mdpi (medium) for 160 DPI devices (1 pixel to the DIU)

e drawable-hdpi (high) for 240 DPI devices (1.5 pixels to the DIU))

e drawable-xhdpi (extra high) for 320 DPI devices (2 pixels to the DIU)

e drawable-xxhdpi (extra extra high) for 480 DPI devices (3 pixels to the DIU)

e drawable-xxxhdpi (three extra highs) for 640 DPI devices (4 pixels to the DIU)

If you want a bitmap named Mylmage.jpg to render as a one-inch square on the screen, you can
supply up to six versions of this bitmap using the same name in all these directories. The size of this
one-inch-square bitmap in pixels is equal to the DPI associated with that directory:

e drawable-ldpi/Mylmage.jpg — 120 pixels square

e drawable-mdpi/Mylmage.jpg — 160 pixels square

e drawable-hdpi/Mylmage.jpg — 240 pixels square

e drawable-xhdpi/Mylmage.jpg — 320 pixels square

e drawable-xxdpi/Mylmage.jpg — 480 pixels square

e drawable-xxxhdpi/Mylmage.jpg — 640 pixels square
The bitmap will render as 160 device-independent units.

You are not required to create bitmaps for all six resolutions. The Android project created by the
Xamarin.Forms template includes only drawable-hdpi, drawable-xhdpi, and drawable-xxdpi, as well
as an unnecessary drawable folder with no suffix. These encompass the most common devices. If the
Android operating system does not find a bitmap of the desired resolution, it will fall back to a size
that is available and scale it.

Device-independent bitmaps for Windows Runtime platforms

The Windows Runtime supports a bitmap naming scheme that lets you embed a scaling factor of pixels
per device-independent unit expressed as a percentage. For example, for a one-inch-square bitmap
targeted to a device that has two pixels to the unit, use the name:

¢ Mylmage.scale-200.jpg — 320 pixels square

The Windows documentation is unclear about the actual percentages you can use. When building a
program, sometimes you'll see error messages in the Output window regarding percentages that are
not supported on the particular platform.

However, given that Xamarin.Forms displays Windows Runtime bitmaps in their device-independent
sizes, this facility is of limited use on these devices.

Chapter 13 Bitmaps 324

Let's look at a program that actually does supply custom bitmaps of various sizes for the three plat-
forms. These bitmaps are intended to be rendered about one inch square, which is approximately half
the width of the phone’s screen in portrait mode.

This ImageTap program creates a pair of rudimentary, tappable button-like objects that display not
text but a bitmap. The two buttons that ImageTap creates might substitute for traditional OK and
Cancel buttons, but perhaps you want to use faces from famous paintings for the buttons. Perhaps you
want the OK button to display the face of Botticelli's Venus and the Cancel button to display the dis-
tressed man in Edvard Munch'’s The Scream.

In the sample code for this chapter is a directory named Images that contains such images, named
Venus_xxx.jpg and Scream_xxx.jpg, where the xxx indicates the pixel size. Each image is in eight differ-
ent sizes: 60, 80, 120, 160, 240, 320, 480, and 640 pixels square. In addition, some of the files have
names of Venus_xxx_id.,jpg and Scream_xxx_id.jpg. These versions have the actual pixel size displayed in
the lower-right corner of the image so that we can see on the screen exactly what bitmap the operat-
ing system has selected.

To avoid confusion, the bitmaps with the original names were added to the ImageTap project fold-
ers first, and then they were renamed within Visual Studio.

In the Resources folder of the iOS project, the following files were renamed:
e Venus_160_id.,jpg became Venus.jpg
e Venus_320_id.,jpg because Venus@2x.jpg
e Venus_480_id.,jpg became Venus@3x.jpg
This was done similarly for the Scream.jpg bitmaps.
In the various subfolders of the Android project Resources folder, the following files were renamed:
e Venus_160_id.,jpg became drawable-mdpi/Venus.jpg
e Venus_240_id.jpg became drawable-hdpi/Venus.jpg
e Venus_320_id.jpg became drawable-xhdpi/Venus.jpg
e Venus_480_id.,jpg became drawable_xxhdpi/Venus.jpg
And similarly for the Scream.jpg bitmaps.

For the Windows Phone 8.1 project, the Venus_160_id.jpg and Scream_160_id.jpg files were copied
to an Images folder and renamed Venus.jpg and Scream.jpg.

The Windows 8.1 project creates an executable that runs not on phones but on tablets and desk-
tops. These devices have traditionally assumed a resolution of 96 units to the inch, so the Venus-
_100_id.jpg and Scream_100_id.jpg files were copied to an Images folder and renamed Venus.jpg and
Scream.jpg.

Chapter 13 Bitmaps 325

The UWP project targets all the form factors, so several bitmaps were copied to an Images folder
and renamed so that the 160-pixel square bitmaps would be used on phones, and the 100-pixel square
bitmaps would be used on tablets and desktop screens:

e Venus_160_id.,jpg became Venus.scale-200.jpg
e Venus_100_id.,jpg became Venus.scale-100.jpg
And similarly for the Scream.jpg bitmaps.

Each of the projects requires a different Build Action for these bitmaps. This should be set auto-
matically when you add the files to the projects, but you definitely want to double-check to make sure
the Build Action is set correctly:

e iOS: BundleResource
e Android: AndroidResource
e Windows Runtime: Content

You don't have to memorize these. When in doubt, just check the Build Action for the bitmaps in-
cluded by the Xamarin.Forms solution template in the platform projects.

The XAML file for the ImageTap program puts each of the two Image elements on a ContentView
that is colored white from an implicit style. This white Contentview is entirely covered by the Tmage,
but (as you'll see) it comes into play when the program flashes the picture to signal that it's been
tapped.

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ImageTap.ImageTapPage">

<StackLayout>
<StackLayout.Resources>
<ResourceDictionary>
<Style TargetType="ContentView">
<Setter Property="BackgroundColor" Value="White" />
<Setter Property="HorizontalOptions" Value="Center" />
<Setter Property="VerticalOptions" Value="CenterAndExpand" />
</Style>
</ResourceDictionary>
</StackLayout.Resources>

<ContentView>
<Image>
<Image.Source>
<OnPTatform x:TypeArguments="ImageSource"

i0S="Venus.jpg"
Android="Venus.jpg"
WinPhone="Images/Venus.jpg" />

</Image.Source>

Chapter 13 Bitmaps 326

<Image.GestureRecognizers>
<TapGestureRecognizer Tapped="OnImageTapped" />
</Image.GestureRecognizers>
</Image>
</ContentView>

<ContentView>
<Image>
<Image.Source>
<OnPlatform x:TypeArguments="ImageSource"

i0S="Scream.jpg"
Android="Scream.jpg"
WinPhone="Images/Scream.jpg" />

</Image.Source>

<Image.GestureRecognizers>
<TapGestureRecognizer Tapped="OnImageTapped" />
</Image.GestureRecognizers>
</Image>
</ContentView>

<Label x:Name="Tlabel"
FontSize="Medium"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand" />

</StackLayout>
</ContentPage>

The XAML file uses onPlatform to select the filenames of the platform resources. Notice that the
x:TypeArguments attribute of onPlatform is set to ImageSource because this type must exactly
match the type of the target property, which is the Source property of Image. ImageSource defines
an implicit conversion of string to itself, so specifying the filenames is sufficient. (The logic for this
implicit conversion checks first whether the string has a URI prefix. If not, it assumes that the string is
the name of an embedded file in the platform project.)

If you want to avoid using onPlatform entirely in programs that use platform bitmaps, you can put
the Windows bitmaps in the root directory of the project rather than in a folder.

Tapping one of these buttons does two things: The Tapped handler sets the opacity property of
the Tmage to 0.75, which results in partially revealing the white Contentview background and simu-
lating a flash. A timer restores the Opacity to the default value of one-tenth of a second later. The
Tapped handler also displays the rendered size of the Image element:

public partial class ImageTapPage : ContentPage

{
public ImageTapPage()
{
InitializeComponent();
}

void OnImageTapped(object sender, EventArgs args)

Chapter 13 Bitmaps 327

{
Image image = (Image)sender;
image.Opacity = 0.75;
Device.StartTimer(TimeSpan.FromMilliseconds(100), (O =>
{
image.Opacity = 1;
return false;
b
Tlabel.Text = String.Format("Rendered Image is {0} x {1}",
image.Width, image.Height);
}

That rendered size compared with the pixel sizes on the bitmaps confirms that the three platforms
have indeed selected the optimum bitmap:

10:21 AM

Rendered Image is 160 x 160

These buttons occupy roughly half the width of the screen on all three platforms. This sizing is
based entirely on the size of the bitmaps themselves, without any additional sizing information in the

code or markup.

Toolbars and their icons

One of the primary uses of bitmaps in the user interface is the Xamarin.Forms toolbar, which appears at
the top of the page on iOS and Android devices and at the bottom of the page on Windows Phone
devices. Toolbar items are tappable and fire C1icked events much like Button.

Chapter 13 Bitmaps 328

There is no class for toolbar itself. Instead, you add objects of type ToolbarItem to the
ToolbarItems collection property defined by page.

The ToolbarItem class does not derive from view like Label and Button. It instead derives from
Element by way of MenuItemBase and MenuItem. (MenuItem is used only in connection with the
TableView and won't be discussed until Chapter 19.) To define the characteristics of a toolbar item,
use the following properties:

e Text — the text that might appear (depending on the platform and order)
e Icon—aFileImageSource object referencing a bitmap from the platform project

° Order — a member of the ToolbarItemOrder enumeration: Default, Primary, or Second-
ary

There is also a Name property, but it just duplicates the Text property and should be considered obso-
lete.

The order property governs whether the ToolbarItem appears as an image (Primary) or text
(secondary). The Windows Phone and Windows 10 Mobile platforms are limited to four Primary
items, and both the iPhone and Android devices start getting crowded with more than that, so that's a
reasonable limitation. Additional Secondary items are text only. On the iPhone they appear under-
neath the Primary items; on Android and Windows Phone they aren’t seen on the screen until the
user taps a vertical or horizontal ellipsis.

The Icon property is crucial for Primary items, and the Text property is crucial for secondary
items, but the Windows Runtime also uses Text to display a short text hint underneath the icons for
Primary items.

When the ToolbarItem is tapped, it fires a Clicked event. ToolbarItem also has Command and
CommandParameter properties like the Button, but these are for data-binding purposes and will be
demonstrated in a later chapter.

The ToolbarItems collection defined by page is of type IList<ToolbarItem>. Once you add a
ToolbarItem to this collection, the ToolbarItem properties cannot be changed. The property set-
tings are instead used internally to construct platform-specific objects.

You can add ToolbarItem objects to a ContentPage in Windows Phone, but iOS and Android re-
strict toolbars to a NavigationPage or to a page navigated to from a NavigationPage. Fortunately,
this requirement doesn't mean that the whole topic of page navigation needs to be discussed before
you can use the toolbar. Instantiating a NavigationPage instead of a ContentPage simply involves
calling the NavigationPage constructor with the newly created ContentPage object in the App class.

The ToolbarDemo program reproduces the toolbar that you saw on the screenshots in Chapter 1.
The ToolbarDemoPage derives from ContentPage, but the App class passes the ToolbarDemoPage
object to a NavigationPage constructor:

Chapter 13 Bitmaps 329

public class App : Application

{
pubTic AppQ
{
MainPage = new NavigationPage(new ToolbarDemoPage());
}
}

That's all that's necessary to get the toolbar to work on iOS and Android, and it has some other im-
plications as well. A title that you can set with the Tit1le property of Page is displayed at the top of
the iOS and Android screens, and the application icon is also displayed on the Android screen. Another
result of using NavigationPage is that you no longer need to set some padding at the top of the iOS
screen. The status bar is now out of the range of the application’s page.

Perhaps the most difficult aspect of using ToolbarItem is assembling the bitmap images for the
Icon property. Each platform has different requirements for the color composition and size of these
icons, and each platform has somewhat different conventions for the imagery. The standard icon for
Share, for example, is different on all three platforms.

For these reasons, it makes sense for each of the platform projects to have its own collection of
toolbar icons, and that's why Tcon is of type FileImageSource.

Let's begin with the two platforms that provide collections of icons suitable for ToolbarItem.

Icons for Android

The Android website has a downloadable collection of toolbar icons at this URL:

http://developer.android.com/design/downloads

Download the ZIP file identified as Action Bar Icon Pack.

The unzipped contents are organized into two main directories: Core_lcons (23 images) and Action
Bar Icons (144 images). These are all PNG files, and the Action Bar Icons come in four different sizes,
indicated by the directory name:

¢ drawable-mdpi (medium DPI) — 32 pixels square

e drawable-hdpi (high DPI) — 48 pixels square

e drawable-xhdpi (extra high DPI) — 64 pixels square

e drawable-xxhdpi (extra extra high DPI) — 96 pixels square

These directory names are the same as the Resources folders in your Android project and imply that
the toolbar icons render at 32 device-independent units, or about one-fifth of an inch.

The Core_lcons folder also arranges its icons into four directories with the same four sizes, but
these directories are named mdpi, hdpi, xdpi, and unscaled.

http://developer.android.com/design/downloads

Chapter 13 Bitmaps 330

The Action Bar Icons folder has an additional directory organization using the names holo_dark
and holo_light:

¢ holo_dark—white foreground image on a transparent background
¢ holo_light—black foreground image on a transparent background

The word “holo” stands for "holographic” and refers to the name Android uses for its color themes. Alt-
hough the holo_light icons are much easier to see in Finder and Windows Explorer, for most pur-
poses (and especially for toolbar items) you should use the holo_dark icons. (Of course, if you know
how to change your application theme in the AndroidManifest.xml file, then you probably also know to
use the other icon collection.)

The Core_lcons folder contains only icons with white foregrounds on a transparent background.

For the ToolbarDemo program, three icons were chosen from the holo_dark directory in all four
resolutions. These were copied to the appropriate subfolders of the Resources directory in the Android
project:

e From the 01_core_edit directory, the files named ic_action_edit.png
e From the 01_core_search directory, the files named ic_action_search.png
e From the 01_core_refresh directory, the files named ic_action_refresh.png

Check the properties of these PNG files. They must have a Build Action of AndroidResource.

Icons for Windows Runtime platforms

If you have a version of Visual Studio installed for Windows Phone 8, you can find a collection of PNG
files suitable for ToolbarItem in the following directory on your hard drive:

C:\Program Files (x86)\Microsoft SDKs\Windows Phone\v8.0\lcons
You can use these for all the Windows Runtime platforms.

There are two subdirectories, Dark and Light, each containing the same 37 images. As with An-
droid, the icons in the Dark directory have white foregrounds on transparent backgrounds, and the
icons in the Light directory have black foregrounds on transparent backgrounds. You should use the
ones in the Dark directory for Windows Phone 8.1 and the Light directory for Windows 10 Mobile.

The images are a uniform 76 pixels square but have been designed to appear inside a circle. Indeed,
one of the files is named basecircle.png, which can serve as a guide if you'd like to design your own, so
there are really only 36 usable icons in the collection and a couple of them are the same.

Generally, in a Windows Runtime project, files such as these are stored in the Assets folder (which
already exists in the project) or a folder named Images. The following bitmaps were added to an Im-
ages folder in all three Windows platforms:

Chapter 13 Bitmaps 331

e editpng
e feature.search.png
e refresh.png

For the Windows 8.1 platform (but not the Windows Phone 8.1 platform), icons are needed for all the
toolbar items, so the following bitmaps were added to the Images folder of that project:

e lconlF435.png
e IconlF440.png
e lconlF52D.png

These were generated in a Windows program from the Segoe Ul Symbol font, which supports emaji
characters. The five-digit hexadecimal number in the filename is the Unicode ID for those characters.

When you add icons to a Windows Runtime project, make sure the Build Action is Content.

Icons for iOS devices

This is the most problematic platform for ToolbarItem. If you're programming directly for the native
iOS API, a bunch of constants let you select an image for UIBarButtonItem, which is the underlying
iOS implementation of ToolbarItem. But for the Xamarin.Forms ToolbarItem, you'll need to obtain
icons from another source—perhaps licensing a collection such as the one at glyphish.com—or make
your own.

For best results, you should supply two or three image files for each toolbar item in the Resources
folder. An image with a filename such as image.png should be 20 pixels square, while the same image
should also be supplied in a 40-pixel-square dimension with the name image@2x.png and as a 60-
pixel-square bitmap named image@3x.png.

Here's a collection of free, unrestricted-use icons used for the program in Chapter 1 and for the
ToolbarDemo program in this chapter:

http://www.smashingmagazine.com/2010/07/14/gcons-free-all-purpose-icons-for-designers-and-de-
velopers-100-icons-psd/

However, they are uniformly 32 pixels square, and some basic ones are missing. Regardless, the follow-
ing three bitmaps were copied to the Resources folder in the iOS project under the assumption that
they will be properly scaled:

e edit.png
e search.png

e reload.png

http://www.smashingmagazine.com/2010/07/14/gcons-free-all-purpose-icons-for-designers-and-developers-100-icons-psd/
http://www.smashingmagazine.com/2010/07/14/gcons-free-all-purpose-icons-for-designers-and-developers-100-icons-psd/

Chapter 13 Bitmaps 332

Another option is to use Android icons from the holo_light directory and scale the largest image
for the various iOS sizes.

For toolbar icons in an iOS project, the Build Action must be BundleResource.

Here's the ToolbarDemo XAML file showing the various ToolbarItem objects added to the
ToolbarItems collection of the page. The x: TypeArguments attribute for OnPlat form must be
FileImageSource in this case because that's the type of the Tcon property of ToolbarItem. The
three items flagged as secondary have only the Text property set and not the Icon property.

The root element has a Tit1le property set on the page. This is displayed on the iOS and Android
screens when the page is instantiated as a NavigationPage (or navigated to from a Navigation-
Page):

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ToolbarDemo.ToolbarDemoPage"
Title="Toolbar Demo">

<Label x:Name="T1abel"
FontSize="Medium"
HorizontalOptions="Center"
VerticalOptions="Center" />

<ContentPage.ToolbarItems>
<ToolbarItem Text="edit"
Order="Primary"
Clicked="0OnToolbarItemClicked">
<ToolbarItem.Icon>
<OnPTatform x:TypeArguments="FileImageSource"
i0S="edit.png"
Android="1ic_action_edit.png"
WinPhone="Images/edit.png" />
</ToolbarItem.Icon>
</ToolbarItem>

<ToolbarItem Text="search"
Order="Primary"
Clicked="0nToolbarItemClicked">
<ToolbarItem.Icon>
<OnPlatform x:TypeArguments="FileImageSource"
i0S="search.png"
Android="1ic_action_search.png"
WinPhone="Images/feature.search.png" />
</ToolbarItem.Icon>
</ToolbarItem>

<ToolbarItem Text="refresh"
Order="Primary"
Clicked="0OnToolbarItemClicked">
<ToolbarItem.Icon>
<OnPlatform x:TypeArguments="FileImageSource"

Chapter 13 Bitmaps 333

i0S="reload.png"
Android="1ic_action_refresh.png"
WinPhone="Images/refresh.png" />
</ToolbarItem.Icon>
</ToolbarItem>

<ToolbarItem Text="explore"
Order="Secondary"
Clicked="0nToolbarItemClicked">
<ToolbarItem.Icon>
<OnPlatform x:TypeArguments="FileImageSource"
WinPhone="Images/IconlF52D.png" />
</ToolbarItem.Icon>
</ToolbarItem>

<ToolbarItem Text="discover"
Order="Secondary"
Clicked="0nToolbarItemClicked">
<ToolbarItem.Icon>
<OnPTatform x:TypeArguments="FileImageSource"
WinPhone="Images/IconlF440.png" />
</ToolbarItem.Icon>
</ToolbarItem>

<ToolbarItem Text="evolve"
Order="Secondary"
Clicked="0nToolbarItemClicked">
<ToolbarItem.Icon>
<OnPTatform x:TypeArguments="FileImageSource"
WinPhone="Images/IconlF435.png" />
</ToolbarItem.Icon>
</ToolbarItem>
</ContentPage.ToolbarItems>
</ContentPage>

Although the onPlatform element implies that the secondary icons exist for all the Windows Runtime
platforms, they do not, but nothing bad happens if the particular icon file is missing from the project.

All the c1licked events have the same handler assigned. You can use unique handlers for the items,
of course. This handler just displays the text of the ToolbarTtem using the centered Label:

public partial class ToolbarDemoPage : ContentPage

{
public ToolbarDemoPage()
{
InitializeComponent();
}
void OnToolbarItemClicked(object sender, EventArgs args)
{
ToolbarItem toolbarItem = (ToolbarItem)sender;
Tabel.Text = "ToolbarItem '" + toolbarItem.Text + "' clicked";
}

Chapter 13 Bitmaps 334

The screenshots show the icon toolbar items (and for iOS, the text items) and the centered Label
with the most recently clicked item:

10:26 AM -

Toolbar emo [Q. O

Toolbarltem 'refresh’ clicked

Toolbaritem ‘edit' clicked

If you tap the ellipsis at the top of the Android screen or the ellipsis at the lower-right corner of the
Windows 10 Mobile screen, the text items are displayed and, in addition, the text items associated with
the icons are also displayed on Windows 10 Mobile:

10:25 AM
Toolbar Dema [4"

iscoves evohen discover

evolve

Toolbarltem 'evolve' clicked

Toolbarltem ‘explore’ clicked

explore

discover

evolve

z » -]

edit search refresh

Chapter 13 Bitmaps 335

Regardless of the platform, the toolbar is the standard way to add common commands to a phone
application.

Button images

Button defines an Image property of type FileImageSource that you can use to supply a small sup-
plemental image that is displayed to the left of the button text. This feature is not intended for an im-
age-only button; if that's what you want, the ImageTap program in this chapter is a good starting
point.

You want the images to be about one-fifth inch in size. That means you want them to render at 32
device-independent units and to show up against the background of the Button. For iOS and the
UWP, that means a black image against a white or transparent background. For Android, Windows 8.1,
and Windows Phone 8.1, you'll want a white image against a transparent background.

All the bitmaps in the Buttonlmage project are from the Action Bar directory of the Android De-
sign Icons collection and the 03_rating_good and 03_rating_bad subdirectories. These are "thumbs
up” and "thumbs down"” images.

The iOS images are from the holo_light directory (black images on transparent backgrounds) with
the following filename conversions:

e drawable-mdpi/ic_action_good.png not renamed
e drawable-xhdpi/ic_action_good.png renamed to ic_action_good@2x.png
And similarly for ic_action_bad.png.

The Android images are from the holo_dark directory (white images on transparent backgrounds)
and include all four sizes from the subdirectories drawable-mdpi (32 pixels square), drawable-hdpi
(48 pixels), drawable-xhdpi (64 pixels), and drawable-xxhdpi (96 pixels square).

The images for the various Windows Runtime projects are all uniformly the 32-pixel bitmaps from
the drawable-mdpi directories.

Here's the XAML file that sets the Icon property for two Button elements:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ButtonImage.ButtonImagePage">

<StackLayout VerticalOptions="Center"
Spacing="50">

<StackLayout.Resources>
<ResourceDictionary>
<Style TargetType="Button">
<Setter Property="HorizontalOptions" Value="Center" />
</Setter.Value>

Chapter 13 Bitmaps 336

</Setter>
</Style>
</ResourceDictionary>
</StackLayout.Resources>

<Button Text="Oh Yeah">
<Button.Image>
<OnPlatform x:TypeArguments="FileImageSource"
i0S="1ic_action_good.png"
Android="1ic_action_good.png"
WinPhone="Images/ic_action_good.png" />
</Button.Image>
</Button>

<Button Text="No Way">
<Button.Image>
<OnPTatform x:TypeArguments="FileImageSource"
i0S="1ic_action_bad.png"
Android="1c_action_bad.png"
WinPhone="Images/ic_action_bad.png" />
</Button.Image>
</Button>
</StackLayout>
</ContentPage>

And here they are:

% © W40

10:30 AM

b OH YEAH & OhYeah

noway » NoWay

It's not much, but the bitmap adds a little panache to the normally text-only Button.

Chapter 13 Bitmaps 337

Another significant use for small bitmaps is the context menu available for items in the Tableview.
But a prerequisite for that is a deep exploration of the various views that contribute to the interactive
interface of Xamarin.Forms. That's coming up in Chapter 15.

But first let's look at an alternative to StackLayout that lets you position child views in a com-
pletely flexible manner.

Chapter 14
Absolute layout

In Xamarin.Forms, the concept of layout encompasses all the ways that various views can be assembled
on the screen. Here's the class hierarchy showing all the classes that derive from Layout:

System.Object

BindableObject
Element
VisualElement
View
Layout

ContentView
Frame

ScrollView

Layout<T>
Absolutelayout
Grid
RelativelLayout
StackLayout

You've already seen ContentView, Frame, and Scrol1view (all of which have a Content property
that you can set to one child), and you've seen StackLayout, which inherits a Children property
from Layout<T> and displays its children in a vertical or horizontal stack. The Grid and Relative-
Layout implement somewhat complex layout models and are explored in future chapters. Absolute-
Layout is the subject of this chapter.

At first, the AbsolutelLayout class seems to implement a rather primitive layout model—one that
harks back to the not-so-good old days of graphical user interfaces when programmers were required
to individually size and position every element on the screen. Yet, you'll discover that AbsoluteLay-
out also incorporates a proportional positioning and sizing feature that helps brings this ancient layout
model into the modern age.

With absoluteLayout, many of the rules about layout that you've learned so far no longer apply:
the HorizontalOptions and VerticalOptions properties that are so important when a view is the
child of a ContentPage or StackLayout have absolutely no effect when a view is a child of an ab-
soluteLayout. A program must instead assign to each child of an AbsoluteLayout a specific loca-
tion in device-independent coordinates. The child can also be assigned a specific size or allowed to size
itself.

You can use AbsoluteLayout either in code or in XAML. Either way, you'll encounter a feature you

Chapter 14 Absolute layout 339

haven't seen yet that is another part of the support provided by BindableObject and Bindable-
Property. This new feature is the attached bindable property. This is a special type of bindable prop-
erty that is defined by one class (in this case the AbsoluteLayout) but which is set on other objects
(the children of the AbsoluteLayout).

AbsoluteLayout in code

You can add a child view to the children collection of an AbsoluteLayout the same way as with
StackLayout:

absolutelLayout.Children.Add(child);

However, you also have other options. The AbsoluteLayout class redefines its Children property to
be of type Absolutelayout.IAbsoluteList<View>, which includes two additional Add methods
that allow you to specify the position of the child relative to the upper-left corner of the Absolute-
Layout. You can optionally specify the child’s size.

To specify both the position and size, you use a Rectangle value. Rectangle is a structure, and
you can create a Rectangle value with a constructor that accepts Point and size values:
Point point = new Point(x, y);

Size size = new Size(width, height);
Rectangle rect = new Rectangle(point, size);

Or you can pass the x, y, width, and height arguments directly to a Rectangle constructor:

Rectangle rect = new Rectangle(x, y, width, height);

You can then use an alternative Add method to add a view to the Children collection of the Abso-
lutelLayout:

absolutelLayout.Children.Add(child, rect);

The x and y values indicate the position of the upper-left corner of the child view relative to the up-
per-left corner of the AbsoluteLayout parent in device-independent coordinates. If you prefer the
child to size itself, you can use just a Point value with no size value:

absolutelLayout.Children.Add(child, point);

Here's a little demo in a program named AbsoluteDemo:

public class AbsoluteDemoPage : ContentPage

{
public AbsoluteDemoPage()

{

AbsolutelLayout absolutelLayout = new Absolutelayout

{
Padding = new Thickness(50)

1

Chapter 14 Absolute layout

absolutelayout.Children.Add(
new BoxView

{

Color = Color.Accent

}

new Rectangle(0, 10, 200, 5));

absoTlutelayout.Children.Add(
new BoxView

{

Color = Color.Accent

3,

new Rectangle(0, 20, 200, 5));

absoTlutelayout.Children.Add(
new BoxView

{

Color = Color.Accent
1,

new Rectangle(10, 0, 5, 65));

absoTlutelayout.Children.Add(
new BoxView
{
Color = Color.Accent
1,

new Rectangle(20, 0, 5, 65));

absolutelLayout.Children.Add(
new Label

{

Text = "Stylish Header",

FontSize = 24

1,
new Point(30, 25));

absoTlutelayout.Children.Add(

new Label
{
FormattedText = new FormattedString
{
Spans =
{
new Span
{
Text = "Although the "
3,
new Span
{
Text = "AbsolutelLayout",
FontAttributes = FontAttributes.Italic
1,

new Span

340

Chapter 14 Absolute layout 341

{
Text = " is usually employed for purposes other " +
"than the display of text using "
1,
new Span
{
Text = "Label",
FontAttributes = FontAttributes.Italic
1,
new Span
{
Text = ", obviously it can be used in that way. " +
"The text continues to wrap nicely " +
"within the bounds of the container " +
"and any padding that might be applied."
}

1,
new Point(0, 80));

this.Content = absolutelayout;

Four Boxview elements form an overlapping crisscross pattern on the top to set off a header, and then
a paragraph of text follows. The program positions and sizes all the Boxview elements, while it merely
positions the two Label views because they size themselves:

3k W02

Carrier ¥ 27 P

||Stylish Header

Although the AbsoluteLayout is
usually employed for purposes

Stylish Header

Stylish Header

other than the display of text using
Label, obviously it can be used in
that way. The text continues to
wrap nicaly within the bounds of
the container and any padding that
might be applied.

A little trial and error was required to get the sizes of the four Boxview elements and the header

Although the Absolutel ayout is
usually employed for purposes
ather than the display of text using
Label, obviously it can be used in
that way. The text continues to wrap
nicely within the bounds of the
container and any padding that
might be applied.

Chapter 14 Absolute layout 342

text to be approximately the same size. But notice that the Boxview elements overlap: AbsoluteLay-
out allows you to overlap views in a very freeform way that's simply impossible with stackLayout (or
without using transforms, which are covered in a later chapter).

The big drawback of AbsoluteLayout is that you need to come up with the positioning coordi-
nates yourself or calculate them at run time. Anything not explicitly sized—such as the two Label
views—will calculate a size for itself when the page is laid out. But that size is not available until then. If
you wanted to add another paragraph after the second Labe1, what coordinates would you use?

Actually, you can position multiple paragraphs of text by putting a StackLayout (or a StackLay-
out inside a Scrollview) in the AbsoluteLayout and then putting the Label views in that. Layouts
can be nested.

As you can surmise, using AbsoluteLayout is more difficult than using stackLayout. In general
it's much easier to let Xamarin.Forms and the other Layout classes handle much of the complexity of
layout for you. But for some special uses, AbsoluteLayout is ideal.

Like all visual elements, AbsoluteLayout has its HorizontalOptions and VerticalOptions
properties set to Fill by default, which means that AbsoluteLayout fills its container. With other
settings of HorizontalOptions and VerticalOptions, an AbsoluteLayout sizes itself to the size
of its contents, but there are some exceptions: Try giving the AbsoluteLayout in the AbsoluteDemo
program a BackgroundColor so that you can see exactly the space it occupies on the screen. It nor-
mally fills the whole page, but if you set the HorizontalOptions and VerticalOptions properties
of the Absolutelayout to Center, you'll see that the size that the AbsoluteLayout computes for
itself includes the contents and padding but only one line of the paragraph of text.

Figuring out sizes for visual elements in an AbsoluteLayout can be tricky. One simple approach is
demonstrated by the ChessboardFixed program below. The program name has the suffix Fixed be-
cause the position and size of all the squares within the chessboard are set in the constructor. The con-
structor cannot anticipate the size of the screen, so it arbitrarily sets the size of each square to 35 units,
as indicated by the squaresize constant at the top of the class. This value should be sufficiently small
for the chessboard to fit on the screen of any device supported by Xamarin.Forms.

Notice that the AbsoluteLayout is centered so it will have a size that accommodates all its chil-
dren. The board itself is given a color of buff, which is a pale yellow-brown, and then 32 dark-green
BoxView elements are displayed in every other square position:

public class ChessboardFixedPage : ContentPage

{
public ChessboardFixedPage()

{

const double squareSize = 35;

AbsolutelLayout absolutelLayout = new Absolutelayout

{
BackgroundColor = Color.FromRgb(240, 220, 130),
HorizontalOptions = LayoutOptions.Center,

Chapter 14 Absolute layout

VerticalOptions = LayoutOptions.Center

b

for (int row = 0; row < 8; row++)

{
for (int col = 0; col < 8; col++)
{

// Skip every other square.

if (((row A col) & 1) == 0)

continue;

BoxView boxView = new BoxView

{
Color = Color.FromRgb(0, 64, 0)
};

Rectangle rect = new Rectangle(col * squareSize,
row * squareSize,
squareSize, squareSize);

absoluteLayout.Children.Add(boxView, rect);

}
}

this.Content = absolutelLayout;

343

The exclusive-or calculation on the row and col variables causes a Boxview to be created only when

either the row or col variable is odd but both are not odd. Here's the result:

ER A P RET]

Chapter 14 Absolute layout 344

Attached bindable properties

If we wanted this chessboard to be as large as possible within the confines of the screen, we'd need to
add the Boxview elements to the AbsoluteLayout during the SizeChanged handler for the page, or
the sizeChanged handler would need to find some way to change the position and size of the Box-
View elements already in the children collection.

Both options are possible, but the second one is preferred because we can fill the children collec-
tion of the AbsoluteLayout only once in the program'’s constructor and then adjust the sizes and po-
sition later.

At first encounter, the syntax that allows you to set the position and size of a child already in an ab-
soluteLayout might seem somewhat odd. If view is an object of type view and rect is a Rectan-
gle value, here's the statement that gives view a location and size of rect:

Absolutelayout.SetLayoutBounds(view, rect);

That's not an instance of AbsoluteLayout on which you're making a SetLayoutBounds call. No.
That's a static method of the AbsoluteLayout class. You can call AbsoluteLayout.SetLayout-
Bounds either before or after you add the view child to the AbsoluteLayout children collection. In-
deed, because it's a static method, you can call the method before the AbsoluteLayout has even
been instantiated! A particular instance of AbsoluteLayout is not involved at all in this SetLayout-
Bounds method.

Let's look at some code that makes use of this mysterious AbsoluteLayout.SetLayoutBounds
method and then examine how it works.

The ChessboardDynamic program page constructor uses the simple add method without position-
ing or sizing to add 32 BoxView elements to the AbsoluteLayout in one for loop. To provide a little
margin around the chessboard, the AbsoluteLayout is a child of a Contentview and padding is set
on the page. This ContentView has a SizeChanged handler to position and size the AbsoluteLay-
out children based on the size of the container:

public class ChessboardDynamicPage : ContentPage

{

AbsolutelLayout absolutelayout;

public ChessboardDynamicPage()

{
absolutelayout = new Absolutelayout
{
BackgroundColor = Color.FromRgh(240, 220, 130),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center
b

for (int i = 0; i < 32; i++)

{

Chapter 14 Absolute layout 345

BoxView boxView = new BoxView

{
Color = Color.FromRgb(0, 64, 0)
};
absolutelLayout.Children.Add(boxView);
}
ContentView contentView = new ContentView
{
Content = absolutelayout
b

contentView.SizeChanged += OnContentViewSizeChanged;

this.Padding = new Thickness(5, Device.OnPlatform(25, 5, 5), 5, 5);
this.Content = contentView;

void OnContentViewSizeChanged(object sender, EventArgs args)

{
ContentView contentView = (ContentView)sender;
double squareSize = Math.Min(contentView.Width, contentView.Height) / 8;
int index = 0;

for (int row = 0; row < 8; row++)
{
for (int col = 0; col < 8; col++)
{
// Skip every other square.
if (((row A col) & 1) == 0)
continue;

View view = absoluteLayout.Children[index];
Rectangle rect = new Rectangle(col * squareSize,

o

row * squareSize,
squareSize, squareSize);

Absolutelayout.SetLayoutBounds(view, rect);
index++;

The sizeChanged handler contains much the same logic as the constructor in ChessboardFixed ex-
cept that the Boxview elements are already in the Children collection of the AbsoluteLayout. All
that's necessary is to position and size each Boxview when the size of the container changes—for ex-
ample, during phone orientation changes. The for loop concludes with a call to the static Absolute-
Layout.SetLayoutBounds method for each BoxVview with a calculated Rectangle value.

Now the chessboard is sized to fit the screen with a little margin:

Chapter 14 Absolute layout 346

Obviously, the mysterious AbsoluteLayout.SetLayoutBounds method works, but how? What
does it do? And how does it manage to do what it does without referencing a particular Absolute-
Layout object?

The Absolutelayout.SetLayoutBounds call that you've just seen looks like this:

Absolutelayout.SetLayoutBounds(view, rect);

That method call is exactly equivalent to the following call on the child view:

view.SetValue(Absolutelayout.LayoutBoundsProperty, rect);

This is a setvalue call on the child view. These two method calls are exactly equivalent because the

second one is how AbsoluteLayout internally defines the SetLayoutBounds static method. Abso-
lutelayout.SetLayoutBounds is merely a shortcut method, and the similar static AbsoluteLay-
out.GetLayoutBounds method is a shortcut for a Getvalue call.

You'll recall that setvalue and Getvalue are defined by BindableObject and used to imple-
ment bindable properties. Judging solely from the name, AbsolutelLayout.LayoutBoundsProperty
certainly appears to be a BindableProperty object, and that is so. However, it is a very special type
of bindable property called an attached bindable property.

Normal bindable properties can be set only on instances of the class that defines the property or on
instances of a derived class. Attached bindable properties can break that rule: Attached bindable prop-
erties are defined by one class—in this case AbsoluteLayout—Dbut set on another object, in this case
a child of the absoluteLayout. The property is sometimes said to be attached to the child, hence the
name.

Chapter 14 Absolute layout 347

The child of the AbsoluteLayout is ignorant of the purpose of the attached bindable property
passed to its Setvalue method, and the child makes no use of that value in its own internal logic. The
Setvalue method of the child simply saves the Rectangle value in a dictionary maintained by Bind-
ableObject within the child, in effect attaching this value to the child to be possibly used at some
point by the parent—the AbsoluteLayout object.

When the absoluteLayout is laying out its children, it can interrogate the value of this property
on each child by calling the AbsolutelLayout.GetLayoutBounds static method on the child, which
in turn calls Getvalue on the child with the AbsoluteLayout.LayoutBoundsProperty attached
bindable property. The call to Getvalue fetches the Rectangle value from the dictionary stored
within the child.

You might wonder: Why is such a roundabout process required to set positioning and sizing infor-
mation on a child of the AbsoluteLayout? Wouldn't it have been easier for view to define simple ¥,
Y, Width, and Height properties that an application could set?

Maybe, but those properties would be suitable only for AbsoluteLayout. When using the Grid, an
application needs to specify Row and Column values on the children of the Grid, and when using a
layout class of your own devising, perhaps some other properties are required. Attached bindable
properties can handle all these cases and more.

Attached bindable properties are a general-purpose mechanism that allows properties defined by
one class to be stored in instances of another class. You can define your own attached bindable prop-
erties by using static creation methods of BindableObject named CreateAttached and Cre-
ateAttachedReadOnly. (You'll see an example in Chapter 27, “Custom renderers.”)

Attached properties are mostly used with layout classes. As you'll see, Grid defines attached binda-
ble properties to specify the row and column of each child, and RelativeLayout also defines at-
tached bindable properties.

Earlier you saw additional Add methods defined by the Children collection of AbsoluteLayout.
These are actually implemented using these attached bindable properties. The call

absolutelLayout.Children.Add(view, rect);

is implemented like this:

Absolutelayout.SetlLayoutBounds(view, rect);
absolutelLayout.Children.Add(view);

The add call with only a Point argument merely sets the child’s position and lets the child size itself:
absolutelLayout.Children.Add(view, new Point(x, y));

This is implemented with the same static AbsolutelLayout.SetLayoutBounds calls but using a spe-
cial constant for the view's width and height:

Absolutelayout.SetlLayoutBounds (view,
new Rectangle(x, y, AbsolutelLayout.AutoSize, Absolutelayout.AutoSize));

Chapter 14 Absolute layout 348

absolutelLayout.Children.Add(view);

You can use that AbsoluteLayout.AutoSize constant in your own code.

Proportional sizing and positioning

As you saw, the ChessboardDynamic program repositions and resizes the Boxview children with cal-
culations based on the size of the AbsoluteLayout itself. In other words, the size and position of each
child is proportional to the size of the container. Interestingly, this is often the case with an Absolute-
Layout, and it might be nice if AbsoluteLayout accommodated such situations automatically.

It does!

AbsoluteLayout defines a second attached bindable property, named LayoutFlagsProperty,
and two more static methods, named setLayoutFlags and GetLayoutFlags. Setting this attached
bindable property allows you to specify child position coordinates or sizes (or both) that are propor-
tional to the size of the AbsoluteLayout. When laying out its children, AbsoluteLayout scales those
coordinates and sizes appropriately.

You select how this feature works with one or more members of the AbsoluteLayoutFlags enu-
meration:

e None (equal to 0)

e XProportional (1)

e YProportional (2)

e PositionProportional (3)
e [WidthProportional (4)

e HeightProportional (8)

e SizeProportional (12)

e A1l (\xFFFFFFFF)

You can set a proportional position and size on a child of AbsoluteLayout using the two static
methods:

Absolutelayout.SetlLayoutBounds(view, rect);
Absolutelayout.SetLayoutFlags(view, AbsolutelLayoutFlags.A11);

Or you can use a version of the add method on the children collection that accepts an Absolute-
LayoutFlags enumeration member:

absolutelLayout.Children.Add(view, rect, AbsolutelLayoutFlags.Al11);

Chapter 14 Absolute layout 349

For example, if you use the sizeProportional flag and set the width of the child to 0.25 and the
height to 0.10, the child will be one-quarter of the width of the AbsoluteLayout and one-tenth the
height. Easy enough.

The PositionProportional flag is similar, but it takes the size of the child into account: a posi-
tion of (0, 0) puts the child in the upper-left corner, a position of (1, 1) puts the child in the lower-right
corner, and a position of (0.5, 0.5) centers the child within the AbsoluteLayout. Taking the size of the
child into account is great for some tasks—such as centering a child in an AbsoluteLayout or display-
ing it against the right or bottom edge—but a bit awkward for other tasks.

Here's ChessboardProportional. The bulk of the job of positioning and sizing has been moved
back to the constructor. The sizeChanged handler now merely maintains the overall aspect ratio by
setting the WidthRequest and HeightRequest properties of the AbsoluteLayout to the minimum
of the width and height of the Contentview. Remove that SizeChanged handling and the chess-
board expands to the size of the page less the padding.

public class ChessboardProportionalPage : ContentPage

{

AbsolutelLayout absolutelayout;

public ChessboardProportionalPage()
{
absolutelayout = new Absolutelayout
{
BackgroundColor = Color.FromRgbh(240, 220, 130),
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center
b

for (int row = 0; row < 8; row++)
{
for (int col = 0; col < 8; col++)
{
// Skip every other square.
if (((row A col) & 1) == 0)
continue;

BoxView boxView = new BoxView
{
Color = Color.FromRgb(0, 64, 0)
};
Rectangle rect = new Rectangle(col .0, // x
.0, //y
, // width
) // height

absoluteLayout.Children.Add(boxView, rect, AbsolutelLayoutFlags.A11);

Chapter 14 Absolute layout 350

ContentView contentView = new ContentView

{

Content = absolutelayout
b

contentView.SizeChanged += OnContentViewSizeChanged;

this.Padding = new Thickness(5, Device.OnPlatform(25, 5, 5), 5, 5);
this.Content = contentView;

}

void OnContentViewSizeChanged(object sender, EventArgs args)

{
ContentView contentView = (ContentView)sender;
doubTle boardSize = Math.Min(contentView.Width, contentView.Height);
absolutelayout.WidthRequest = boardSize;
absolutelayout.HeightRequest = boardSize;

}

}
The screen looks the same as the ChessboardDynamic program.

Each BoxView is added to the AbsoluteLayout with the following code. All the denominators are
floating-point values, so the results of the divisions are converted to double:

Rectangle rect = new Rectangle(col / 7.0, // X
row / 7.0, /]y
1/ 8.0, // width
1/ 8.0); // height

absolutelLayout.Children.Add(boxView, rect, AbsolutelLayoutFlags.A11);

The width and height are always equal to one-eighth the width and height of the AbsoluteLayout.
That much is clear. But the row and co1l variables are divided by 7 (rather than 8) for the relative x and
y coordinates. The row and col variables in the for loops range from 0 through 7. The row and col
values of 0 correspond to left or top, but row and co1 values of 7 must map to x and y coordinates of
1 to position the child against the right or bottom edge.

If you think you might need some solid rules to derive proportional coordinates, read on.

Working with proportional coordinates

Working with proportional positioning in an AbsoluteLayout can be tricky. Sometimes you need to
compensate for the internal calculation that takes the size into account. For example, you might prefer
to specify coordinates so that an X value of 1 means that the left edge of the child is positioned at the
right edge of the AbsoluteLayout, and you'll need to convert that to a coordinate that absolute-
Layout understands.

In the discussion that follows, a coordinate that does not take size into account—a coordinate in

Chapter 14 Absolute layout 351

which 1 means that the child is positioned just outside the right or bottom edge of the AbsoluteLay-
out—is referred to as a fractional coordinate. The goal of this section is to develop rules for converting
a fractional coordinate to a proportional coordinate that you can use with AbsoluteLayout. This con-
version requires that you know the size of the child view.

Suppose you're putting a view named child in an AbsoluteLayout named absoluteLayout,
with a layout bounds rectangle for the child named layoutBounds. Let's restrict this analysis to hori-
zontal coordinates and sizes. The process is the same for vertical coordinates and sizes.

This child must first get a width in some way. The child might calculate its own width, or a width in
device-independent units might be assigned to it via the LayoutBounds attached property. But let's
assume that the AbsoluteLayoutFlags.WidthProportional flag is set, which means that the
width is calculated based on the width field of the layout bounds and the width of the AbsoluteLay-

out:

child. Width = layoutBounds. Width » absoluteLayout. Width

If the AbsoluteLayoutFlags.XProportional flag is also set, then internally the AbsoluteLay-
out calculates a coordinate for the child relative to itself by taking the size of the child into account:

relativeChildCoordinate. X = (absoluteLayout. Width — child. Width) * layoutBounds. X

For example, if the AbsoluteLayout has a width of 400, and the child has a width of 100, and 1ay-
outBounds.X is 0.5, then relativeChildCoordinate.X is calculated as 150. This means that the left
edge of the child is 150 pixels from the left edge of the parent. That causes the child to be horizontally
centered within the AbsoluteLayout.

It's also possible to calculate a fractional child coordinate:

relativeChildCoordinate. X
absoluteLayout. Width

fractionalChildCoordinate. X =

This is not the same as the proportional coordinate because a fractional child coordinate of 1 means
that the child’s left edge is just outside the right edge of the AbsoluteLayout, and hence the child is
outside the surface of the AbsoluteLayout. To continue the example, the fractional child coordinate
is 150 divided by 400 or 0.375. The left of the child view is positioned at (0.375 * 400) or 150 units from
the left edge of the AbsoluteLayout.

Let's rearrange the terms of the formula that calculates the relative child coordinate to solve for
layoutBounds.X:

relativeChildCoordinate. X
(absoluteLayout. Width — child. Width)

layoutBounds.X =

And let's divide both the top and bottom of that ratio by the width of the AbsoluteLayout:

fractionalChildCoordinate. X
(1 _ child. Width)
absoluteLayout. Width

layoutBounds. X =

Chapter 14 Absolute layout 352

If you're also using proportional width, then that ratio in the denominator is 1ayout-
Bounds.Width:

fractionalChildCoordinate. X
(1 — layoutBounds. Width)

layoutBounds. X =

And that is often a very handy formula, for it allows you to convert from a fractional child coordinate
to a proportional coordinate for use in the layout bounds rectangle.

In the ChessboardProportional example, when col equals 7, the fractionalChildCoordi-
nate.X is 7 divided by the number of columns (8), or 7/8. The denominator is 1 minus 1/8 (the pro-
portional width of the square), or 7/8 again. The ratio is 1.

Let's look at an example where the formula is applied in code to fractional coordinates. The Propor-
tionalCoordinateCalc program attempts to reproduce this simple figure using eight blue Boxview
elements on a pink AbsolutelLayout:

The whole figure has a 2:1 aspect. You can think of the figure as comprising four horizontal rectangles
and four vertical rectangles. The pairs of horizontal blue rectangles at the top and bottom have a
height of 0.1 fractional units (relative to the height of the AbsoluteLayout) and are spaced 0.1 units
from the top and bottom and between each other. The vertical blue rectangles appear to be spaced
and sized similarly, but because the aspect ratio is 2:1, the vertical rectangles have a width of 0.05 units
and are spaced with 0.05 units from the left and right and between each other.

The absoluteLayout is defined and centered in a XAML file and colored pink:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ProportionalCoordinateCalc.ProportionalCoordinateCalcPage">
<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="5, 25, 5, 5"
Android="5"
WinPhone="5" />
</ContentPage.Padding>

<ContentView SizeChanged="OnContentViewSizeChanged">
<AbsolutelLayout x:Name="absolutelLayout"
BackgroundColor="Pink"
HorizontalOptions="Center"
VerticalOptions="Center" />
</ContentView>

Chapter 14 Absolute layout 353

</ContentPage>

The code-behind file defines an array of Rectangle structures with the fractional coordinates for
each of the eight Boxview elements. In a foreach loop, the program applies a slight variation of the
final formula shown above. Rather than a denominator equal to 1 minus the value of 1ayout-
Bounds.Width (or layoutBounds.Height), it uses the width (or Height) of the fractional bounds,
which is the same value.

public partial class ProportionalCoordinateCalcPage : ContentPage

{
pubTlic ProportionalCoordinateCalcPage()
{
InitializeComponent();
Rectangle[] fractionalRects =
{
new Rectangle(0.05, 0.1, 0.90, 0.1), // outer top
new Rectangle(0.05, 0.8, 0.90, 0.1), // outer bottom
new Rectangle(0.05, 0.1, 0.05, 0.8), // outer Tleft
new Rectangle(0.90, 0.1, 0.05, 0.8), // outer right
new Rectangle(0.15, 0.3, 0.70, 0.1), // inner top
new Rectangle(0.15, 0.6, 0.70, 0.1), // inner bottom
new Rectangle(0.15, 0.3, 0.05, 0.4), // inner Tleft
new Rectangle(0.80, 0.3, 0.05, 0.4), // inner right
b
foreach (Rectangle fractionalRect in fractionalRects)
{
Rectangle TayoutBounds = new Rectangle
{
// Proportional coordinate calculations.
X = fractionalRect.X / (1 - fractionalRect.Width),
Y = fractionalRect.Y / (1 - fractionalRect.Height),
Width = fractionalRect.Width,
Height = fractionalRect.Height
}
absolutelLayout.Children.Add(
new BoxView
{
Color = Color.Blue
1,
TlayoutBounds,
AbsolutelLayoutFlags.Al1);
}
}

void OnContentViewSizeChanged(object sender, EventArgs args)

{

ContentView contentView = (ContentView)sender;

Chapter 14 Absolute layout 354

// Figure has an aspect ratio of 2:1.

doubTle height = Math.Min(contentView.Width / 2, contentView.Height);
absolutelLayout.WidthRequest = 2 * height;
absolutelayout.HeightRequest = height;

}
The sizeChanged handler simply fixes the aspect ratio.

Here's the result:

E R REE

1135 AM

And, of course, you can turn the phone sideways and see a larger figure in landscape mode, which
you'll have to view by turning this book sideways:

Chapter 14 Absolute layout 355

AbsoluteLayout and XAML

As you've seen, you can position and size a child of an absolutelLayout in code by using one of the
Add methods available on the children collection or by setting an attached property through a static
method call.

But how on earth do you set the position and size of AbsoluteLayout children in XAML?

A very special syntax is involved. This syntax is illustrated by this XAML version of the earlier Abso-
luteDemo program, called AbsoluteXamlDemo:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="AbsoluteXamlDemo.AbsoluteXam1DemoPage">

<Absolutelayout Padding="50">
<BoxView Color="Accent"
AbsolutelLayout.LayoutBounds="0, 10, 200, 5" />

<BoxView Color="Accent"
Absolutelayout.LayoutBounds="0, 20, 200, 5" />

<BoxView Color="Accent"
AbsolutelLayout.LayoutBounds="10, 0, 5, 65" />

<BoxView Color="Accent"
AbsolutelLayout.LayoutBounds="20, 0, 5, 65" />

Chapter 14 Absolute layout 356

<Label Text="Stylish Header"
FontSize="24"
AbsolutelLayout.lLayoutBounds="30, 25, AutoSize, AutoSize" />

<Label AbsolutelLayout.LayoutBounds="0, 80, AutoSize, AutoSize">
<Label.FormattedText>
<FormattedString>

<Span Text="AbsolutelLayout"
FontAttributes="Italic" />
<Span Text=
is usually employed for purposes other
than the display of text using " />
<Span Text="Label"
FontAttributes="Italic" />
<Span Text=
, obviously it can be used in that way.
The text continues to wrap nicely
within the bounds of the container
and any padding that might be applied." />
</FormattedString>
</Label.FormattedText>
</Label>
</AbsolutelLayout>
</ContentPage>

The code-behind file contains only an TnitializeComponent call.

Here's the first Boxview:

<BoxView Color="Accent"
Absolutelayout.lLayoutBounds="0, 10, 200, 5" />

In XAML, an attached bindable property is expressed as an attribute that consists of a class name (ab-
soluteLayout) and a property name (LayoutBounds) separated by a period. Whenever you see such
an attribute, it's always an attached bindable property. That's the only application of this attribute
syntax.

In summary, combinations of class names and property names only appear in XAML in three specific
contexts: If they appear as elements, they are property elements. If they appear as attributes, they are
attached bindable properties. And the only other context for a class name and property name is an ar-
gument to an x:Static markup extension.

The AbsoluteLayout.LayoutBounds attribute is commonly set to four numbers separated by
commas. You can also express AbsoluteLayout.LayoutBounds as a property element:

<BoxView Color="Accent">
<AbsolutelLayout.LayoutBounds>
0, 10, 200, 5
</AbsolutelLayout.LayoutBounds>
</BoxView>

Chapter 14 Absolute layout 357

Those four numbers are parsed by the BoundsTypeConverter and not the RectangleTypeCon-
verter because the BoundsTypeConverter allows the use of Autosize for the width and height
parts. You can see the AutoSize arguments later in the AbsoluteXamlDemo XAML file:

<Label Text="Stylish Header"

FontSize="24"
AbsolutelLayout.LayoutBounds="30, 25, AutoSize, AutoSize" />

Or you can leave them out:

<Label Text="Stylish Header"
FontSize="24"
AbsolutelLayout.LayoutBounds="30, 25" />

The odd thing about attached bindable properties that you specify in XAML is that they don't really
exist! There is no field, property, or method in AbsoluteLayout called LayoutBounds. There is cer-
tainly a public static read-only field of type BindableProperty named LayoutBoundsProperty,
and there are public static methods named setLayoutBounds and GetLayoutBounds, but there is
nothing named LayoutBounds. The XAML parser recognizes the syntax as referring to an attached
bindable property and then looks for LayoutBoundsProperty in the AbsoluteLayout class. From
there it can call setvalue on the target view with that BindableProperty object together with the
VﬂuefﬂﬂntheBoundsTypeConverteL

The Chessboard series of programs seems an unlikely candidate for duplicating in XAML because
the file would need 32 instances of BoxView without the benefit of loops. However, the ChessboardX-
aml program shows how to specify two properties of Boxview in an implicit style, including the Abso-
lutelLayout.LayoutFlags attached bindable property:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ChessboardXaml.ChessboardXamlPage">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0s="5, 25, 5, 5"
Android="5"
WinPhone="5" />
</ContentPage.Padding>

<ContentPage.Resources>
<ResourceDictionary>
<Style TargetType="BoxView">
<Setter Property="Color" Value="#004000" />
<Setter Property="AbsolutelLayout.LayoutFlags" Value="A11" />
</Style>
</ResourceDictionary>
</ContentPage.Resources>

<ContentView SizeChanged="OnContentViewSizeChanged">
<AbsolutelLayout x:Name="absolutelLayout"
BackgroundColor="#FODC82"

Chapter 14

<BoxView
<BoxView
<BoxView
<BoxView

<BoxView
<BoxView
<BoxView
<BoxView

<BoxView
<BoxView
<BoxView
<BoxView

<BoxView
<BoxView
<BoxView
<BoxView

<BoxView
<BoxView
<BoxView
<BoxView

<BoxView
<BoxView
<BoxView
<BoxView

<BoxView
<BoxView
<BoxView
<BoxView

<BoxView
<BoxView
<BoxView
<BoxView

Absolute layout

VerticalOptions="Center"
HorizontalOptions="Center">

AbsolutelLayout.
AbsolutelLayout.
AbsolutelLayout.
Absolutelayout.

AbsolutelLayout.
AbsolutelLayout.
Absolutelayout.
AbsolutelLayout.

AbsolutelLayout.
Absolutelayout.
AbsolutelLayout.
AbsolutelLayout.

AbsolutelLayout.
AbsolutelLayout.
Absolutelayout.
AbsolutelLayout.

Absolutelayout.
AbsolutelLayout.
AbsolutelLayout.
Absolutelayout.

Absolutelayout.
Absolutelayout.
AbsolutelLayout.
Absolutelayout.

AbsolutelLayout.
Absolutelayout.
Absolutelayout.
AbsolutelLayout.

Absolutelayout.
Absolutelayout.
Absolutelayout.
Absolutelayout.

</Absolutelayout>

</ContentView>

</ContentPage>

Yes, it's a lot of individual BoxView elements, but you can’t argue with the cleanliness of the file. The

LayoutBounds="0.
LayoutBounds="0.
LayoutBounds="0.
LayoutBounds="0.

LayoutBounds="0.
LayoutBounds="0.
LayoutBounds="0.
LayoutBounds="1.

LayoutBounds="0.
LayoutBounds="0.
LayoutBounds="0.
LayoutBounds="0.

LayoutBounds="0.
LayoutBounds="0.
LayoutBounds="0.
LayoutBounds="1.

LayoutBounds="0.
LayoutBounds="0.
LayoutBounds="0.
LayoutBounds="0.

LayoutBounds="0.
LayoutBounds="0.
LayoutBounds="0.
LayoutBounds="1.

LayoutBounds="0.
LayoutBounds="0.
LayoutBounds="0.
LayoutBounds="0.

LayoutBounds="0.
LayoutBounds="0.
LayoutBounds="0.
LayoutBounds="1.

code-behind file simply adjusts the aspect ratio:

public partial class ChesshoardXamlPage :

{

public ChessboardXamlPage ()

{

InitializeComponent();

00,
29,
57,
86,

14,
43,
71,
00,

00,
29,
57,
86,

14,
43,
71,
00,

00,
29,
57,
86,

14,
43,
71,
00,

00,
29,
57,
86,

14,
43,
71,
00,

ContentPage

o O O o o O © o o O O o o O O o o O © o o O O © o O O o

e

.00,
.00,
.00,
.00,

.14,
.14,
.14,
.14,

.29,
.29,
.29,
.29,

.43,
.43,
.43,
.43,

.57,
.57,
.57,
.57,

.71,
.71,
.71,
.71,

.86,
.86,
.86,
.86,

.00,
.00,
.00,
.00,

o O o o [=NeNeNo) o O O o o O o o o O oo [l o) o O o o

o O o o

.125,
.125,
.125,
.125,

.125,
.125,
.125,
.125,

.125,
.125,
.125,
.125,

.125,
.125,
.125,
.125,

.125,
.125,
.125,
.125,

.125,
.125,
.125,
.125,

.125,
.125,
.125,
.125,

.125,
.125,
.125,
.125,

o O o o [« eleNe)

(=N o)

o O o o

o O o o o O oo

o O O o

.125"
.125"

125"

.125"

.125"
.125"
.125"
.125"

.125"

125"

.125"
.125"

.125"
.125"
.125"
.125"

125"

.125"
.125"
.125"

.125"
.125"
.125"
.125"

.125"
.125"
.125"
.125"

.125"
.125"
.125"

125"

/>
/>
/>
/>

/>
/>
/>
/>

/>
/>
/>
/>

/>
/>
/>
/>

/>
/>
/>
/>

/>
/>
/>
/>

/>
/>
/>
/>

/>
/>
/>
/>

Chapter 14 Absolute layout 359

}

void OnContentViewSizeChanged(object sender, EventArgs args)

{
ContentView contentView = (ContentView)sender;
double boardSize = Math.Min(contentView.Width, contentView.Height);
absolutelayout.WidthRequest = boardSize;
absolutelayout.HeightRequest = boardSize;

}

}
Overlays

The ability to overlap children in the AbsoluteLayout has some interesting and useful applications,
among them being the ability to cover up your entire user interface with something sometimes called
an overlay. Perhaps your page is carrying out a lengthy job and you don’'t want the user interacting
with the page until the job is completed. You can place a semitransparent overlay over the page and
perhaps display an ActivityIndicator Or a ProgressBar.

Here's a program called SimpleOverlay that demonstrates this technique. The XAML file begins
with an AbsolutelLayout filling the entire page. The first child of that AbsoluteLayout isa Stack-
Layout, which you want to fill the page as well. However, the default HorizontalOptions and ver-
ticalOptions settings of Fi11 on the stackLayout don’t work for children of an AbsoluteLayout.
Instead, the stackLayout fills the AbsoluteLayout through the use of the AbsoluteLayout.Lay-
outBounds and AbsolutelLayout.LayoutFlags attached bindable properties:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="SimpleOverlay.SimpleOverlayPage">
<AbsolutelLayout>
<StackLayout Absolutelayout.lLayoutBounds="0, 0, 1, 1"
AbsoTlutelLayout.LayoutFlags="A11">
<Label Text=
"This might be a page full of user-interface objects except
that the only functional user-interface object on the page
is a Button."
FontSize="Medium"
VerticalOptions="CenterAndExpand"
HorizontalTextAlignment="Center" />

<Button Text="Run 5-Second Job"
FontSize="Large"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center"
Clicked="0OnButtonClicked" />

<Button Text="A Do-Nothing Button"
FontSize="Large"
VerticalOptions="CenterAndExpand"

Chapter 14 Absolute layout 360

HorizontalOptions="Center" />

<Label Text=
"This continues the page full of user-interface objects except
that the only functional user-interface object on the page
is the Button."
FontSize="Medium"
VerticalOptions="CenterAndExpand"
HorizontalTextAlignment="Center" />
</StackLayout>

<!-- Overlay -->

<ContentView x:Name="overlay"
Absolutelayout.LayoutBounds="0, 0, 1, 1"
AbsolutelLayout.LayoutFlags="A11"
IsVisible="False"
BackgroundColor="#C0808080"
Padding="10, 0">

<ProgressBar x:Name="progressBar"
VerticalOptions="Center" />

</ContentView>
</AbsolutelLayout>
</ContentPage>

The second child of the AbsoluteLayout is a ContentView, which also fills the AbsoluteLayout
and basically sits on top of the stackLayout. However, notice that the Isvisible property is set to
False, which means that this Contentview and its children do not participate in the layout. The con-
tentView is still a child of the AbsoluteLayout, butit's simply skipped when the layout system is
sizing and rendering all the elements of the page.

This contentView is the overlay. When Isvisible is set to True, it blocks user input to the views
below it. The BackgroundColor is set to a semitransparent gray, and a ProgressBar is vertically cen-
tered within it.

A ProgressBar resembles a S1ider without a thumb. A ProgressBar is always horizontally ori-
ented. Do not set the HorizontalOptions property of a ProgressBar to Start, Center, or End
unless you also set its WidthRequest property.

A program can indicate progress by setting the Progress property of the ProgressBar to a value
between 0 and 1. This is demonstrated in the C1icked handler for the only functional Button in the
program. This handler simulates a lengthy job being performed in code with a timer that determines
when five seconds have elapsed:

public partial class SimpleOverlayPage : ContentPage

{
public SimpleOverlayPage()

{

InitializeComponent();

Chapter 14 Absolute layout 361

void OnButtonClicked(object sender, EventArgs args)

{

// Show overlay with ProgressBar.
overlay.IsVisible = true;

TimeSpan duration = TimeSpan.FromSeconds(5);
DateTime startTime = DateTime.Now;

// Start timer.
Device.StartTimer(TimeSpan.FromSeconds(0.1), O =>

{

s

double progress = (DateTime.Now - startTime).TotalMilliseconds /
duration.TotalMiTlTliseconds;

progressBar.Progress = progress;

bool continueTimer = progress < 1;

if (!continueTimer)
{
// Hide overlay.
overlay.IsVisible = false;
}

return continueTimer;

The Clicked handler begins by setting the Tsvisible property of the overlay to true, which re-
veals the overlay and its child ProgressBar and prevents further interaction with the user interface
underneath. The timer is set for one-tenth second and calculates a new Progress property for the
ProgressBar based on the elapsed time. When the five seconds are up, the overlay is again hidden
and the timer callback returns false.

Here's what it looks like with the overlay covering the page and the lengthy job in progress:

Chapter 14 Absolute layout 362

An overlay need not be restricted to a ProgressBar or an ActivityIndicator. You can include a
Cancel button or other views.

Some fun

As you can probably see by now, the AbsoluteLayout is often used for some special purposes that
wouldn't be easy otherwise. Some of these might actually be classified as “fun.”

DotMatrixClock displays the digits of the current time using a simulated 5 x 7 dot matrix display.
Each dot is a BoxView, individually sized and positioned on the screen and colored either red or light-
gray depending on whether the dot is on or off. Conceivably, the dots of this clock could be organized
in nested stackLayout elements or a Grid, but each Boxview needs to be given a size anyway. The
sheer quantity and regularity of these views suggests that the programmer knows better than a layout
class how to arrange them on the screen, because stackLayout and Grid need to perform the loca-
tion calculations in a more generalized manner. For that reason, this is an ideal job for AbsoluteLay-

out.

A XAML file sets a little padding on the page and prepares an AbsoluteLayout for filling by code:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="DotMatrixClock.DotMatrixClockPage"
Padding="10"
SizeChanged="0nPageSizeChanged">

<AbsoTlutelLayout x:Name="absolutelLayout"

363

Chapter 14 Absolute layout

VerticalOptions="Center" />

</ContentPage>

The code-behind file contains several fields, including two arrays, named numberpPatterns and

colonPattern, that define the dot matrix patterns for the 10 digits and a colon separator:

: ContentPage

public partial class DotMatrixClockPage

// Total dots horizontally and vertically.

const int horzDots
const int vertDots

= 41;
7;

// 5 x 7 dot matrix patterns for 0 through 9.

new int[10,7,5]

static readonly int[,,] numberPatterns

{1,o0,0,0,1} {1,001, 1}, {1, 0,1, 0, 1},

{1, 0,0,0, 1} {0, 1,1,1, 0}

1, 0},

{0, 1,1,

{1, 1,0, 0, 13,

{o0,1,1,0,03 {0,0 1,00} {0, 0,1, 0, 0},

{o,0,1,0,03} {0,1,1,1, 0}

{o,o0, 1,0, 03,
{o, o0, 1,0, 03,

{o, 0,01, 03,

{10,001} {o0,0 0,0, 1},
{o0,1,0,0,03} {1,1,1,1, 1}

1, 0%,
{o,o0,1, 0, 0},

{o, 1,1,

{oo0,o0,10} {oO0, 010,03} {0,001, 0},

{10, 0,0, 1}, {0, 1, 1, 1, 0}

1, 13,

{1, 1,1,

{o,o0,0,0, 1},

1, 0}, {0,0,1,1,0} {0, 10,1, 0} {1, O, O, 1, O3,
i, 13, {0, 0, 0, 1, 0}, {0, O, 0, 1, O}

{o0,0,0,
{1, 1,1,

{o, 0,00, 1},

{1, o0,0,0,03} {1, 1,1,1, 0},
{1, 0,0,0, 1} {0, 1,1,1, 0}

1, 1},

{o0,o0, 0,0, 1},

{1, 1,1,

{o01,o0,0,0} {10,000} {1, 1, 1, 1, 0},

{1, 0, 0, 0, 1}, {0, 1, 1, 1, 0}

1, 03,

{o0,0,1,

{1, o, 0, 0, 1},

{o,o0, 0,01}, {0, 0, 001,03} {0,011, 0, 0},

{o,1,0,0, 03 {0, 1,00, 0}

1, 13,

{1, 1,1,

{o, 1,0, 0, 03,

{o,1,1,1, 03,

{10,001} {1, 0, 0, 0, 1},

1, 0},

{o, 1,1,

{1, 0,0,0, 1} {0, 1, 1,1, 0}

{1, 0, 0, 0, 1},

{1,o0,0,0,1}, {1, 0, 0,0, 1} {0,121, 1,1, 1},

1, 1, 1, 0%,

{o,

Chapter 14 Absolute layout 364

{0,000, 1}, {0,0,0 1, 0}, {0, 1, 1, 0, 0}
1,
b

// Dot matrix pattern for a colon.
static readonly int[,] colonPattern = new int[7, 2]
{
{0,012} {1,213 {1,113, {0,012}, {1,113} {1,113, {0, 01
};

// BoxView colors for on and off.
static readonly Color colorOn = Color.Red;
static readonly Color colorOff = new Color(0.5, 0.5, 0.5, 0.25);

// Box views for 6 digits, 7 rows, 5 columns.
BoxView[,,] digitBoxViews = new BoxView[6, 7, 5];

}

Fields are also defined for an array of Boxview objects for the six digits of the time—two digits each
for hour, minutes, and seconds. The total number of dots horizontally (set as horzDots) includes five
dots for each of the six digits, four dots for the colon between the hour and minutes, four for the colon
between the minutes and seconds, and a one dot width between the digits otherwise.

The program’s constructor (shown below) creates a total of 238 BoxView objects and adds them to
an AbsoluteLayout, but it also saves the Boxview objects for the digits in the digitBoxViews ar-
ray. (In theory, the Boxview objects can be referenced later by indexing the children collection of
the AbsoluteLayout. But in that collection, they appear simply as a linear list. Storing them also in a
multidimensional array allows them to be more easily identified and referenced.) All the positioning
and sizing is proportional based on an absoluteLayout that is assumed to have an aspect ratio of 41
to 7, which encompasses the 41 BoxView widths and 7 Boxview heights.

public partial class DotMatrixClockPage : ContentPage

{

public DotMatrixClockPage()
{

InitializeComponent();

// BoxView dot dimensions.
doubTle height = 0.85 / vertDots;
double width = 0.85 / horzDots;

// Create and assemble the BoxViews.
double xIncrement = 1.0 / ChorzDots - 1);
double yIncrement = 1.0 / (vertDots - 1);
doubTle x = 0;

for (int digit = 0; digit < 6; digit++)
{
for (int col = 0; col < 5; col++)

{

Chapter 14 Absolute layout 365

double y = 0;

for (int row = 0; row < 7; row++)
{
// Create the digit BoxView and add to Tayout.
BoxView boxView = new BoxView();
digitBoxViews[digit, row, col] = boxView;
absolutelLayout.Children.Add(boxView,
new Rectangle(x, y, width, height),
AbsolutelLayoutFlags.Al1);
y += yIncrement;
}
x += xIncrement;

}

X += xIncrement;

// Colons between the hour, minutes, and seconds.
if (digit == 1 || digit == 3)

{
int colon = digit / 2;
for (int col = 0; col < 2; col++)
{
double y = 0;
for (int row = 0; row < 7; row++)
{
// Create the BoxView and set the color.
BoxView boxView = new BoxView
{
Color = colonPattern[row, col] == 1 ?
colorOn : colorOff
};
absolutelLayout.Children.Add(boxView,
new Rectangle(x, y, width, height),
AbsolutelLayoutFlags.A11);
y += yIncrement;
}
X += XxIncrement;
}
x += xIncrement;
}

// Set the timer and initialize with a manual call.
Device.StartTimer(TimeSpan.FromSeconds(1l), OnTimer);
OnTimer(Q);

As you'll recall, the horzDots and vertDots constants are set to 41 and 7, respectively. To fill up
the AbsoluteLayout, each BoxView needs to occupy a fraction of the width equal to 1 / horzDots

Chapter 14 Absolute layout 366

and a fraction of the height equal to 1 / vertDots. The height and width set to each Boxview is 85
percent of that value to separate the dots enough so that they don’t run into each other:

double height = 0.85 / vertDots;
double width = 0.85 / horzDots;

To position each BoxView, the constructor calculates proportional xIncrement and yIncrement
values like so:

double xIncrement = 1.0 / ChorzDots - 1);
double yIncrement 1.0 / (vertDots - 1);

The denominators here are 40 and 6 so that the final X and Y positional coordinates are values of 1.

The BoxView objects for the time digits are not colored at all in the constructor, but those for the
two colons are given a Color property based on the colonPattern array. The DotMatrixClockPage
constructor concludes by a one-second timer.

The sizeChanged handler for the page is set from the XAML file. The AbsoluteLayout is auto-
matically stretched horizontally to fill the width of the page (minus the padding), so the HeightRe-
quest really just sets the aspect ratio:

public partial class DotMatrixClockPage : ContentPage

{
void OnPageSizeChanged(object sender, EventArgs args)
{
// No chance a display will have an aspect ratio > 41:7
absolutelayout.HeightRequest = vertDots * Width / horzDots;
}
}

It seems that the Device.StartTimer event handler should be rather complex because it is re-
sponsible for setting the Color property of each Boxview based on the digits of the current time.
However, the similarity between the definitions of the numberpPatterns array and the digitBox-
Views array makes it surprisingly straightforward:

public partial class DotMatrixClockPage : ContentPage

{

bool OnTimer()
{

DateTime dateTime = DateTime.Now;

// Convert 24-hour clock to 12-hour clock.
int hour = (dateTime.Hour + 11) % 12 + 1;

// Set the dot colors for each digit separately.
SetDotMatrix(0, hour / 10);
SetDotMatrix(1l, hour % 10);

Chapter 14 Absolute layout 367

SetDotMatrix(2, dateTime.Minute / 10);
SetDotMatrix(3, dateTime.Minute % 10);
SetDotMatrix(4, dateTime.Second / 10);
SetDotMatrix(5, dateTime.Second % 10);
return true;

}
void SetDotMatrix(int index, int digit)
{
for (int row = 0; row < 7; row++)
for (int col = 0; col < 5; col++)
{
bool isOn = numberPatterns[digit, row, col] == 1;
Color color = isOn ? colorOn : colorOff;
digitBoxViews[index, row, col].Color = color;
}
}

And here's the result:

3k W 0340

Of course, bigger is better, so you'll probably want to turn the phone (or the book) sideways for
something large enough to read from across the room:

Chapter 14 Absolute layout 368

Another special type of application suitable for AbsoluteLayout is animation. The BouncingText
program use its XAML file to instantiate two Label elements:
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="BouncingText.BouncingTextPage">

<Absolutelayout>
<Label x:Name="Tabell"
Text="BOUNCE"
FontSize="Large"
AbsolutelLayout.LayoutFlags="PositionProportional"” />

<Label x:Name="Tlabel2"
Text="BOUNCE"
FontSize="Large"
Absolutelayout.lLayoutFlags="PositionProportional"” />

</AbsolutelLayout>
</ContentPage>

Notice that the AbsolutelLayout.LayoutFlags attributes are set to PositionProportional. The
Label calculates its own size, but the positioning is proportional. Values between 0 and 1 can position
the two Label elements anywhere within the page.

The code-behind file starts a timer going with a 15-millisecond duration. This is equivalent to ap-
proximately 60 ticks per second, which is generally the refresh rate of video displays. A 15-millisecond
timer duration is ideal for performing animations:

public partial class BouncingTextPage : ContentPage

Chapter 14 Absolute layout 369

{

const double period = 2000; // in milliseconds

readonly DateTime startTime = DateTime.Now;

public BouncingTextPage()

{
InitializeComponent();
Device.StartTimer(TimeSpan.FromMilliseconds(15), OnTimerTick);

}

bool OnTimerTick()

{
TimeSpan elapsed = DateTime.Now - startTime;
double t = (elapsed.TotalMilliseconds % period) / period; // 0 to 1
t=2%* (t<0.572t:1-1); // 0 toltoO
Absolutelayout.SetLayoutBounds(labell,

new Rectangle(t, 0.5, AbsolutelLayout.AutoSize, Absolutelayout.AutoSize));
Absolutelayout.SetLayoutBounds(label2,
new Rectangle(0.5, 1 - t, Absolutelayout.AutoSize, Absolutelayout.AutoSize));

return true;

}

}

The onTimerTick handler computes an elapsed time since the program started and converts that
to a value t (for time) that goes from 0 to 1 every two seconds. The second calculation of £ makes it
increase from 0 to 1 and then decrease back down to 0 every two seconds. This value is passed directly
to the Rectangle constructor in the two AbsoluteLayout.SetLayoutBounds calls. The result is that
the first Label moves horizontally across the center of the screen and seems to bounce off the left and
right sides. The second Label moves vertically up and down the center of the screen and seems to
bounce off the top and bottom:

Chapter 14 Absolute layout 370

BOUNCE

BOUNCE

BOUNCE

BOUNCE

BOUNCE

The two Label views meet briefly in the center every second, as the Windows 10 Mobile screenshot
confirms.

From here on out, the pages of our Xamarin.Forms applications will become more active and ani-
mated and dynamic. In the next chapter, you'll see how the interactive views of Xamarin.Forms estab-
lish a means of communication between the user and the app.

Chapter 15
The interactive interface

Interactivity is the defining feature of modern computing. The many interactive views that Xama-
rin.Forms implements respond to touch gestures such as tapping and dragging, and a few even read
keystrokes from the phone’s virtual keyboard.

These interactive views incorporate paradigms that are familiar to users, and even have names that
are familiar to programmers: users can trigger commands with Button, specify a number from a range
of values with s1ider and Stepper, enter text from the phone’s keyboard using Entry and Editor,
and select items from a collection with Picker, ListView, and TableView.

This chapter is devoted to demonstrating many of these interactive views.

View overview

Xamarin.Forms defines 20 instantiable classes that derive from view but not from Layout. You've al-
ready seen six of these classes in previous chapters: Label, BoxView, Button, Image, ActivityIndi-

cator, and ProgressBar.

This chapter focuses on eight views that allow the user to select or interact with basic .NET data

types:
Data type Views
Double Slider, Stepper
Boolean Switch
String Entry Editor, SearchBar
DateTime DatePicker, TimePicker

These views are often the visual representations of underlying data items. In the next chapter, you'll
begin to explore data binding, which is a feature of Xamarin.Forms that links properties of views with
properties of other classes so that these views and underlying data can be structured in correspond-
ences.

Four of the remaining six views are discussed in later chapters. In Chapter 16, “Data binding,” you'll see:
e liebView, to display webpages or HTML.

Chapter 19, "Collection views" covers these three views:
e Picker, selectable strings for program options.

e ListView, a scrollable list of data items of the same type.

Chapter 15 The interactive interface 372

e TableView, a list of items separated into categories, which is flexible enough to be used for
data, forms, menus, or settings.

Two views are not covered in this edition of this book:
e Map, an interactive map display.

e OpenGLView, which allows a program to display 2-D and 3-D graphics by using the Open
Graphics Library.

Slider and Stepper

Both slider and stepper let the user select a numeric value from a range. They have nearly identical
programming interfaces but incorporate very different visual and interactive paradigms.

Slider basics

The Xamarin.Forms S1lider is a horizontal bar that represents a range of values between a minimum at
the left and a maximum at the right. (The Xamarin.Forms S1ider does not support a vertical orienta-
tion.) The user selects a value on the slider a little differently on the three platforms: On iOS devices,
the user drags a round "thumb” along the horizontal bar. The Android and Windows 10 Mobile
Slider views also have thumbs, but they are too small for a touch target, and the user can simply tap
on the horizontal bar, or drag a finger to a specific location.

The s1ider defines three public properties of type double, named Minimum, Maximum, and Value.
Whenever the value property changes, the Slider fires a ValueChanged event indicating the new
value.

When displaying a s1ider you'll want a little padding at the left and right to prevent the slider
from extending to the edges of the screen. The XAML file in the SliderDemo program applies the
Padding to the StackLayout, which is parent to both a s1ider and a Label that is intended to dis-
play the current value of the Slider:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ST1iderDemo.S1iderDemoPage">

<StackLayout Padding="10, 0">
<STider VerticalOptions="CenterAndExpand"
ValueChanged="0nS1iderValueChanged" />

<Label x:Name="Tabel"
FontSize="Large"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand" />
</StackLayout>
</ContentPage>

Chapter 15 The interactive interface 373

When the program starts up, the Label displays nothing, and the S1ider thumb is positioned at
the far left:

Do not set HorizontalOptions on the Slider to Start, Center, or End without also setting
WidthRequest to an explicit value, or the s1ider will collapse into a very small or even unusable
width.

The s1ider notifies code of changes to the value property by firing the valueChanged event. The
event is fired if value is changed programmatically or by user manipulation. Here's the SliderDemo
code-behind file with the event handler:

public partial class SliderDemoPage : ContentPage

{
public S1liderDemoPage()
{
InitializeComponent();
}
void OnSliderValueChanged(object sender, ValueChangedEventArgs args)
{
Tabel.Text = String.Format("Slider = {0}", args.NewValue);
}
}

As usual, the first argument to the event handler is the object firing the event, in this case the slider,
and the second argument provides more information about this event. The handler for valueChanged
is of type EventHandler<vValueChangedEventArgs>, which means that the second argument to
the handler is a valueChangedEventArgs object. valueChangedEventArgs defines two properties

Chapter 15 The interactive interface 374

of type double named 0ldvalue and NewValue. This particular handler simply uses Newvalue in a
string that it sets to the Text property of the Labe1l:

30w 023

Slider = 0.541

Slider = 0.7

Slider = 0.302816897630692

A little experimentation reveals that the default Minimum and Maximum settings for S1ider are 0 and
1. At the time this chapter is being written, the s1ider on the Windows platforms has a default incre-
ment of 0.1. For other settings of Minimum and Maximum, the Slider is restricted to 10 increments or
steps of 1, whichever is less. (A more flexible s1ider is presented in Chapter 27, “Custom renderers.”)

If you're not happy with the excessive number of decimal points displayed on the iOS screen, you
can reduce the number of decimal places with a formatting specification in String.Format:

void OnSliderValueChanged(object sender, ValueChangedEventArgs args)

{
label.Text = String.Format("Slider = {0:F2}", args.NewValue);
}

This is not the only way to write the valueChanged handler. An alternative implementation in-
volves casting the first argument to a S1ider object and then accessing the value property directly:

void OnSTiderValueChanged(object sender, ValueChangedEventArgs args)
{

STlider slider = (Slider)sender;

label.Text = String.Format("Slider = {0}", slider.Value);
}

Using the sender argument is a good approach if you're sharing the event handler among multiple
Slider views. By the time the valueChanged event handler is called, the value property already has
its new value.

Chapter 15 The interactive interface 375

You can set the Minimum and Maximum properties of the s1ider to any negative or positive value,
with the stipulation that Maximum is always greater than Minimum. For example, try this:
<STider ValueChanged="0OnST1iderValueChanged"

Maximum="100"
VerticalOptions="CenterAndExpand" />

Now the slider value ranges from 0 to 100.

Common pitfalls

Suppose you want the s1ider value to range from 1 to 100. You can set both Minimum and Maximum
like this:

<STider ValueChanged="0OnSTiderValueChanged"
Minimum="1"
Maximum="100"
VerticalOptions="CenterAndExpand" />

However, when you run the new version of the program, an ArgumentException is raised with the
text explanation “Value was an invalid value for Minimum.” What does that mean?

When the XAML parser encounters the slider tag, a slider is instantiated, and then the proper-
ties and events are set in the order in which they appear in the S1ider tag. But when the Minimum
property is set to 1, the Maximum value now equals the Minimum value. That can't be. The Maximum
property must be greater than the Minimum. The s1ider signals this problem by raising an exception.

Internal to the s1ider class, the Minimum and Maximum values are compared in a callback method
set to the validatevalue argument to the BindableProperty.Create method calls that create the
Minimum and Maximum bindable properties. The validatevalue callback returns true if Minimum is
less than Maximum, indicating that the values are valid. A return value of false from this callback trig-
gers the exception. This is the standard way that bindable properties implement validity checks.

This isn't a problem specific to XAML. It also happens if you instantiate and initialize the s1ider
properties in this order in code. The solution is to reverse the order that Minimum and Maximum are set.
First set the Maximum property to 100. That's legal because now the range is between 0 and 100. Then
set the Minimum property to 1:
<STider ValueChanged="0OnS1iderValueChanged"

Maximum="100"

Minimum="1"
VerticalOptions="CenterAndExpand" />

However, this results in another run-time error. Now it's a NullReferenceException in the value-
Changed handler. Why is that?

The value property of the S1ider must be within the range of Minimum and Maximum values, so
when the Minimum property is set to 1, the s1ider automatically adjust its value property to 1.

Chapter 15 The interactive interface 376

Internally, value is adjusted in a callback method set to the coercevalue argument of the Binda-
bleProperty.Create method calls for the Minimum, Maximum, and value properties. The callback
method returns an adjusted value of the property being set after being subjected to this coercion. In
this example, when Minimum is set to 1, the coercevalue method sets the slider's value property to
1, and the coercevalue callback returns the new value of Minimum, which remains at the value 1.

However, as a result of the coercion, the value property has changed, and this causes the value-
Changed event to fire. The valueChanged handler in the code-behind file attempts to set the Text
property of the Label, but the XAML parser has not yet instantiated the Label element. The 1abel
field is null.

There are a couple of solutions to this problem. The safest and most general solution is to check for
a null value for 1abel right in the event handler:

void OnSTiderValueChanged(object sender, ValueChangedEventArgs args)

{
if (label !'= null)
{
Tlabel.Text = String.Format("Slider = {0}", args.NewValue);
}
}

However, you can also fix the problem by moving the assignment of the valueChanged event in
the tag to after the Maximum and Minimum properties have been set:
<STider Maximum="100"
Minimum="1"

ValueChanged="0nS1iderValueChanged"
VerticalOptions="CenterAndExpand" />

The value property is still coerced to 1 after the Minimum property is set, but the valueChanged
event handler has not yet been assigned, so no event is fired.

Let's assume that the s1ider has the default range of 0 to 1. You might want the Label to display
the initial value of the s1ider when the program first starts up. You could initialize the Text property
of the Label to “Slider = 0" in the XAML file, but if you ever wanted to change the text to something a
little different, you'd need to change it in two places.

You might try giving the s1ider a name of slider in the XAML file and then add some code to
the constructor:

public STiderDemoPage()
{

InitializeComponent();

slider.vValue = 0;

}

All the elements in the XAML file have been created and initialized when InitializeComponent re-
turns, so if this code causes the slider to fire a valueChanged event, that shouldn't be a problem.

Chapter 15 The interactive interface 377

But it won't work. The value of the s1ider is already 0, so setting it to 0 again does nothing. You
could try this:

public S1liderDemoPage()

{
InitializeComponent();
slider.vValue = 1;
slider.Value = 0;

}

That will work. But you might want to add a comment to the code so that another programmer
doesn't later remove the statement that sets value to 1 because it appears to be unnecessary.

Or you could simulate an event by calling the handler directly. The two arguments to the value-
ChangedEventArgs constructor are the old value and the new value (in that order), but the on-
SliderValueChanged handler uses only the Newvalue property, so it doesn't matter what the other
argument is or whether they're equal:

public partial class SliderDemoPage : ContentPage

{
public S1liderDemoPage()
{
InitializeComponent();
OnSliderValueChanged(null, new ValueChangedEventArgs(0, 0));
}
void OnSliderValueChanged(object sender, ValueChangedEventArgs args)
{
label.Text = String.Format("Slider = {0}", args.NewValue);
}
}

That works as well. But remember to set the arguments to the call to onslidervalueChanged so
that they agree with what the handler expects. If you replaced the handler body with code that casts
the sender argument to the s1ider object, you then need a valid first argument in the on-
SliderValueChanged call.

The problems involving the event handler disappear when you connect the Label with the Slider
by using data bindings, which you'll learn about in the next chapter. You'll still need to set the proper-
ties of the s1ider in the correct order, but you'll experience none of the problems with the event han-
dler because the event handler will be gone.

Slider color selection

Here's a program named RgbSliders that contains three s1ider elements for selecting red, green, and
blue components of a Color. An implicit style for S1ider sets the Maximum value to 255:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"

Chapter 15 The interactive interface

xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="RgbSliders.RgbSTidersPage">
<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"

i0S="10, 20, 10, 10"
Android="10, 0, 10, 10"
WinPhone="10, 0, 10, 10" />

</ContentPage.Padding>

<StackLayout>
<StackLayout.Resources>
<ResourceDictionary>
<Style TargetType="Slider">
<Setter Property="Maximum" Value="255" />
</Style>

<Style TargetType="Label">
<Setter Property="FontSize" Value="Large" />

<Setter Property="HorizontalTextAlignment" Value="Center" />

</Style>
</ResourceDictionary>
</StackLayout.Resources>

<STider x:Name="redSlider"
ValueChanged="0OnS1iderValueChanged" />

<Label x:Name="redLabel" />

<STider x:Name="greenSTider"
ValueChanged="0OnS1iderValueChanged" />

<Label x:Name="greenLabel" />

<STider x:Name="blueSlider"
ValueChanged="0nS1iderValueChanged" />

<Label x:Name="blueLabel" />

<BoxView x:Name="boxView"
VerticalOptions="Fil1TAndExpand" />
</StackLayout>
</ContentPage>

378

The slider elements alternate with three Label elements to display their values, and the stackLay-

out concludes with a BoxView to show the resultant color.

The constructor of the code-behind file initializes the s1ider settings to 128 for a medium gray.

The shared valueChanged handler checks to see which s1ider has changed, and hence which Label

needs to be updated, and then computes a new color for the Boxview:

public partial class RgbSlidersPage : ContentPage
{
public RgbSlidersPage()

Chapter 15 The interactive interface 379

{
InitializeComponent();
redSlider.vValue = 128;
greenSlider.Value = 128;
blueSlider.Value = 128;
}
void OnSliderValueChanged(object sender, ValueChangedEventArgs args)
{
if (sender == redSlider)
{
redLabel.Text = String.Format("Red = {0:X2}", (int)redSlider.Value);
}
else if (sender == greenSlider)
{
greenLabel.Text = String.Format("Green = {0:X2}", (int)greenSlider.Value);
}
else if (sender == blueSlider)
{
blueLabel.Text = String.Format("Blue = {0:X2}", (int)blueSlider.Value);
}
boxView.Color = Color.FromRgb((int)redSlider.Value,
(int)greenSlider.Value,
(int)blueSlider.Value);
}

}

Strictly speaking, the if and else statements here are not required. The code can simply set all three
labels regardless of which slider is changing. The event handler accesses all three sliders anyway for set-
ting a new color:

Chapter 15 The interactive interface 380

246 PM

Red = DF) Red =3D
Green = 4C : G —'

Blue = 62 | Blue = 46 GI'EEFI = 4A

Blue = D5

You can turn the phone sideways, but the Boxview becomes much shorter, particularly on the
Windows 10 Mobile device, where the s1ider seems to have a vertical height beyond what's required.
Once the Grid is introduced in Chapter 18, you'll see how it becomes easier for applications to re-
spond to orientation changes.

The following TextFade program uses a single S1ider to control the Opacity and horizontal posi-
tion of two Label elements in an AbsoluteLayout. In the initial layout, both Label elements are po-
sitioned at the left center of the AbsoluteLayout, but the second one has its Opacity setto 0:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="TextFade.TextFadePage"
Padding="10, 0, 10, 20">

<StackLayout>
<AbsoTlutelLayout VerticalOptions="CenterAndExpand">
<Label x:Name="Tabell"
Text="TEXT"
FontSize="Large"
AbsolutelLayout.LayoutBounds="0, 0.5"
Absolutelayout.LayoutFlags="PositionProportional" />

<Label x:Name="Tabel2"
Text="FADE"
FontSize="Large"
Opacity="0"
AbsoTlutelLayout.lLayoutBounds="0, 0.5"
Absolutelayout.LayoutFlags="PositionProportional" />
</Absolutelayout>

Chapter 15 The interactive interface 381

<STider ValueChanged="0OnSTiderValueChanged" />

</StackLayout>
</ContentPage>

The slider event handler moves both Label elements from left to right across the screen. The
proportional positioning helps a lot here because the s1ider values range from 0 to 1, which results in
the Label elements being positioned progressively from the far left to the far right of the screen:

public partial class TextFadePage : ContentPage

{
public TextFadePage()
{
InitializeComponent();
}
void OnSliderValueChanged(object sender, ValueChangedEventArgs args)
{
Absolutelayout.SetLayoutBounds(labell,
new Rectangle(args.NewValue, 0.5, AbsolutelLayout.AutoSize,
Absolutelayout.AutoSize));
Absolutelayout.SetLayoutBounds(label2,
new Rectangle(args.NewvValue, 0.5, AbsolutelLayout.AutoSize,
Absolutelayout.AutoSize));
labell.0pacity = 1 - args.NewValue;
Tlabel2.0pacity = args.NewValue;
}
}

At the same time, the Opacity values are set so that one Label seems to fade into the other as both
labels move across the screen:

Chapter 15 The interactive interface 382

The Stepper difference

The stepper view has very nearly the same programming interface as the s1ider: It has Minimum,
Maximum, and Value properties of type double and fires a valueChanged event handler.

However, the Maximum property of stepper has a default value of 100, and Stepper also adds an
Increment property with a default value of 1. The stepper visuals consist solely of two buttons la-
beled with minus and plus signs. Presses of those two buttons change the value incrementally between
Minimum to Maximum based on the Increment property.

Although value and other properties of Stepper are of type double, Stepper is often used for
the selection of integral values. You probably don’t want the value of (Maximum — Minimum) + Incre-
ment) to be as high as 100, as the default values suggest. If you press and hold your finger on one of
the buttons, you'll trigger a typematic repeat on iOS, but not on Android or Windows 10 Mobile. Un-
less your program provides another way for the user to change the stepper value (perhaps with a text
Entry view), you don't want to force the user to press a button 100 times to get from Minimum to

Maximum.

The StepperDemo program sets the Maximum property of the Stepper to 10 and uses the Step-
per as a rudimentary design aid in determining an optimum border width for a Button border. The
Button at the top of the StackLayout is solely for display purposes and has the necessary property
settings of BackgroundColor and BorderColor to enable the border display on Android and
Windows 10 Mobile.

The stepper is the last child in the following stackLayout. Between the Button and Stepper are
a pair of Label elements for displaying the current stepper value:

Chapter 15 The interactive interface

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="StepperDemo.StepperDemoPage">

<StackLayout>
<Button x:Name="button"
Text=" Sample Button "

FontSize="Large"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand">
<Button.BackgroundColor>
<OnPlatform x:TypeArguments="Color"
Android="#404040" />
</Button.BackgroundColor>
<Button.BorderColor>
<OnPTatform x:TypeArguments="Color"
Android="#C0C0CO"
WinPhone="Black" />
</Button.BorderColor>
</Button>

<StackLayout VerticalOptions="CenterAndExpand">

<StackLayout Orientation="Horizontal"
HorizontalOptions="Center">
<StackLayout.Resources>
<ResourceDictionary>
<Style TargetType="Label">

<Setter Property="FontSize" Value="Medium" />

</Style>
</ResourceDictionary>
</StackLayout.Resources>

<Label Text="Button Border Width =" />
<Label x:Name="Tlabel" />
</StackLayout>

<Stepper x:Name="stepper"
Maximum="10"
ValueChanged="0nStepperValueChanged"
HorizontalOptions="Center" />

</StackLayout>
</StackLayout>
</ContentPage>

383

The Label displaying the Stepper value is initialized from the constructor of the code-behind file.

With each change in the value property of the stepper, the event handler displays the new value

and sets the Button border width:

public partial class StepperDemoPage : ContentPage

{
public StepperDemoPage()

{

Chapter 15 The interactive interface

InitializeComponent();

// Initialize display.
OnStepperValueChanged(stepper, null);

}
void OnStepperValueChanged(object sender, ValueChangedEventArgs args)
{
Stepper stepper = (Stepper)sender;
button.BorderWidth = stepper.Value;
Tabel.Text = stepper.Value.ToString("F0");
}

2ok TR

SAMPLE BUTTON

Button Bord

Button Border Width = 3

Switch and CheckBox

Sample Button

Button Border Width = 7

- o+

384

Application programs often need Boolean input from the user, which requires some way for the user to
toggle a program option to On or Off, Yes or No, True or False, or however you want to think of it. In

Xamarin.Formes, this is a view called the switch.

Switch basics

Switch defines just one property on its own, named IsToggled of type bool, and it fires the Tog-
gled event to indicate a change in this property. In code, you might be inclined to give a switch a
name of switch, but that's a C# keyword, so you'll want to pick something else. In XAML, however,
you can set the x :Name attribute to switch, and the XAML parser will smartly create a field named

Chapter 15 The interactive interface 385

@switch, which is how C# allows you to define a variable name using a C# keyword.

The SwitchDemo program creates two switch elements with two identifying labels: “Italic” and
“Boldface”. Each switch has its own event handler, which formats the larger Label at the bottom of
the stackLayout:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="SwitchDemo.SwitchDemoPage">

<StackLayout Padding="10, 0">
<StackLayout HorizontalOptions="Center"
VerticalOptions="CenterAndExpand">
<StackLayout Orientation="Horizontal"
HorizontalOptions="End">
<Label Text="Italic: "
VerticalOptions="Center" />
<Switch Toggled="OnItalicSwitchToggled"
VerticalOptions="Center" />
</StackLayout>

<StackLayout Orientation="Horizontal"
HorizontalOptions="End">
<Label Text="Boldface: "
VerticalOptions="Center" />
<Switch Toggled="0nBoldSwitchToggled"
VerticalOptions="Center" />
</StackLayout>
</StackLayout>

<Label x:Name="Tabel"
Text=
"Just a little passage of some sample text that can be formatted
in italic or boldface by toggling the two Switch elements."
FontSize="Large"
HorizontalTextAlignment="Center"
VerticalOptions="CenterAndExpand" />

</StackLayout>
</ContentPage>

The Toggled event handler has a second argument of ToggledEventargs, which has a value
property of type bool that indicates the new state of the IsToggled property. The event handlers in
SwitchDemo use this value to set or clear the particular FontAttributes flag in the FontAttrib-
utes property of the long Label:

public partial class SwitchDemoPage : ContentPage

{
pubTlic SwitchDemoPage()

{

InitializeComponent();

Chapter 15 The interactive interface 386

void OnItalicSwitchToggled(object sender, ToggledEventArgs args)

{
if (args.value)
{
label.FontAttributes |= FontAttributes.Italic;
}
else
{
label.FontAttributes &= ~FontAttributes.Italic;
}
}
void OnBoldSwitchToggled(object sender, ToggledEventArgs args)
{
if (args.value)
{
Tlabel.FontAttributes |= FontAttributes.Bold;
}
else
{
Tabel.FontAttributes &= ~FontAttributes.Bold;
}
}

The switch has a different appearance on the three platforms:

% O w0 0300

nalic. @D
goldface: (D)

Italic:

Boldface:

Just a little passage
of some sample text

that can be
Just a little passage of some

Just a little passage of some sample

text that can be formatted in italic or

boldface by toggling the two Switch
elements.

sample text that can be formatted
in italic or boldface by toggling
the two Switch elements.

formatted in italic or
boldface by toggling
the two Switch
elements.

Notice that the program aligns the two switch views, which gives it a more attractive look, but
which also means that the text labels are necessarily somewhat misaligned. To accomplish this format-
ting, the XAML file puts each of the pair of Label and switch elements in a horizontal stackLayout.

Chapter 15 The interactive interface 387

Each horizontal StackLayout has its HorizontalOptions set to End, which aligns each stackLay-
out at the right, and a parent StackLayout centers the collection of labels and switches on the screen
with a HorizontalOptions setting of Center. Within the horizontal stackLayout, both views have
their verticalOptions properties set to Center. If the Switch is taller than the Labe1, then the La-
bel is vertically centered relative to the switch. But if the Label is taller than the switch, the Switch
is also vertically centered relative to the Label.

A traditional CheckBox

In more traditional graphical environments, the user-interface object that allows users to choose a
Boolean value is called a CheckBox, usually featuring some text with a box that can be empty or filled
with an X or a check mark. One advantage of the CheckBox over the Switch is that the text identifier
is part of the visual and doesn't need to be added with a separate Label.

One way to create custom views in Xamarin.Forms is by writing special classes called renderers that
are specific to each platform and that reference views in each platform. That is demonstrated in
Chapter 27.

However, it's also possible to create custom views right in Xamarin.Forms by assembling a view from
other views. You first derive a class from ContentvView, set its Content property to a StackLayout
(for example), and then add one or more views on that. (You saw an example of this technique in the
ColorView class in Chapter 8.) You'll probably also need to define one or more properties, and possi-
bly some events, but you'll want to take advantage of the bindable infrastructure established by the
BindableObject and BindableProperty classes. That allows your properties to be styled and to be
targets of data bindings.

A CheckBox consists of just two Label elements on a ContentView: one Label displays the text
associated with the CheckBox, while the other displays a box. A TapGestureRecognizer detects
when the CheckBox is tapped.

A CheckBox class has already been added to the Xamarin.FormsBook.Toolkit library that is in-
cluded in the downloadable code for this book. Here’s how you would do it on your own:

In Visual Studio, you can select Forms Xaml Page from the Add New Item dialog box. However,
this creates a class that derives from ContentPage when you really want a class that derives from con-
tentView. Simply change the root element of the XAML file from ContentPage to ContentView,
and change the base class in the code-behind file from ContentPage to Contentview.

In Xamarin Studio, however, you can simply choose Forms ContentView Xaml from the New File
dialog.

Here's the CheckBox.xaml file:

<ContentView xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="Xamarin.FormsBook.Toolkit.CheckBox">

Chapter 15 The interactive interface 388

<StackLayout Orientation="Horizontal">
<Label x:Name="boxLabel" Text="☐" />
<Label x:Name="textLabel" />

</StackLayout>

<ContentView.GestureRecognizers>
<TapGestureRecognizer Tapped="OnCheckBoxTapped" />
</ContentView.GestureRecognizers>
</ContentView>

That Unicode character \u2610 is called the Ballot Box character, and it's just an empty square. Charac-
ter \u2611 is a Ballot Box with Check, while \u2612 is a Ballot Box with X. To indicate a checked state,
this CheckBox code-behind file sets the Text property of boxLabel to \u2611 (as you'll see shortly).

The code-behind file of CheckBox defines three properties:

(] Text
° FontSize
. IsChecked
CheckBox also defines an event named IsCheckedChanged.

Should CheckBox also define FontAttributes and FontFamily properties like Label and But-

ton do? Perhaps, but these additional properties are not quite as crucial for views devoted to user in-
teraction.

All three of the properties that CheckBox defines are backed by bindable properties. The code-be-
hind file creates all three BindableProperty objects, and the property-changed handlers are defined
as lambda functions within these methods.

Keep in mind that the property-changed handlers are static, so they need to cast the first argument
to a CheckBox object to reference the instance properties and events in the class. The property-
changed handler for TsChecked is responsible for changing the character representing the checked
and unchecked state and firing the IsCheckedChanged event:

namespace Xamarin.FormsBook.Toolkit
{
public partial class CheckBox : ContentView
{
public static readonly BindableProperty TextProperty =
BindableProperty.Create(
"Text",
typeof(string),
typeof (CheckBox),
null,
propertyChanged: (bindable, oldvalue, newValue) =>
{
((CheckBox)bindable) .textLabel.Text = (string)newValue;
b;

Chapter 15 The interactive interface 389

public static readonly BindableProperty FontSizeProperty =
BindableProperty.Create(
"FontSize",
typeof (double),
typeof (CheckBox),
Device.GetNamedSize(NamedSize.Default, typeof(Label)),
propertyChanged: (bindable, oldvalue, newValue) =>

{
CheckBox checkbox = (CheckBox)bindable;
checkbox.boxLabel.FontSize = (double)newValue;
checkbox. textLabel.FontSize = (double)newValue;
b

public static readonly BindableProperty IsCheckedProperty =
BindableProperty.Create(

"IsChecked",

typeof(bool),

typeof (CheckBox),

false,

propertyChanged: (bindable, oldvalue, newValue) =>

{
// Set the graphic.
CheckBox checkbox = (CheckBox)bindable;
checkbox.boxLabel.Text = (bool)newValue ? "\u2611" : "\u2610";

// Fire the event.
EventHandler<bool> eventHandler = checkbox.CheckedChanged;
if (eventHandler != null)
{
eventHandler (checkbox, (bool)newValue);
}
s

public event EventHandler<bool> CheckedChanged;

public CheckBox()

{
InitializeComponent();
}
public string Text
{
set { SetValue(TextProperty, value); }
get { return (string)GetValue(TextProperty); }
}

[TypeConverter(typeof(FontSizeConverter))]
public double FontSize
{
set { SetValue(FontSizeProperty, value); }
get { return (double)GetValue(FontSizeProperty); }

Chapter 15 The interactive interface 390

public bool IsChecked
{
set { SetValue(IsCheckedProperty, value); }
get { return (bool)GetValue(IsCheckedProperty); }

// TapGestureRecognizer handler.
void OnCheckBoxTapped(object sender, EventArgs args)

{
IsChecked = !IsChecked;

Notice the TypeConverter on the FontSize property. That allows the property to be set in XAML
with attribute values such as “Small” and “Large”.

The Tapped handler for the TapGestureRecognizer is at the bottom of the class and simply tog-
gles the IsChecked property by using the C# logical negation operator. An even shorter statement to
toggle a Boolean variable uses the exclusive-OR assignment operator:

IsChecked A= true;

The CheckBoxDemo program is very similar to the SwitchDemo program except that the markup
is considerably simplified because the CheckBox includes its own Text property:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:toolkit=
"clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.TooTkit"
x:Class="CheckBoxDemo.CheckBoxDemoPage">

<StackLayout Padding="10, 0">
<StackLayout HorizontalOptions="Center"
VerticalOptions="CenterAndExpand">

<toolkit:CheckBox Text="Italic"
FontSize="Large"
CheckedChanged="0nItalicCheckBoxChanged" />

<tooTkit:CheckBox Text="Boldface"
FontSize="Large"
CheckedChanged="0nBoldCheckBoxChanged" />
</StackLayout>

<Label x:Name="Tabel"
Text=
"Just a little passage of some sample text that can be formatted
in italic or boldface by toggling the two custom CheckBox views."
FontSize="Large"
HorizontalTextAlignment="Center"
VerticalOptions="CenterAndExpand" />
</StackLayout>

Chapter 15 The interactive interface 391

</ContentPage>

The code-behind file is also very similar to the earlier program:

public partial class CheckBoxDemoPage : ContentPage

{

public CheckBoxDemoPage()

{
InitializeComponent();
}
void OnItalicCheckBoxChanged(object sender, bool isChecked)
{
if (isChecked)
{
Tlabel.FontAttributes |= FontAttributes.Italic;
}
else
{
Tlabel.FontAttributes &= ~FontAttributes.Italic;
}
}
void OnBoldCheckBoxChanged(object sender, bool 1isChecked)
{
if (isChecked)
{
Tlabel.FontAttributes |= FontAttributes.Bold;
}
else
{
Tlabel.FontAttributes &= ~FontAttributes.Bold;
}
}

Interestingly, the character for the checked box shows up in color on the Android and Windows

platforms:

Chapter 15 The interactive interface 392

3O w0307

O Italic
/] Boldface

¥ ltalic

O Boldface

Italic
Boldface

Just a little passage
of some sample text

that can be
formatted in italic or
boldface by toggling
the two custom
CheckBox views.

Just a little passage of some
sample text that can be
formatted in italic or boldface by
toggling the two custom
CheckBox views.

Typing text

Xamarin.Forms defines three views for obtaining text input from the user:
e Entry for a single line of text.
e Editor for multiple lines of text.
e SearchBar for a single line of text specifically for search operations.

Both Entry and Editor derive from Inputview, which derives from view. SearchBar derives di-
rectly from view.

Both Entry and SearchBar implement horizontal scrolling if the entered text exceeds the width of
the view. The Editor implements word wrapping and is capable of vertical scrolling for text that ex-

ceeds its height.

Keyboard and focus

Entry, Editor, and SearchBar are different from all the other views in that they make use of the
phone’s onscreen keyboard, sometimes called the virtual keyboard. From the user’s perspective, tap-
ping the Entry, Editor, or SearchBar view invokes the onscreen keyboard, which slides in from the
bottom. Tapping anywhere else on the screen (except another Entry, Editor, or SearchBar view)
often makes the keyboard go away, and sometimes the keyboard can be dismissed in other ways.

Chapter 15 The interactive interface 393

From the program'’s perspective, the presence of the keyboard is closely related to input focus, a
concept that originated in desktop graphical user interface environments. On both desktop environ-
ments and mobile devices, input from the keyboard can be directed to only one user-interface object
at a time, and that object must be clearly selectable and identifiable by the user. The object that re-
ceives keyboard input is known as the object with keyboard input focus, or more simply, just input focus
or focus.

The visualElement class defines several methods, properties, and events related to input focus:

e The Focus method attempts to set input focus to a visual element and returns true if success-
ful.

e The Unfocus method removes input focus from a visual element.

e The IsFocused get-only property is true if a visual element currently has input focus.
e The Focused event is fired when a visual element acquires input focus.

e The Unfocused event is fired when a visual element loses input focus.

As you know, mobile environments make far less use of the keyboard than desktop environments do,
and most mobile views (such as the slider, Stepper, and switch that you've already seen) don't
make use of the keyboard at all. Although these five focus-related members of the VvisualElement
class appear to implement a generalized system for passing input focus between visual elements, they
really only pertain to Entry, Editor, and SearchBar.

These views signal that they have input focus with a flashing caret showing the text input point, and
they trigger the keyboard to slide up. When the view loses input focus, the keyboard slides back down.

A view must have its TsEnabled property set to true (the default state) to acquire input focus, and
of course the Tsvisible property must also be true or the view won't be on the screen at all.

Choosing the keyboard

Entry and Editor are different from SearchBar in that they both derive from Inputview. Interest-
ingly, although Entry and Editor define similar properties and events, Inputview defines just one
property: Keyboard. This property allows a program to select the type of keyboard that is displayed.
For example, a keyboard for typing a URL should be different from a keyboard for entering a phone
number. All three platforms have various styles of virtual keyboards appropriate for different types of
text input. A program cannot select the keyboard used for searchBar.

This Keyboard property is of type Keyboard, a class that defines seven static read-only properties
of type Keyboard appropriate for different keyboard uses:

. Default

. Text

Chapter 15 The interactive interface 394

o Chat

° Url

. Email

. Telephone
. Numeric

On all three platforms, the Numeric keyboard allows typing decimal points but does not allow typing a
negative sign, so it's limited to positive numbers.

The following program creates seven Entry views that let you see how these keyboards are imple-
mented in the three platforms. The particular keyboard attached to each Entry is identified by a prop-
erty defined by Entry named Placeholder. This is the text that appears in the Entry prior to any-
thing the user types as a hint for the nature of the text the program is expecting. Placeholder text is
commonly a short phrase such as “First Name” or “Email Address”:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="EntryKeyboards.EntryKeyboardsPage">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="10, 20, 10, 0"
Android="10, 0"
WinPhone="10, 0" />
</ContentPage.Padding>

<Scrol1View>
<StackLayout>
<StackLayout.Resources>
<ResourceDictionary>
<Style TargetType="Entry">
<Setter Property="VerticalOptions" Value="CenterAndExpand" />
</Style>
</ResourceDictionary>
</StackLayout.Resources>

<Entry Placeholder="Default"
Keyboard="Default" />

<Entry Placeholder="Text"
Keyboard="Text" />

<Entry Placeholder="Chat"
Keyboard="Chat" />

<Entry Placeholder="Ur1"
Keyboard="Ur1" />

<Entry Placeholder="Email"

Chapter 15 The interactive interface 395

Keyboard="Email" />

<Entry Placeholder="Telephone"
Keyboard="Telephone" />

<Entry Placeholder="Numeric"
Keyboard="Numeric" />
</StackLayout>
</Scrol1View>
</ContentPage>

The placeholders appear as gray text. Here's how the display looks when the program first begins
to run:

Just as with the slider, you don't want to set HorizontalOptions on an Entry to Left, Cen-
ter, or Right unless you also set the widthRequest property. If you do so, the Entry collapses to a
very small width. It can still be used—the Entry automatically provides horizontal scrolling for text
longer than the Entry can display—but you should really try to provide an adequate size. In this pro-
gram each Entry is as wide as the screen minus a 10-unit padding on the left and right.

You can estimate an adequate WidthRequest through experimentation with different text lengths.
The next program in this chapter sets the Entry width to a value equivalent to one inch.

The EntryKeyboards program evenly spaces the seven Entry views vertically using a vertical-
Options value of CenterAndExpand set through an implicit style. Clearly there is enough vertical
room for all seven Entry views, so you might be puzzled about the use of the scrollview in the
XAML file.

The scrollview is specifically for iOS. If you tap an Entry close to the bottom of the Android or

Chapter 15 The interactive interface 396

Windows 10 Mobile screen, the operating system will automatically move up the contents of the page
when the keyboard pops up, so the Entry is still visible while you are typing. But iOS doesn’t do that
unless a ScrollvView is provided.

Here's how each screen looks when text is being typed in one of the Entry views toward the bot-
tom of the screen:

12-555-1212]

2 3w
Ox B
8w 9w

525.0873

Entry properties and events

Besides inheriting the Keyboard property from Inputview, Entry defines four more properties, only
one of which you saw in the previous program:

e Text — the string that appears in the Entry
e TextColor —a Color value
e IsPassword — a Boolean that causes characters to be masked right after they're typed

e Placeholder — light-colored text that appears in the Entry but disappears as soon as the
user begins typing.

Generally, a program obtains what the user typed by accessing the Text property, but the program
can also initialize the Text property. Perhaps the program wishes to suggest some text input.

The Entry also defines two events:

. TextChanged

Chapter 15 The interactive interface 397

. Completed

The TextChanged event is fired for every change in the Text property, which generally corresponds to
every keystroke (except shift and some special keys). A program can monitor this event to perform va-
lidity checks. For example, you might check for valid numbers or valid email addresses to enable a Cal-
culate or Send button.

The completed event is fired when the user presses a particular key on the keyboard to indicate
that the text is completed. This key is platform specific:

e iOS: The key is labeled return, which is not on the Telephone or Numeric keyboard.
e Android: The key is a green check mark in the lower-right corner of the keyboard.

e Windows Phone: The key is an enter (or return) symbol (¢) on most keyboards but is a go sym-
bol (=) on the Url keyboard. Such a key is not present on the Telephone and Numeric key-
boards.

On iOS and Android, the completed key dismisses the keyboard in addition to generating the Com-
pleted event. On Windows 10 Mobile it does not.

Android and Windows users can also dismiss the keyboard by using the phone’s Back button at the
bottom left of the portrait screen. This causes the Entry to lose input focus but does not cause the
Completed event to fire.

Let's write a program named QuadraticEquations that solves quadratic equations, which are equa-
tions of the form:

ax?+bx+c=0

For any three constants a, b, and ¢, the program uses the quadratic equation to solve for x:

—b ++Vb? — 4ac
X==—————
2a

You enter a, b, and c in three Entry views and then press a Button labeled Solve for x.

Here's the XAML file. Unfortunately, the Numeric keyboard is not suitable for this program because
on all three platforms it does not allow entering negative numbers. For that reason, no particular key-
board is specified:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="QuadaticEquations.QuadraticEquationsPage">

<ContentPage.Resources>
<ResourceDictionary>
<Style TargetType="Label">
<Setter Property="FontSize" Value="Medium" />
<Setter Property="VerticalOptions" Value="Center" />
</Style>

Chapter 15 The interactive interface 398

<Style TargetType="Entry">
<Setter Property="WidthRequest" Value="180" />
</Style>
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout>
<!-- Entry section -->
<StackLayout Padding="20, 0, 0, 0"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center">

<StackLayout Orientation="Horizontal">
<Entry x:Name="entryA"
TextChanged="0OnEntryTextChanged"
CompTleted="OnEntryCompleted" />
<Label Text=" x² +" />
</StackLayout>

<StackLayout Orientation="Horizontal">
<Entry x:Name="entryB"
TextChanged="0OnEntryTextChanged"
CompTleted="OnEntryCompleted" />
<Label Text=" x +" />
</StackLayout>

<StackLayout Orientation="Horizontal">
<Entry x:Name="entryC"
TextChanged="0OnEntryTextChanged"
Completed="0OnEntryCompleted" />

<Label Text=" = 0" />
</StackLayout>
</StackLayout>
<!-- Button -->

<Button x:Name="solveButton"
Text="Solve for x"
FontSize="Large"
IsEnabled="False"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center"
Clicked="0nSolveButtonClicked" />

<!-- Results section -->
<StackLayout VerticalOptions="CenterAndExpand"
HorizontalOptions="Center">
<Label x:Name="solutionlLabel"
HorizontalTextAlignment="Center" />

<Label x:Name="solution2Label"
HorizontalTextAlignment="Center" />
</StackLayout>
</StackLayout>
</ContentPage>

Chapter 15 The interactive interface 399

The Label, Entry, and Button views are divided into three sections: data input at the top, the
Button in the middle, and the results at the bottom. Notice the platform-specific WidthRequest set-
ting in the implicit style for the Entry. This gives each Entry a one-inch width.

The program provides two ways to trigger a calculation: by pressing the completion key on the key-
board, or by pressing the Button in the middle of the page. Another option in a program such as this
would be to perform the calculation for every keystroke (or to be more accurate, every TextChanged
event). That would work here because the recalculation is very quick. However, in the present design
the results are near the bottom of the screen and are covered when the virtual keyboard is active, so
the page would have to be reorganized for such a scheme to make sense.

The QuadraticEquations program uses the TextChanged event but solely to determine the validity
of the text typed into each Entry. The text is passed to Double. TryParse, and if the method returns
false, the Entry text is displayed in red. (On Windows 10 Mobile, the red text coloring shows up only
when the Entry loses input focus.) Also, the Button is enabled only if all three Entry views contain
valid double values. Here's the first half of the code-behind file that shows all the program interaction:

public partial class QuadraticEquationsPage : ContentPage

{
public QuadraticEquationsPage()
{
InitializeComponent();
// Initialize Entry views.
entryA.Text = "1";
entryB.Text = "-1";
entryC.Text = "-1";
}
void OnEntryTextChanged(object sender, TextChangedEventArgs args)
{
// Clear out solutions.
solutionlLabel.Text = " ";
solution2Label.Text = " ";
// Color current entry text based on validity.
Entry entry = (Entry)sender;
double result;
entry.TextColor = Double.TryParse(entry.Text, out result) ? Color.Default : Color.Red;
// Enable the button based on validity.
solveButton.IsEnabled = Double.TryParse(entryA.Text, out result) &&
Double.TryParse(entryB.Text, out result) &&
Double.TryParse(entryC.Text, out result);
}

void OnEntryCompleted(object sender, EventArgs args)
{
if (solveButton.IsEnabled)

{
Solve();

Chapter 15 The interactive interface 400

}
}
void OnSolveButtonClicked(object sender, EventArgs args)
{
Solve(Q);
}

The Completed handler for the Entry calls the solve method only when the Button is enabled,
which (as you've seen) indicates that all three Entry views contain valid values. Therefore, the Solve
method can safely assume that all three Entry views contain valid numbers that won't cause Dou-
ble.Parse to raise an exception.

The solve method is necessarily complicated because the quadratic equation might have one or
two solutions, and each solution might have an imaginary part as well as a real part. The method ini-
tializes the real part of the second solution to bouble.NaN (“not a number”) and displays the second
result only if that's no longer the case. The imaginary parts are displayed only if they're nonzero, and
either a plus sign or an en dash (Unicode \u2013) connects the real and imaginary parts:

public partial class QuadraticEquationsPage : ContentPage

{

void Solve()

{
double a = Double.Parse(entryA.Text);
double b = Double.Parse(entryB.Text);
double ¢ = Double.Parse(entryC.Text);
double solutionlReal = 0;

double solutionlImag = 0;
double solution2Real = Double.NaN;
double solution2Imag = 0;

string strl =" ";

non

string str2 = H

if (@a==08& b ==0 &% c == 0)

{

strl = "x = anything";
}
else if (a == 0 && b == 0)
{

strl = "x = nothing";
}
else
{

if (a == 0)

{

solutionlReal = -c / b;
}
else

{

Chapter 15 The

}

strl

str2
}

solution
solution

string Forma

{

string s

if (!Dou
{

str

if (
{

}

return s

interactive interface

double discriminant = b * b - 4 * a * c;

if (discriminant == 0)
{
solutionlReal = -b / (2 * a);
}
else if (discriminant > 0)
{
solutionlReal = (-b + Math.Sgrt(discriminant)) / (2 * a);
solution2Real = (-b - Math.Sqrt(discriminant)) / (2 * a);
}
else
{
solutionlReal = -b / (2 * a);
solution2Real = solutionlReal;
solutionlImag = Math.Sqrt(-discriminant) / (2 * a);
solution2Imag = -solutionlImag;
}
= Format(solutionlReal, solutionlImag);
= Format(solution2Real, solution2Imag);
1Label.Text = stril;

2Label.Text = str2;

t(double real, double imag)

tr=""

bTle.IsNaN(real))

= String.Format("x = {0:F5}", real);
imag != 0)

str += String.Format(" {0} {1:F5} i",

Math.Sign(imag) == 1 ? "+" : "\u2013",
Math.Abs(imag));

tr;

Here are a couple of solutions:

401

Chapter 15 The interactive interface 402

b ch R

Solve for x SOLVE FOR X Solve for x

x = 0.00000 + 1.00000 i
% = 0.00000 - 1.00000 i

x=161803
x=-0.61803

The Editor difference

You might assume that the Editor has a more extensive API than the Entry because it can handle
multiple lines and even paragraphs of text. But in Xamarin.Forms, the API for Editor is actually some-
what simpler. Besides inheriting the Keyboard property from Inputview, Editor defines just one
property on its own: the essential Text property. Editor also defines the same two events as Entry:

[TextChanged

o Completed

However, the completed event is of necessity a little different. While a return or enter key can signal
completion on an Entry, these same keys used with the Editor instead mark the end of a paragraph.

The Completed event for Editor works a little differently on the three platforms: For iOS, Xama-
rin.Forms displays a special Done button above the keyboard that dismisses the keyboard and causes a
Completed event to fire. On Android and Windows 10 Mobile, the system Back button—the button at
the lower-left corner of the phone in portrait mode—dismisses the keyboard and fires the Completed
event. This Back button does not fire the Completed event for an Entry view, but it does dismiss the
keyboard.

It is likely that what users type into an Editor is not telephone numbers and URLs but actual words,
sentences, and paragraphs. In most cases, you'll want to use the Text keyboard for Editor because it
provides spelling checks, suggestions, and automatic capitalization of the first word of sentences. If you
don't want these features, the Keyboard class provides an alternative means of specifying a keyboard
by using a static Create method and the following members of the KeyboardFlags enumeration:

Chapter 15 The interactive interface 403

e CapitalizeSentence (equal to 1)
e Spellcheck (2)

e Suggestions (4)

o A1l (\XFFFFFFFF)

The Text keyboard is equivalent to creating the keyboard with KeyboardFlags.All. The Default
keyboard is equivalent to creating the keyboard with (KeyboardFlags) 0. You can't create a keyboard
in XAML using these flags. It must be done in code.

The JustNotes program is intended as a freeform note-taking program that automatically saves
and restores the contents of an Editor view by using the Properties collection of the Application
class. The page basically consists of a large Editor, but to give the user some clue about what the pro-
gram does, the name of the program is displayed at the top. On iOS and Android, such text can be set
by the Tit1le property of the page, but to display that property, the ContentPage must be wrapped
in an ApplicationPage (as you discovered with the ToolbarDemo program in Chapter 13). That's
done in the constructor of the App class:

public class App : Application

{
public AppQ
{
MainPage = new NavigationPage(new JustNotesPage());
}
protected override void OnStart()
{
// Handle when your app starts
}
protected override void OnSleep()
{
// Handle when your app sleeps
((JustNotesPage) (((NavigationPage)MainPage) .CurrentPage)).0OnSleep();
}
protected override void OnResume()
{
// Handle when your app resumes
}
}

The onsleep method in App calls a method also named onsleep defined in the JustNotesPage
code-behind file. This is how the contents of the Editor are saved in application memory.

The root element of the XAML page sets the Title property. The remainder of the page is occu-
pied by an absoluteLayout filled with the Editor:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"

Chapter 15 The interactive interface 404

xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="JustNotes.JustNotesPage"
Title="Just Notes">

<StackLayout>
<AbsolutelLayout VerticalOptions="FillAndExpand">
<Editor x:Name="editor"
Keyboard="Text"
AbsolutelLayout.LayoutBounds="0, 0, 1, 1"
AbsolutelLayout.LayoutFlags="A11"
Focused="0OnEditorFocused"
Unfocused="0nEditorUnfocused" />
</Absolutelayout>
</StackLayout>
</ContentPage>

So why does the program use an AbsoluteLayout to host the Editor?

The JustNotes program is a work in progress. It doesn't quite work right for iOS. As you'll recall,
when an Entry view is positioned toward the bottom of the screen, you want to put itina Scroll-
View so that it scrolls up when the iOS virtual keyboard is displayed. However, because Editor imple-
ments its own scrolling, you can't put it in a Scrollview.

For that reason, the code-behind file sets the height of the Editor to one-half the height of the
AbsoluteLayout when the Editor gets input focus so that the keyboard doesn't overlap it, and it
restores the Editor height when it loses input focus:

public partial class JustNotesPage : ContentPage

{
public JustNotesPage()
{
InitializeComponent();
// Retrieve last saved Editor text.
IDictionary<string, object> properties = Application.Current.Properties;
if (properties.ContainsKey("text"))
{
editor.Text = (string)properties["text"];
}
}
void OnEditorFocused(object sender, FocusEventArgs args)
{
if (Device.0S == TargetPlatform.i0S)
{
Absolutelayout.SetLayoutBounds(editor, new Rectangle(0, 0, 1, 0.5));
}
}

void OnEditorUnfocused(object sender, FocusEventArgs args)

{
if (Device.0S == TargetPlatform.i0S)

Chapter 15 The interactive interface 405

{
AbsolutelLayout.SetLayoutBounds(editor, new Rectangle(0, 0, 1, 1));
}
}
public void OnSTeep()
{
// Save Editor text.
Application.Current.Properties["text"] = editor.Text;
}

That adjustment is only approximate, of course. It varies by device, and it varies by portrait and land-
scape mode, but sufficient information is not currently available in Xamarin.Forms to do it more accu-
rately. For now, you should probably restrict your use of Editor views to the top area of the page.

The code for saving and restoring the Editor contents is rather prosaic in comparison with the Ed-
itor manipulation. The onSleep method (called from the App class) saves the text in the Properties
dictionary with a key of “text” and the constructor restores it.

Here's the program running on all three platforms with the Text keyboard in view with word sug-
gestions. On the Windows 10 Mobile screen, a word has been selected and might be copied to the
clipboard for a later paste operation:

] % w0028

e o |
Just Notes AsetEe Just Notes

Just a remindisr 1o come back o this progr
auailabil to campensato far the kayboard

Donit forget o cover the WebView i Must get in shape for the Chapter 19 marathon.
Chapter 16 on data-binding

50 coding @ups every morning.

50 (umnggmm%euew evening.

Collection views rule!

web view WebView pull-ups pull-ups' pull-up’s pulps

QWERTYU I OFP
A SDFGHUJKL
Z XCVBNM

123 @ space retum

The SearchBar

The searchBar doesn't derive from Inputview like Entry and Editor, and it doesn’t have a Key-

Chapter 15 The interactive interface 406

board property. The keyboard that searchiar displays when it acquires input focus is platform spe-
cific and appropriate for a search command. The SearchBar itself is similar to an Entry view, but de-
pending on the platform, it might be adorned with some other graphics and contain a button that
erases the typed text.

SearchBar defines two events:
° TextChanged
o SearchButtonPressed

The TextChanged event allows your program to access a text entry in progress. Perhaps your program
can actually begin a search or offer context-specific suggestions before the user completes typing. The

SearchButtonPressed event is equivalent to the Completed event fired by Entry. It is triggered by

a particular button on the keyboard in the same location as the completed button for Entry but possi-
bly labeled differently.

SearchBar defines five properties:

e Text — the text entered by the user

e Placeholder — hint text displayed before the user begins typing
e CancelButtonColor — of type Color

e SearchCommand — for use with data binding

e SearchCommandParameter — for use with data binding

The SearchBarDemo program uses only Text and Placeholder, but the XAML file attaches han-
dlers for both events:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="SearchBarDemo.SearchBarDemoPage">
<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="10, 20, 10, 0"
Android="10, 0"
WinPhone="10, 0" />
</ContentPage.Padding>

<StackLayout>
<SearchBar x:Name="searchBar"
Placeholder="Search text"
TextChanged="0nSearchBarTextChanged"
SearchButtonPressed="0nSearchBarButtonPressed" />

<Scrol1View x:Name="resultsScroll"
VerticalOptions="FilTAndExpand">
<StackLayout x:Name="resultsStack" />
</Scrol1View>

Chapter 15 The interactive interface 407

</StackLayout>
</ContentPage>

The program uses the scrollable stackLayout named resultsStack to display the results of the
search.

Here's the searchBar and keyboard for the three platforms. Notice the search icon and a delete
button on all three platforms, and the special search keys on the iOS and Android keyboards:

e % W4 0044

10142 AM

Q, Pequod

Ishmael

Starbucks Star buck

qw e r t

QWERTYU I OFP j a

A SDFGHUJKL

Z XCVBNM

You might guess from the entries in the three SearchBar views that the program allows searching
through the text of Herman Melville’s Moby-Dick. That is true! The entire novel is stored as an embed-
ded resource in the Texts folder of the Portable Class Library project with the name MobyDick.txt. The
file is a plain-text, one-line-per-paragraph format that originated with a file on the Gutenberg.net
website.

The constructor of the code-behind file reads that whole file into a string field named bookText.
The TextChanged handler clears the resultsStack of any previous search results so that there's no
discrepancy between the text being typed into the searchBar and this list. The searchButton-
Pressed event initiates the search:

public partial class SearchBarDemoPage : ContentPage
{

const double MaxMatches = 100;

string bookText;

public SearchBarDemoPage()
{

InitializeComponent();

Chapter 15 The interactive interface 408

// Load embedded resource bitmap.
string resourceID = "SearchBarDemo.Texts.MobyDick.txt";
Assembly assembly = GetType().GetTypeInfo().Assembly;

using (Stream stream = assembly.GetManifestResourceStream(resourcelID))
{

using (StreamReader reader = new StreamReader(stream))
{
bookText = reader.ReadToEnd();

void OnSearchBarTextChanged(object sender, TextChangedEventArgs args)

{

resultsStack.Children.Clear(Q);

void OnSearchBarButtonPressed(object sender, EventArgs args)

{

// Detach resultsStack from layout.
resultsScroll.Content = null;

resultsStack.Children.Clear();
SearchBookForText(searchBar.Text);

// Reattach resultsStack to layout.
resultsScroll.Content = resultsStack;

void SearchBookForText(string searchText)

{

int count = 0;
bool isTruncated = false;

using (StringReader reader = new StringReader(bookText))

{
int TineNumber = 0;
string Tline;

while (null != (line = reader.ReadLine()))
{

TineNumber++;

int index = 0;

while (-1 != (index = (line.IndexOf(searchText, index,
StringComparison.OrdinalIgnoreCase))))

{
if (count == MaxMatches)
{
isTruncated = true;
break;
}

index += 1;

Chapter 15 The interactive interface 409

// Add the information to the StackLayout.
resultsStack.Children.Add(
new Label
{
Text = String.Format("Found at 1ine {0}, offset {1}",
TineNumber, index)

b
count++;
}
if (isTruncated)
{
break;
}

}

// Add final count to the StackLayout.
resultsStack.Children.Add(

new Label
{
Text = String.Format("{0} match{1} found{2}",
count,
count == 17 "" : "es",
isTruncated ? " - stopped" : "")

s

The searchBookForText method uses the search text with the Tndexof method applied to each
line of the book for case-insensitive comparison and adds a Label to resultsStack for each match.
However, this process has performance problems because each Label that is added to the stackLay-
out potentially triggers a new layout calculation. That's unnecessary. For this reason, before beginning
the search, the program detaches the stackLayout from the visual tree by setting the Content prop-
erty of its parent (the Scrollview) to null:

resultsScroll.Content = null;
After all the Label views have been added to the stackLayout, the StackLayout is added back to
the visual tree:
resultsScroll.Content = resultsStack;
But even that's not a sufficient performance improvement for some searches, and that is why the

program limits itself to the first 100 matches. (Notice the MaxMatches constant defined at the top of
the class.) Here's the program showing the results of the searches you saw entered earlier:

Chapter 15 The interactive interface

Corrier % 10143 AM

Ishmael

Found at line 238, offset 8
Found at line 263, offset 24
Found at line 283, offset 440
Found at line 283, offset 684
Found at line 285, offset 733
Found at line 289, offset 323
Found at line 544, offset 230
Found at line 646, offset 224
Found at line 775, offset 635
Found at line 909, offset 974
Found at line 909, offset 1037
Found at line 948, offset 310
Found at line 1931, offset 4
Found at line 1977, offset 1008
Found at line 2036, offset 145
Found at line 2042, offset 181
Found at line 3515, offset 382
Found at line 4395, offset 14
Found at line 4395, offset 319
Found at line 4395, offset 476
20 matches found

Found at lin

Found at li

at line 1114, offset
Found at lir

4q

LA

@ 10:44

| Starbuck

Found at line 1236, offset 10
Found at line 1247, offset 11
Found at line 1249, offset 102
Found at line 1255, offset 32
Found at line 1280, offset 251
Found at line 1282, offset 273
Found at line 1284, offset 469
Found at line 1284, offset 309
Found at line 1374, offset 34
Found at line 1374, offset 943
Found at line 1374, offset 2409
Found at line 1376, offset 43
Found at line 1378, offset 1
Found at line 1378, offset 508
Found at line 1378, offset 666
Found at line 1380, offset 125
Found at line 1382, offset 89
Found at line 1399, offset 25
Found at line 1403, offset 33

You'll need to reference the actual file to see what those matches are.

Would running the search in a second thread of execution speed things up? No. The actual text
search is very fast. The performance issues involve the user interface. If the SearchBookForText
method were run in a secondary thread, then it would need to use Device.BeginInvokeOnMain-
Thread to add each Label to the StackLayout. If that StackLayout is attached to the visual tree,
this would make the program operate more dynamically—the individual items would appear on the

410

screen following each item added to the list—but the switching back and forth between threads would

slow down the overall operation.

Date and time selection

A Xamarin.Forms application that needs a date or time from the user can use the DatePicker or

TimePicker view.

These are very similar: The two views simply display a date or time in a box similar to an Entry
view. Tapping the view invokes the platform-specific date or time selector. The user then selects (or

dials in) a new date or time and signals completion.

The DatePicker

DatePicker has three properties of type DateTime:

MinimumDate, initialized to January 1, 1900

Chapter 15 The interactive interface 411

e MaximumDate, initialized to December 31, 2100
e Date, initialized to DateTime.Today

A program can set these properties to whatever it wants as long as MinimumbDate is prior to Maxi-
mumDate. The Date property reflects the user's selection.

If you'd like to set those properties in XAML, you can do so using the x:DateTime element. Use a
format that is acceptable to the DateTime.Parse method with a second argument of Culture-
Info.InvariantCulture. Probably the easiest is the short-date format, which is a two-digit month, a
two-digit day, and a four-digit year, separated by slashes:

<DatePicker .. >
<DatePicker.MinimumDate>
03/01/2016
</DatePicker.MinimumDate>

<DatePicker.MaximumDate>
10/31/2016
</DatePicker.MaximumDate>

<DatePicker.Date>
04/24/2016
</DatePicker.Date>
</DatePicker>

The DatePicker displays the selected date by using the normal ToString method, but you can set
the Format property of the view to a custom .NET formatting string. The initial value is "d"—the short-
date format.

Here's the XAML file from a program called DaysBetweenDates that lets you select two dates and
then calculates the number of days between them. It contains two DatePicker views labeled To and
From:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="DaysBetweenDates.DaysBetweenDatesPage">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="10, 30, 10, 0"
Android="10, 10, 10, 0"
WinPhone="10, 10, 10, 0" />
</ContentPage.Padding>

<StackLayout>
<StackLayout.Resources>
<ResourceDictionary>
<Style TargetType="DatePicker">
<Setter Property="Format" Value="D" />
<Setter Property="VerticalOptions" Value="Center" />
<Setter Property="HorizontalOptions" Value="FillAndExpand" />

Chapter 15 The interactive interface 412

</Style>
</ResourceDictionary>
</StackLayout.Resources>

<!-- Underlined text header -->
<StackLayout Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="2"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center">
<Label Text="Days between Dates"
FontSize="Large"
FontAttributes="Bold"
TextColor="Accent" />
<BoxView Color="Accent"
HeightRequest="3" />
</StackLayout>

<StackLayout Orientation="Horizontal"
VerticalOptions="CenterAndExpand">
<Label Text="From:"
VerticalOptions="Center" />

<DatePicker x:Name="fromDatePicker"
DateSelected="OnDateSelected" />
</StackLayout>

<StackLayout Orientation="Horizontal"
VerticalOptions="CenterAndExpand">
<Label Text=" To:"
VerticalOptions="Center" />

<DatePicker x:Name="toDatePicker"
DateSelected="OnDateSelected" />
</StackLayout>

<Label x:Name="resultLabel"
FontSize="Medium"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand" />
</StackLayout>
</ContentPage>

An implicit style sets the Format property of the two DatePicker views to “D”, which is the long-
date format, to include the text day of the week and month name. The XAML file uses two horizontal
StackLayout objects for displaying a Label and DatePicker side by side.

Watch out: If you use the long-date format, you'll want to avoid setting the HorizontalOptions
property of the DatePicker to Start, Center, or End. If you put the DatePicker in a horizontal
StackLayout (as in this program), set the HorizontalOptions to FillAndExpand. Otherwise, if the
user selects a date with a longer text string than the original date, the result is not formatted well. The
DaysBetweenDates program uses an implicit style to give the DatePicker a HorizontalOptions
value of FillAndExpand so that it occupies the entire width of the horizontal stackLayout except
for what's occupied by the Label.

Chapter 15 The interactive interface 413

When you tap one of the DatePicker fields, a platform-specific panel comes up. On iOS, it occu-
pies just the bottom part of the screen, but on Android and Windows 10 Mobile, it pretty much takes
over the screen:

10:31 AM
1969 ‘ veceruen
Days between Dates Sun, Jul 20 January
February
July 1969

March

From: Friday, February 5, 2016 2 3 April

May

April 24 2016
i : 0 days between dates

Notice the Done button on iOS, the OK button on Android, and the check-mark toolbar button on
Windows Phone. All three of these buttons dismiss the date-picking panel and return to the program
with a firing of the Dateselected event. The event handler in the DaysBetweenDates code-behind
file accesses both DatePicker views and calculates the number of days between the two dates:

public partial class DaysBetweenDatesPage : ContentPage

{
public DaysBetweenDatesPage()
{
InitializeComponent();
// Initialize.
OnDateSelected(null, null);
}
void OnDateSelected(object sender, DateChangedEventArgs args)
{
int days = (toDatePicker.Date - fromDatePicker.Date).Days;
resultlLabel.Text = String.Format("{0} day{l} between dates",
days, days == 17?7 "" : "s");
}
}

Here's the result:

Chapter 15 The interactive interface 414

10:31 AM

Days between Dates Days between Dates

From: Sunday, July 20, 1969 -
From: Friday, February 5, 2016 From: | April

To: Friday, February 5,2016 Feb
To: Sunday, April 24, 2016 To: | February

-79 days between dates

79 days between dates

The TimePicker (or is it a TimeSpanPicker?)

The TimePicker is somewhat simpler than DatePicker. It defines only Time and Format properties,
and it doesn't include an event to indicate a new selected Time value. If you need to be notified, you
can install a handler for the PropertyChanged event.

Although TimePicker displays the selected time by using the ToString method of DateTime, the
Time property is actually of type TimeSpan, indicating a duration of time since midnight.

The SetTimer program includes a TimePicker. The program assumes that the time picked from
the TimePicker is within the next 24 hours and then notifies you when that time has come. The XAML
file puts a TimePicker, a Switch, and an Entry on the page.

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="SetTimer.SetTimerPage"
Padding="50">

<StackLayout Spacing="20"
VerticalOptions="Center">
<TimePicker x:Name="timePicker"
PropertyChanged="0nTimePickerPropertyChanged" />

<Switch x:Name="switch"
HorizontalOptions="End"
Toggled="0OnSwitchToggled" />

<Entry x:Name="entry"
Text="Sample Timer"

Chapter 15 The interactive interface 415

Placeholder="Tabel" />
</StackLayout>
</ContentPage>

The TimePicker has a PropertyChanged event handler attached. The Entry lets you remind your-
self what the timer is supposed to remind you of.

When you tap the TimePicker, a platform-specific panel pops up. As with the DatePicker, the
Android and Windows 10 Mobile panels obscure much of the screen underneath, but you can see the
SetTimer user interface in the center of the iPhone screen:

10:55 AM

11:00 AM

Remind me about the thing

In a real timer program—a timer program that is actually useful and not just a demonstration of the
TimePicker view—the code-behind file would access the platform-specific notification interfaces so
that the user would be notified even if the program were no longer active.

SetTimer doesn't do that. SetTimer instead uses a platform-specific alert box that a program can
invoke by calling the DisplayAlert method that is defined by Page and inherited by ContentPage.

The setTriggerTime method at the bottom of the code-behind file (shown below) calculates the
timer time based on DateTime.Today—a property that returns a DateTime indicating the current
date, but with a time of midnight—and the TimeSpan returned from the TimePicker. If that time has
already passed today, then it's assumed to be tomorrow.

The timer, however, is set for one second. Every second the timer handler checks whether the
Switch is on and whether the current time is greater than or equal to the timer time:

public partial class SetTimerPage : ContentPage

{

DateTime triggerTime;

Chapter 15 The interactive interface 416

public SetTimerPage()

{
InitializeComponent();
Device.StartTimer(TimeSpan.FromSeconds(1l), OnTimerTick);
}
bool OnTimerTick()
{
if (@switch.IsToggled & DateTime.Now >= triggerTime)
{
@switch.IsToggled = false;
DisplayAlert("Timer Alert",
"The '" + entry.Text + "' timer has elapsed",
"OK");
}
return true;
}

void OnTimePickerPropertyChanged(object obj, PropertyChangedEventArgs args)
{

if (args.PropertyName == "Time")
{
SetTriggerTime();
}
}
void OnSwitchToggled(object obj, ToggledEventArgs args)
{
SetTriggerTime();
}
void SetTriggerTime()
{
if (@switch.IsToggled)
{
triggerTime = DateTime.Today + timePicker.Time;
if (triggerTime < DateTime.Now)
{
triggerTime += TimeSpan.FromDays(1);
}
}
}

When the timer time has come, the program uses DisplayAlert to signal a reminder to the user.
Here's how this alert appears on the three platforms:

Chapter 15 The interactive interface 417

30 ®duno

Timer Alert

Timer Alert
The ‘Remind me about the thing' timer
has elapsed

0K

Throughout this chapter, you've seen interactive views that define events, and you've seen applica-
tion programs that implement event handlers. Often these event handlers access a property of the view
and set a property of another view.

In the next chapter, you'll see how these event handlers can be eliminated and how properties of
different views can be linked, either in code or markup. This is the exciting feature of data binding.

Chapter 16

Data binding

Events and event handlers are a vital part of the interactive interface of Xamarin.Forms, but often event
handlers perform very rudimentary jobs. They transfer values between properties of different objects
and in some cases simply update a Label to show the new value of a view.

You can automate such connections between properties of two objects with a powerful feature of
Xamarin.Forms called data binding. Under the covers, a data binding installs event handlers and han-
dles the transfer of values from one property to another so that you don’t have to. In most cases you
define these data bindings in the XAML file, so there's no code (or very little code) involved. The use of
data bindings helps reduce the number of “moving parts” in the application.

Data bindings also play a crucial role in the Model-View-ViewModel (MVVM) application architec-
ture. As you'll see in Chapter 18, “MVVM," data bindings provide the link between the View (the user
interface often implemented in XAML) and the underlying data of the ViewModel and Model. This
means that the connections between the user interface and underlying data can be represented in
XAML along with the user interface.

Binding basics

Several properties, methods, and classes are involved in data bindings:

e The Binding class (which derives from BindingBase) defines many characteristics of a data
binding.

e The BindingContext property is defined by the BindableObject class.

e The setBinding method is also defined by the BindableObject class.

e TheBindableObjectExtensions class defines two additional overloads of setBinding.
Two classes support XAML markup extensions for bindings:

e The BindingExtension class, which is private to Xamarin.Forms, provides support for the
Binding markup extension that you use to define a data binding in XAML.

e The ReferenceExtension class is also crucial to bindings.
Two interfaces also get involved in data binding. These are:

e INotifyPropertyChanged (defined in the System.ComponentModel namespace) is the
standard interface that classes use when notifying external classes that a property has changed.

Chapter 16 Data binding 419

This interface plays a major role in MVVM.

e IValueConverter (defined in the Xamarin.Forms namespace) is used to define small classes
that aid data binding by converting values from one type to another.

The most fundamental concept of data bindings is this: Data bindings always have a source and a
target. The source is a property of an object, usually one that changes dynamically at run time. When
that property changes, the data binding automatically updates the target, which is a property of an-
other object.

Target « Source

But as you'll see, sometimes the data flow between the source and target isn't in a constant direc-
tion. Even in those cases, however, the distinction between source and target is important because of
one basic fact:

The target of a data binding must be backed by a BindableProperty object.

As you know, the VisualElement class derives from BindableObject by way of Element, and all
the visual elements in Xamarin.Forms define most of their properties as bindable properties. For this
reason, data-binding targets are almost always visual elements or—as you'll see in Chapter 19, "Collec-
tion views"—objects called cells that are translated to visual elements.

Although the target of a data binding must be backed by a BindableProperty object, there is no
such requirement for a data-binding source. The source can be a plain old C# property. However, in all
but the most trivial data bindings, a change in the source property causes a corresponding change in
the target property. This means that the source object must implement some kind of notification
mechanism to signal when the property changes. This notification mechanism is the INotifyProper-
tyChanged interface, which is a standard .NET interface involved in data bindings and used extensively
for implementing the MVVM architecture.

The rule for a nontrivial data-binding source—that is, a data-binding source that can dynamically
change value—is therefore:

The source of a nontrivial data binding must implement INotifyPropertyChanged.

Despite its importance, the TNotifyPropertyChanged interface has the virtue of being very simple: it
consists solely of one event, called PropertyChanged, which a class fires when a property has
changed.

Very conveniently for our purposes, BindableObject implements INotifyPropertyChanged.
Any property that is backed by a bindable property automatically fires a PropertyChanged event
when that property changes. This automatic firing of the event extends to bindable properties you
might define in your own classes.

This means that you can define data bindings between properties of visual objects. In the grand

Chapter 16 Data binding 420

scheme of things, most data bindings probably link visual objects with underlying data, but for pur-
poses of learning about data bindings and experimenting with them, it's nice to simply link properties
of two views without defining data classes.

For the first few examples in this chapter, you'll see data bindings in which the source is the value
property of a S1ider and the target is the opacity property of a Label. As you manipulate the
Slider, the Label changes from transparent to opaque. Both properties are of type double and
range from 0 to 1, so they are a perfect match.

You already know how to do this little job with a simple event handler. Let's see how to do it with a
data binding.

Code and XAML

Although most data bindings are defined in XAML, you should know how to do one in code. Here's
one way (but not the only way) to set a data binding in code:

e Setthe BindingContext property on the target object to refer to the source object.
e Call setBinding on the target object to specify both the target and source properties.

The BindingContext property is defined by BindableObject. (It's the only property defined by
BindableObject.) The setBinding method is also defined by BindableObject, but there are two
additional overloads of the setBinding method in the BindableObjectExtensions class. The tar-
get property is specified as a BindableProperty; the source property is often specified as a string.

The OpacityBindingCode program creates two elements, a Label and a S1ider, and defines a
data binding that targets the Opacity property of the Label from the value property of the siider:

public class OpacityBindingCodePage : ContentPage

{
pubTlic OpacityBindingCodePage()
{
Label Tabel = new Label
{
Text = "Opacity Binding Demo",
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
VerticalOptions = LayoutOptions.CenterAndExpand,
HorizontalOptions = LayoutOptions.Center
};
Slider slider = new Slider
{
VerticalOptions = LayoutOptions.CenterAndExpand
};

// Set the binding context: target is Label; source is Slider.
Tlabel.BindingContext = slider;

Chapter 16 Data binding 421

// Bind the properties: target is Opacity; source is Value.
Tlabel.SetBinding(Label.0OpacityProperty, "Value™);

// Construct the page.
Padding = new Thickness(10, 0);
Content = new StacklLayout

{
Children = { Tabel, slider }

1

Here's the property setting that connects the two objects:

Tlabel.BindingContext = slider;

The label object is the target and the s1ider object is the source. Here's the method call that links
the two properties:

Tlabel.SetBinding(Label.0OpacityProperty, "Value");

The first argument to SetBinding is of type BindableProperty, and that's the requirement for the
target property. But the source property is merely specified as a string. It can be any type of property.

The screenshot demonstrates that you don't need to set an event handler to use the s1ider for
controlling other elements on the page:

- 1133

Opacity Binding Demo

Of course, somebody is setting an event handler. Under the covers, when the binding initializes it-
self, it also performs initialization on the target by setting the opacity property of the Label from the

Chapter 16 Data binding 422

Value property of the slider. (As you discovered in the previous chapter, when you set an event
handler yourself, this initialization doesn’t happen automatically.) Then the internal binding code
checks whether the source object (in this case the s1ider) implements the INotifyProperty-
Changed interface. If so, a PropertyChanged handler is set on the s1ider. Whenever the value
property changes, the binding sets the new value to the opacity property of the Label.

Reproducing the binding in XAML involves two markup extensions that you haven't seen yet:
e x:Reference, which is part of the XAML 2009 specification.
e Binding, which is part of Microsoft's XAML-based user interfaces.

The x:Reference binding extension is very simple, but the Binding markup extension is the most
extensive and complex markup extension in all of Xamarin.Forms. It will be introduced incrementally
over the course of this chapter.

Here's how you set the data binding in XAML:

e Setthe BindingContext property of the target element (the Label) to an x:Reference
markup extension that references the source element (the slider).

e Set the target property (the opacity property of the Label) to a Binding markup extension
that references the source property (the value property of the siider).

The OpacityBindingXaml project shows the complete markup:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="0pacityBindingXaml.0pacityBindingXamlPage"
Padding="10, 0">
<StackLayout>
<Label Text="Opacity Binding Demo"
FontSize="Large"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center"
BindingContext="{x:Reference Name=slider}"
Opacity="{Binding Path=Value}" />

<STider x:Name="slider"
VerticalOptions="CenterAndExpand" />
</StackLayout>
</ContentPage>

The two markup extensions for the binding are the last two attribute settings in the Label. The code-
behind file contains nothing except the standard call to InitializeComponent.

When setting the BindingContext in markup, it is very easy to forget the x:Reference markup
extension and simply specify the source name, but that doesn’t work.

The path argument of the Binding markup expression specifies the source property. Why is this
argument called path rather than Property? You'll see why later in this chapter.

Chapter 16 Data binding 423

You can make the markup a little shorter. The public class that provides support for Reference is
ReferenceExtension, which defines its content property to be Name. The content property of
BindingExtension (which is not a public class) is Path, so you don’t need the Name and Path argu-
ments and equal signs:

<Label Text="Opacity Binding Demo"
FontSize="Large"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center"
BindingContext="{x:Reference slider}"
Opacity="{Binding Value}" />

Or if you'd like to make the markup longer, you can break out the BindingContext and Opacity
properties as property elements and set them by using regular element syntax for x:Reference and
Binding:
<Label Text="Opacity Binding Demo"

FontSize="Large"

VerticalOptions="CenterAndExpand"
HorizontalOptions="Center">

<Label.BindingContext>
<x:Reference Name="slider" />
</Label.BindingContext>

<LabeT.0pacity>
<Binding Path="Value" />
</Label.0Opacity>
</Label>

As you'll see, the use of property elements for bindings is sometimes convenient in connection with the
data binding.

Source and BindingContext

The BindingContext property is actually one of two ways to link the source and target objects. You
can alternatively dispense with BindingContext and include a reference to the source object within
the binding expression itself.

The BindingSourceCode project has a page class that is identical to the one in OpacityBinding-
Code except that the binding is defined in two statements that don’t involve the BindingContext
property:

public class BindingSourceCodePage : ContentPage
{
pubTlic BindingSourceCodePage()
{
Label Tabel = new Label
{

Chapter 16 Data binding 424

Text = "Opacity Binding Demo",

FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
VerticalOptions = LayoutOptions.CenterAndExpand,
HorizontalOptions = LayoutOptions.Center

b
Slider slider = new Slider
{
VerticalOptions = LayoutOptions.CenterAndExpand
I

// Define Binding object with source object and property.
Binding binding = new Binding
{
Source = slider,
Path = "Value"
b

// Bind the Opacity property of the Label to the source.
Tlabel.SetBinding(Label.0pacityProperty, binding);

// Construct the page.
Padding = new Thickness(10, 0);
Content = new StacklLayout
{

Children = { Tabel, slider }
1

The target object and property are still specified in the call to the setBinding method:

label.SetBinding(Label.0OpacityProperty, binding);

However, the second argument references a Binding object that specifies the source object and
property:
Binding binding = new Binding

{

Source = slider,
Path = "value"
};

That is not the only way to instantiate and initialize a Binding object. An extensive Binding con-
structor allows for specifying many Binding properties. Here's how it could be used in the Bind-
ingSourceCode program:

Binding binding = new Binding("Value", BindingMode.Default, null, null, null, slider);

Or you can use a named argument to reference the s1ider object:

Binding binding = new Binding("Value", source: slider);

Chapter 16 Data binding 425

Binding also has a generic Create method that lets you specify the path property as a Func ob-
ject rather than as a string so that it's more immune from misspellings or changes in the property
name. However, this Create method doesn't include an argument for the source property, so you
need to set it separately:

Binding binding = Binding.Create<Slider>(src => src.Value);
binding.Source = slider;

The BindableObjectExtensions class defines two overloads of setBinding that allow you to
avoid explicitly instantiating a Binding object. However, neither of these overloads includes the
Source property, so they are restricted to cases where you're using the BindingContext.

The BindingSourceXaml program demonstrates how both the source object and source property
can be specified in the Binding markup extension:
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="BindingSourceXaml.BindingSourceXamlPage"
Padding="10, 0">
<StackLayout>
<Label Text="Binding Source Demo"
FontSize="Large"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center"
Opacity="{Binding Source={x:Reference Name=slider},
Path=vValue}" />

<STider x:Name="sTider"
VerticalOptions="CenterAndExpand" />
</StackLayout>
</ContentPage>

The Binding markup extension now has two arguments, one of which is another markup extension
for x:Reference, so a pair of curly braces are nested within the main curly braces:

Opacity="{Binding Source={x:Reference Name=slider},
Path=Value}" />

For visual clarity, the two Binding arguments are vertically aligned within the markup extension, but
that's not required. Arguments must be separated by a comma (here at the end of the first line), and
no quotation marks must appear within the curly braces. You're not dealing with XML attributes within
the markup extension. These are markup extension arguments.

You can simplify the nested markup extension by eliminating the Name argument name and equals
sign in x:Reference because Name is the content property of the ReferenceExtension class:

Opacity="{Binding Source={x:Reference slider},
Path=Value}" />

However, you cannot similarly remove the path argument name and equals sign. Even though
BindingExtension defines Path as its content property, the argument name can be eliminated only

Chapter 16 Data binding 426

when that argument is the first among multiple arguments. You need to switch around the arguments
like so:

Opacity="{Binding Path=Value,
Source={x:Reference slider}}" />

And then you can eliminate the path argument name, and perhaps move everything to one line:

Opacity="{Binding Value, Source={x:Reference slider}}" />

However, because the first argument is missing an argument name and the second argument has
an argument name, the whole expression looks a bit peculiar, and it might be difficult to grasp the
Binding arguments at first sight. Also, it makes sense for the source to be specified before the path
because the particular property specified by the path makes sense only for a particular type of object,
and that's specified by the source.

In this book, whenever the Binding markup extension includes a Source argument, it will be first,
followed by the path. Otherwise, the Path will be the first argument, and often the Path argument
name will be eliminated.

You can avoid the issue entirely by expressing Binding in element form:

<Label Text="Binding Source Demo"
FontSize="Large"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center">
<Label.0pacity>
<Binding Source="{x:Reference slider}"
Path="value" />
</Label.0Opacity>
</Label>

The x:Reference markup extension still exists, but you can also express that in element form as well:

<Label Text="Binding Source Demo"
FontSize="Large"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center">
<Label.0pacity>
<Binding Path="Value">
<Binding.Source>
<x:Reference Name="slider" />
</Binding.Source>
</Binding>
</Label.0Opacity>
</Label>

You have now seen two ways to specify the link between the source object with the target object:
e Usethe BindingContext to reference the source object.

e Use the Source property of the Binding class or the Binding markup extension.

Chapter 16 Data binding 427

If you specify both, the source property takes precedence over the BindingContext.

In the examples you've seen so far, these two techniques have been pretty much interchangeable.
However, they have some significant differences. For example, suppose you have one object with two
properties that are targets of two different data bindings involving two different source objects—for
example, a Label with the opacity property bound to a Slider and the Isvisible property bound
to a switch. You can't use BindingContext for both bindings because BindingContext applies to
the whole target object and can only specify a single source. You must use the Source property of
Binding for at least one of these bindings.

BindingContext is itself backed by a bindable property. This means that BindingContext can be
set from a Binding markup extension. In contrast, you can't set the source property of Binding to
another Binding because Binding does not derive from BindableObject, which means Source is
not backed by a bindable property and hence can’t be the target of a data binding.

In this variation of the BindingSourceXaml markup, the BindingContext property of the Label
is set to a Binding markup extension that includes a Source and path.
<Label Text="Binding Source Demo"
FontSize="Large"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center"
BindingContext="{Binding Source={x:Reference Name=slider},

Path=Value}"
Opacity="{Binding}" />

This means that the BindingContext for this Label is not the s1ider object as in previous examples
but the double that is the value property of the S1ider. To bind the Opacity property to this dou-
ble, all that's required is an empty Binding markup extension that basically says “use the Bind-
ingContext for the entire data-binding source.”

Perhaps the most important difference between BindingContext and Source is a very special
characteristic that makes BindingContext unlike any other property in all of Xamarin.Forms:

The binding context is propagated through the visual tree.

In other words, if you set BindingContext on a StackLayout, it applies to all the children of that
StackLayout and their children as well. The data bindings within that stackLayout don't have to
specify BindingContext or the Source argument to Binding. They inherit BindingContext from
the stackLayout. Or the children of the stackLayout can override that inherited BindingContext
with BindingContext settings of their own or with a source setting in their bindings.

This feature turns out to be exceptionally useful. Suppose a StackLayout contains a bunch of visu-
als with data bindings set to various properties of a particular class. Set the BindingContext property
of that stackLayout. Then, the individual data bindings on the children of the stackLayout don't
require either a Source specification or a BindingContext setting. You could then set the Bind-
ingContext of the stackLayout to different instances of that class to display the properties for each

Chapter 16 Data binding 428

instance. You'll see examples of this technique and other data-binding marvels in the chapters ahead,
and particularly in Chapter 19.

Meanwhile, let's look at a much simpler example of BindingContext propagation through the vis-
ual tree.

The webview is intended to embed a web browser inside your application. Alternatively, you can
use WebView in conjunction with the Htm1wWebVviewSource class to display a chunk of HTML, perhaps
saved as an embedded resource in the PCL.

For displaying webpages, you use Webview with the UrlwebviewSource class to specify an initial
URL. However, UrlWebViewSource and HtmlWebViewSource both derive from the abstract class
WebViewSource, and that class defines an implicit conversion of string and Uri to itself, so all you
really need to do is set a string with a web address to the Source property of Wwebview to direct Web-
View to present that webpage.

WebView also defines two methods, named GoBack and GoForward, that internally implement the
Back and Forward buttons typically found on web browsers. Your program needs to know when it can
enable these buttons, so Wwebview also defines two get-only Boolean properties, named CanGoBack
and CanGoForward. These two properties are backed by bindable properties, which means that any
changes to these properties result in PropertyChanged events being fired, which further means that
they can be used as data binding sources to enable and disable two buttons.

Here's the XAML file for WebViewDemo. Notice that the nested stackLayout containing the two
Button elements has its BindingContext property set to the ebview. The two Button children in
that stackLayout inherit the BindingContext, so the buttons can have very simple Binding ex-
pressions on their IsEnabled properties that reference only the canGoBack and CanGoForward
properties:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="WebViewDemo.WebViewDemoPage">
<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="10, 20, 10, 0"
Android="10, 0"
WinPhone="10, 0" />
</ContentPage.Padding>

<StackLayout>
<Entry Keyboard="Ur1"
Placeholder="web address"
Completed="0OnEntryCompleted" />

<StackLayout Orientation="Horizontal"
BindingContext="{x:Reference webView}">

<Button Text="⇐"
FontSize="Large"

Chapter 16 Data binding 429

HorizontalOptions="FillAndExpand"
IsEnabled="{Binding CanGoBack}"
Clicked="0nGoBackCTlicked" />

<Button Text="⇒"
FontSize="Large"
HorizontalOptions="Fil1AndExpand"
IsEnabled="{Binding CanGoForward}"
Clicked="0nGoForwardClicked" />
</StackLayout>

<WebView x:Name="webView"
VerticalOptions="FillAndExpand"
Source="https://xamarin.com" />
</StackLayout>
</ContentPage>

The code-behind file needs to handle the c1icked events for the Back and Forward buttons as
well as the Completed event for the Entry that lets you enter a web address of your own:

public partial class WebViewDemoPage : ContentPage

{
public WebViewDemoPage()
{
InitializeComponent();
}
void OnEntryCompleted(object sender, EventArgs args)
{
webView.Source = ((Entry)sender).Text;
}
void OnGoBackClicked(object sender, EventArgs args)
{
webView.GoBack();
}
void OnGoForwardClicked(object sender, EventArgs args)
{
webView.GoForward();
}
}

You don't need to enter a web address when the program starts up because the XAML file is hard-
coded to go to your favorite website, and you can navigate around from there:

Chapter 16 Data binding 430

a1 AM

=

Xamarin.Forms.WebView Class

Q NamarinForms | B that presents HTML content
|

Hello, Xamarin.Forms |
Getting started with Xamarin. | Syntax

Intro to Xamarin.Forms

Learn how to build cross-platf | Xamarin. Forms. Renderd
{Xamarin.Forms. Platfor

XAML for Xamarin.Forms puk class WebView :

Using XAML to design mobile |

© EVOLVE 16

Don't miss the largest cross-platform mobile

Guides + Recipes « Samples + APls Ul Remarks

The following example shows a basic us
event in the warld.

Xamarin.Mac C# Example

The binding mode

Here is a Label whose FontSize property is bound to the value property of a slider:

<Label FontSize="{Binding Source={x:Reference slider},
Path=Value}" />
<STider x:Name="slider"
Maximum="100" />

That should work, and if you try it, it will work. You'll be able to change the FontSize of the Label by
manipulating the slider.

But here's a Label and Slider with the binding reversed. Instead of the FontSize property of the
Label being the target, now FontSize is the source of the data binding, and the target is the value
property of the S1ider:
<Label x:Name="Tlabel" />
<STider Maximum="100"

Value="{Binding Source={x:Reference label},
Path=FontSize}" />

That doesn’t seem to make any sense. But if you try it, it will work just fine. Once again, the s1ider will
manipulate the FontSize property of the Label.

The second binding works because of something called the binding mode.

You've learned that a data binding sets the value of a target property from the value of a source

Chapter 16 Data binding 431

property, but sometimes the data flow is not so clear cut. The relationship between target and source is
defined by members of the BindingMode enumeration:

° Default

e OneWay — changes in the source affect the target (normal).

e OneWayToSource — changes in the target affect the source.

e TwoWay — changes in the source and target affect each other.
This BindingMode enumeration plays a role in two different classes:

When you create a BindableProperty object by using one of the static Create or CreateRead-
Only static methods, you can specify a default BindingMode value to use when that property is the
target of a data binding.

If you don't specify anything, the default binding mode is oneway for bindable properties that are
readable and writeable, and OnewWayToSource for read-only bindable properties. If you specify Bind-
ingMode.Default when creating a bindable property, the default binding mode for the property is
set to OnewWay. (In other words, the BindingMode.Default member is not intended for defining bind-
able properties.)

You can override that default binding mode for the target property when you define a binding ei-
ther in code or XAML. You override the default binding mode by setting the Mode property of Bind-
ing to one of the members of the BindingMode enumeration. The Default member means that you
want to use the default binding mode defined for the target property.

When you set the Mode property to OneWayToSource you are not switching the target and the
source. The target is still the object on which you've set the BindingContext and the property on
which you've called setBinding or applied the Binding markup extension. But the data flows in a
different direction—from target to source.

Most bindable properties have a default binding mode of oneway. However, there are some excep-
tions. Of the views you've encountered so far in this book, the following properties have a default
mode of TwoWay:

Class Property that is TwoWay
Slider Value

Stepper Value

Switch IsToggled

Entry Text

Editor Text

SearchBar Text

DatePicker Date

TimePicker Time

The properties that have a default binding mode of Twoway are those most likely to be used with
underlying data models in an MVVM scenario. With MVVM, the binding targets are visual objects and

Chapter 16 Data binding 432

the binding sources are data objects. In general, you want the data to flow both ways. You want the
visual objects to display the underlying data values (from source to target), and you want the interac-
tive visual objects to cause changes in the underlying data (target to source).

The BindingModes program connects four Label elements and four S1ider elements with “nor-
mal” bindings, meaning that the target is the FontSsize property of the Label and the source is the
Value property of the Slider:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="BindingModes.BindingModesPage"
Padding="10, 0">

<ContentPage.Resources>
<ResourceDictionary>
<Style TargetType="StackLayout">
<Setter Property="VerticalOptions" Value="CenterAndExpand" />
</Style>

<Style TargetType="Label">
<Setter Property="HorizontalOptions" Value="Center" />
</Style>
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout VerticalOptions="Fill">
<StackLayout>
<Label Text="Default"
FontSize="{Binding Source={x:Reference sliderl},
Path=Value}" />
<STider x:Name="sliderl"
Maximum="50" />
</StackLayout>

<StackLayout>
<Label Text="OnewWay"
FontSize="{Binding Source={x:Reference slider2},
Path=Value,
Mode=OnewWay}" />
<STider x:Name="sTider2"
Maximum="50" />
</StackLayout>

<StackLayout>
<Label Text="OneWayToSource"
FontSize="{Binding Source={x:Reference slider3},
Path=Value,
Mode=0OneWayToSource}" />
<STider x:Name="slider3"
Maximum="50" />
</StackLayout>

<StackLayout>

Chapter 16 Data binding 433

<Label Text="TwoWay"
FontSize="{Binding Source={x:Reference slider4},
Path=Value,
Mode=TwoWay}" />
<STider x:Name="slider4"
Maximum="50" />
</StackLayout>
</StackLayout>
</ContentPage>

The Text of the Label indicates the binding mode. When you first run this program, all the
Slider elements are initialized at zero, except for the third one, which is slightly nonzero:

Default

OneWay

OneWayToSource
OneWayToSource

TwoWay

By manipulating each slider, you can change the Fontsize of the Label, but it doesn’t work for
the third one because the onewWayToSource mode indicates that changes in the target (the FontSize
property of the Label) affect the source (the value property of the s1ider):

Chapter 16 Data binding

%0 @ W 0534

5:33PM

Default Default

OneWay OneWay

OneWayToSource

TwoWay

S

OneWay
—

OneWayToSource

TwoWay

434

Although it's not quite evident here, the default binding mode is oneway because the binding is set on
the Fontsize property of the Label, and that's the default binding mode for the Fontsize property.

The ReverseBinding program sets the bindings on the value property of the siider:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"

x:Class="ReverseBinding.ReverseBindingPage"
Padding="10, 0">

<ContentPage.Resources>
<ResourceDictionary>
<Style TargetType="StackLayout">

<Setter Property="VerticalOptions" Value="CenterAndExpand" />

</Style>

<Style TargetType="Label">

<Setter Property="HorizontalOptions" Value="Center" />

</Style>
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout VerticalOptions="Fill">
<StackLayout>
<Label x:Name="Tabell"
Text="Default" />
<STider Maximum="50"

Value="{Binding Source={x:Reference labell},

Path=FontSizel}" />
</StackLayout>

Chapter 16 Data binding 435

<StackLayout>
<Label x:Name="Tlabel2"
Text="0neWay" />
<STider Maximum="50"
Value="{Binding Source={x:Reference Tlabel2},
Path=FontSize,
Mode=0OneWay}" />
</StackLayout>

<StackLayout>
<Label x:Name="Tlabel3"
Text="0neWayToSource" />
<STider Maximum="50"
Value="{Binding Source={x:Reference label3},
Path=FontSize,
Mode=0OneWayToSource}" />
</StackLayout>

<StackLayout>
<Label x:Name="Tlabel4"
Text="TwoWay" />
<STider Maximum="50"
Value="{Binding Source={x:Reference label4},
Path=FontSize,
Mode=TwoWay}" />
</StackLayout>
</StackLayout>
</ContentPage>

The default binding mode on these bindings is Twoway because that's the mode set in the Binda-
bleProperty.Create method for the value property of the Slider.

What's interesting about this approach is that for three of the cases here, the value property of the
Slider is initialized from the Fontsize property of the Label:

Chapter 16 Data binding 436

%0 U Pa 0543

Dafaikt Default

—

OneWay

OneWay

o

OneWayToSource

TwoWay

It doesn’t happen for OneWayToSource because for that mode, changes to the value property of the
Slider affect the Fontsize property of the Label but not the other way around.

Now let's start manipulating these sliders:

%0 U Pa 0543

Default
S

Default Default

—

OneWay
Onelay

OneWayToSource

OneWayToSource

OneWayToSource

TwoWay TwoWay

TwoWay

Now the onewWayToSource binding works because changes to the value property of the slider

Chapter 16 Data binding 437

affect the FontSize property of the Label, but the oneway binding does not work because that indi-
cates that the value property of the siider is only affected by changes in the Fontsize property of
the Label.

Which binding works the best? Which binding initializes the value property of the slider to the
FontSize property of the Label, but also allows s1ider manipulations to change the Fontsize? It's
the reverse binding set on the s1ider with a mode of Twoway, which is the default mode.

This is exactly the type of initialization you want to see when a s1ider is bound to some data. For
that reason, when using a s1ider with MVVM, the binding is set on the s1ider to both display the
data value and to manipulate the data value.

String formatting

Some of the sample programs in the previous chapter used event handlers to display the current values
of the s1ider and Stepper views. If you try defining a data binding that targets the Text property of
a Label from the value property of a S1ider, you'll discover that it works, but you don't have much
control over it. In general, you'll want to control any type conversion or value conversion required in
data bindings. That's discussed later in this chapter.

String formatting is special, however. The Binding class has a StringFormat property that allows
you to include an entire .NET formatting string. Almost always, the target of such a binding is the Text
property of a Labe1l, but the binding source can be of any type.

The .NET formatting string that you supply to stringFormat must be suitable for a call to the
String.Format static method, which means that it should contain a placeholder of “{0}" with or with-
out a formatting specification suitable for the source data type—for example “{0:F3}" to display a dou-
ble with three decimal places.

In XAML, this placeholder is a bit of a problem because the curly braces can be mistaken for the
curly braces used to delimit markup extensions. The easiest solution is to put the entire formatting
string in single quotation marks.

The ShowViewValues program contains four examples that display the current values of a s1ider,
Entry, Stepper, and switch. The hexadecimal codes in the formatting string used for displaying the
Entry contents are Unicode IDs for “smart quotes”:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ShowViewValues.ShowViewValuesPage"
Padding="10, 0">

<StackLayout>
<StackLayout VerticalOptions="CenterAndExpand">
<Label Text="{Binding Source={x:Reference slider},
Path=Value,

Chapter 16 Data binding 438

StringFormat='The Slider value is {0:F3}'}" />
<STider x:Name="slider" />
</StackLayout>

<StackLayout VerticalOptions="CenterAndExpand">
<Label Text="{Binding Source={x:Reference entry},
Path=Text,
StringFormat='The Entry text is “{0}”"'}" />
<Entry x:Name="entry" />
</StackLayout>

<StackLayout VerticalOptions="CenterAndExpand">
<Label Text="{Binding Source={x:Reference stepper},
Path=Value,
StringFormat="'The Stepper value is {0}'}" />
<Stepper x:Name="stepper" />
</StackLayout>

<StackLayout VerticalOptions="CenterAndExpand">
<Label Text="{Binding Source={x:Reference switch},
Path=IsToggled,
StringFormat='The Switch value is {0}'}" />
<Switch x:Name="switch" />
</StackLayout>
</StackLayout>
</ContentPage>

When using stringFormat you need to pay particular attention to the placement of commas, single
guotation marks, and curly braces.

Here's the result:

oricr % 400 PM

The Slider value is 0.239 The Slider value is 0.800

The Entry text is “A little bit of text” - The Entry text is "And even more text”
Some additional tex |
Alittle bit of text | And even more text

The Stepper value is 7
The Stepper value is 10
t . - +

The Switch value is True

The Switch value is False

Chapter 16 Data binding

You might recall the WhatSize program from Chapter 5, "Dealing with sizes.” That program used a
SizeChanged event handler on the page to display the current width and height of the screen in de-

vice-independent units.

The WhatSizeBindings program does the whole job in XAML. First it adds an x : Name attribute to
the root tag to give the WhatSizeBindingsPage object a name of page. Three Label views share a
horizontal stackLayout in the center of the page, and two of them have bindings to the width and
Height properties. The Width and Height properties are get-only, but they are backed by bindable

properties, so they fire PropertyChanged events when they change:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="WhatSizeBindings.WhatSizeBindingsPage"
x:Name="page">

<StackLayout Orientation="Horizontal"
Spacing="0"
HorizontalOptions="Center"
VerticalOptions="Center">

<StackLayout.Resources>
<ResourceDictionary>
<Style TargetType="Label">
<Setter Property="FontSize" Value="Large" />
</Style>
</ResourceDictionary>
</StackLayout.Resources>

<Label Text="{Binding Source={x:Reference page},
Path=Width,
StringFormat='{0:F0}'}" />

<!-- Multiplication sign. -->
<Label Text=" × " />

<Label Text="{Binding Source={x:Reference page},
Path=Height,
StringFormat='{0:F0}'}" />
</StackLayout>
</ContentPage>

Here's the result for the devices used for this book:

Chapter 16 Data binding 440

360 x 567 341 %546

375 x 667

The display changes as you turn the phone between portrait and landscape modes.

Alternatively, the BindingContext on the StackLayout could be set to an x:Reference markup
extension referencing the page object, and the Source settings on the bindings wouldn’t be necessary.

Why is it called “Path”?

The Binding class defines a property named path that you use to set the source property name. But
why is it called Path? Why isn't it called Property?

The path property is called what it's called because it doesn’t need to be one property. It can be a
stack of properties, subproperties, and even indexers connected with periods.

Using Path in this way can be tricky, so here’s a program called BindingPathDemos that has four
Binding markup extensions, each of which sets the Path argument to a string of property names and
indexers:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmlns:globe="clr-namespace:System.Globalization;assembly=mscorlib"
x:Class="BindingPathDemos.BindingPathDemosPage"
x:Name="page">
<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="10, 20, 10, 0"
Android="10, 0"
WinPhone="10, 0" />

Chapter 16 Data binding 441

</ContentPage.Padding>

<ContentPage.Resources>
<ResourceDictionary>
<Style x:Key="baseStyle" TargetType="View'">
<Setter Property="VerticalOptions" Value="CenterAndExpand" />
</Style>

<Style TargetType="Label" BasedOn="{StaticResource baseStyle}">
<Setter Property="FontSize" Value="Large" />
<Setter Property="HorizontalTextAlignment" Value="Center" />
</Style>

<Style TargetType="Slider" BasedOn="{StaticResource baseStyle}" />
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout BindingContext="{x:Reference page}">
<Label Text="{Binding Path=Padding.Top,
StringFormat="'The top padding is {0}'}" />

<Label Text="{Binding Path=Content.Children[4].Value,
StringFormat='The Slider value is {0:F2}'}" />

<Label Text="{Binding Source={x:Static globe:CultureInfo.CurrentCulture},
Path=DateTimeFormat.DayNames[3],
StringFormat="'The middle day of the week is {0}'}" />

<Label Text="{Binding Path=Content.Children[2].Text.Length,
StringFormat='The preceding Label has {0} characters'}" />
<STider />
</StackLayout>
</ContentPage>

Only one element here has an x :Name, and that's the page itself. The BindingContext of the
StackLayout is that page, so all the bindings within the stackLayout are relative to the page (ex-
cept for the binding that has an explicit Source property set).

The first Binding looks like this:

<Label Text="{Binding Path=Padding.Top,
StringFormat="'The top padding is {0}'}" />

The Path begins with the Padding property of the page. That property is of type Thickness, so it's
possible to access a property of the Thickness structure with a property name such as Top. Of course,
Thickness is a structure and therefore does not derive from BindableObject, so Top can't be a
BindableProperty. The binding infrastructure can't set a PropertyChanged handler on that prop-
erty, but it will set a PropertyChanged handler on the padding property of the page, and if that
changes, the binding will update the target.

The second Binding references the Content property of the page, which is the stackLayout.
That stackLayout has a Children property, which is a collection, so it can be indexed:

Chapter 16 Data binding 442

<Label Text="{Binding Path=Content.Children[4].Value,
StringFormat='The Slider value is {0:F2}'}" />

The view at index 4 of the Children collection is a S1ider (down at the bottom of the markup, with
no attributes set), which has a value property, and that's what's displayed here.

The third Binding overrides its inherited BindingContext by setting the Source argument to a
static property using x: Static. The globe prefix is defined in the root tag to refer to the .NET sys-
tem.Globalization namespace, and the Source is set to the CultureInfo object that encapsulates
the culture of the user’s phone:
<Label Text="{Binding Source={x:Static globe:CultureInfo.CurrentCulture},

Path=DateTimeFormat.DayNames[3],
StringFormat='The middle day of the week is {0}'}" />

One of the properties of CultureInfo is DateTimeFormat, which is a DateTimeFormatInfo object
that contains information about date and time formatting, including a property named DayNames that
is an array of the seven days of the week. The index 3 picks out the middle one.

None of the classes in the System.Globalization namespace implement INotifyProperty-
Changed, but that's okay because the values of these properties don’t change at run time.

The final Binding references the child of the stackLayout with a child index of 2. That's the previ-
ous Label. It has a Text property, which is of type string, and string has a Length property:

<Label Text="{Binding Path=Content.Children[2].Text.Length,
StringFormat='The preceding Label has {0} characters'}" />

The binding system installs a property-changed handler for the Text property of the Label, so if it
changes, the binding will get the new length.

For the following screenshots, the iOS phone was switched to French, and the Android phone was
switched to German. This affects the formatting of the s1ider value—notice the comma rather than a
period for the decimal divider—and the name of the middle day of the week:

Chapter 16 Data binding 443

% w4 0450

The top padding is 0
The top padding is 20

The Slider value is 0,53 The Slider value is 0.90
The Slider value is 0,28

The middle day of the
week is Wednesday

The middle day of the week is

mercredi

The preceding Label
has 39 characters

The preceding Label has 38
characters

These path specifications can be hard to configure and debug. Keep in mind that class names do
not appear in the path specifications—only property names and indexers. Also keep in mind that you
can build up a path specification incrementally, testing each new piece with a placeholder of “{0}" in
StringFormat. This will often display the fully qualified class name of the type of the value set to the
last property in the pPath specification, and that can be very useful information.

You'll also want to keep an eye on the Output window in Visual Studio or Xamarin Studio when
running your program under the debugger. You'll see messages there relating to run-time errors en-
countered by the binding infrastructure.

Binding value converters

You now know how to convert any binding source object to a string by using StringFormat. But
what about other data conversions? Perhaps you're using a slider for a binding source but the target
is expecting an integer rather than a double. Or maybe you want to display the value of a switch as
text, but you want “Yes” and “No” rather than “True” and “False”.

The tool for this job is a class—often a very tiny class—informally called a value converter or (some-
times) a binding converter. More formally, such a class implements the TvalueConverter interface.
This interface is defined in the Xamarin.Forms namespace, but it is similar to an interface available in
Microsoft's XAML-based environments.

An example: Sometimes applications need to enable or disable a Button based on the presence of
text in an Entry. Perhaps the Button is labeled Save and the Entry is a filename. Or the Button is

Chapter 16 Data binding 444

labeled Send and the Entry contains a mail recipient. The Button shouldn't be enabled unless the
Entry contains at least one character of text.

There are a couple of ways to do this job. In a later chapter, you'll see how a data trigger can do it
(and can also perform validity checks of the text in the Entry). But for this chapter, let's do it with a
value converter.

The data-binding target is the IsEnabled property of the Button. That property is of type bool.
The binding source is the Text property of an Entry, or rather the Length property of that Text
property. That Length property is of type int. The value converter needs to convert an int equal to 0
to a bool of false and a positive int to a bool of true. The code is trivial. We just need to wrap it in
a class that implements TvalueConverter.

Here is that class in the Xamarin.FormsBook.Toolkit library, complete with using directives. The
IValueConverter interface consists of two methods, named Convert and ConvertBack, with iden-
tical parameters. You can make the class as generalized or as specialized as you want:
using System;

using System.Globalization;
using Xamarin.Forms;

namespace Xamarin.FormsBook.Toolkit

{
public class IntToBoolConverter : IValueConverter
{
public object Convert(object value, Type targetType,
object parameter, CultureInfo culture)
{
return (int)value != 0;
}
public object ConvertBack(object value, Type targetType,
object parameter, CultureInfo culture)
{
return (bool)value ? 1 : 0;
}
}
}

When you include this class in a data binding—and you'll see how to do that shortly—the convert
method is called whenever a value passes from the source to the target.

The value argument to Convert is the value from the data binding source to be converted. You
can use GetType to determine its type, or you can assume that it's always a particular type. In this ex-
ample, the value argument is assumed to be of type int, so casting to an int won't raise an excep-
tion. More sophisticated value converters can perform more validity checks.

The targetType is the type of the data-binding target property. Versatile value converters can use
this argument to tailor the conversion for different target types. The Convert method should return an

Chapter 16 Data binding 445

object or value that matches this targetType. This particular Convert method assumes that target-
Type is bool.

The parameter argument is an optional conversion parameter that you can specify as a property to
the Binding class. (You'll see an example in Chapter 18, "MVVM.")

Finally, if you need to perform a culture-specific conversion, the last argument is the cultureInfo
object that you should use.

The body of this particular Convert method assumes that value is an int, and the method returns
a bool that is true if that integer is nonzero.

The ConvertBack method is called only for TwoWay or OneWayToSource bindings. For the Con-
vertBack method, the value argument is the value from the target and the targetType argument is
actually the type of the source property. If you know that the convertBack method will never be
called, you can simply ignore all the arguments and return null or 0 from it. With some value convert-
ers, implementing a ConvertBack body is virtually impossible, but sometimes it's fairly simple (as in
this case).

When you use a value converter in code, you set an instance of the converter to the Converter
property of Binding. You can optionally pass an argument to the value converter by setting the con-
verterParameter property of Binding.

If the binding also has a stringFormat, the value that is returned by the value converter is the
value that is formatted as a string.

Generally, in a XAML file you'll want to instantiate the value converter in a Resources dictionary
and then reference it in the Binding expression by using StaticResource. The value converter
shouldn’t maintain state and can thus be shared among multiple bindings.

Here's the ButtonEnabler program that uses the value converter:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:toolkit=
"clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"
x:Class="ButtonEnabler.ButtonEnablerPage"
Padding="10, 50, 10, 0">

<ContentPage.Resources>
<ResourceDictionary>
<toolkit:IntToBoolConverter x:Key="intToBool" />
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout Spacing="20">
<Entry x:Name="entry"
Text=""
Placeholder="text to enable button" />

Chapter 16 Data binding 446

<Button Text="Save or Send (or something)"

FontSize="Medium"

HorizontalOptions="Center"

IsEnabled="{Binding Source={x:Reference entry},
Path=Text.Length,
Converter={StaticResource intToBool}}" />

</StackLayout>
</ContentPage>

The IntToBoolConverter is instantiated in the Resources dictionary and referenced as a nested
markup extension in the Binding that is set on the IsEnabled property of the Button.

Notice that the Text property is explicitly initialized in the Entry tag to an empty string. By default,
the Text property is null, which means that the binding pPath setting of Text .Length doesn’t result
in a valid value.

You might remember from previous chapters that a class in the Xamarin.FormsBook.Toolkit |i-
brary that is referenced only in XAML is not sufficient to establish a link from the application to the li-
brary. For that reason, the App constructor in ButtonEnabler calls Toolkit.Init:

public class App : Application

{
public AppQ
{
Xamarin.FormsBook.Toolkit.Toolkit.Init(Q);
MainPage = new ButtonEnablerPage();
}
}

Similar code appears in all the programs in this chapter that use the Xamarin.FormsBook.Toolkit |i-
brary.

The screenshots confirm that the Button is not enabled unless the Entry contains some text:

Chapter 16 Data binding 447

dBack to Setiings 2:44PM

text to enable butten

I .. To enable the Button.

SAVE OR SEND (OR SOMETHING) Save or Send (or something)

If you're using only one instance of a value converter, you don't need to store it in the Resources
dictionary. You can instantiate it right in the Binding tag with the use of property-element tags for
the target property and for the Converter property of Binding:

<Button Text="Save or Send (or something)"
FontSize="Large"
HorizontalOptions="Center">
<Button.IsEnabled>
<Binding Source="{x:Reference entry}"
Path="Text.Length">
<Binding.Converter>
<toolkit:IntToBoolConverter />
</Binding.Converter>
</Binding>
</Button.IsEnabled>
</Button>

Sometimes it's convenient for a value converter to define a couple of simple properties. For exam-
ple, suppose you want to display some text for the two settings of a switch but you don't want to use
“True” and "False”, and you don’t want to hard-code alternatives into the value converter. Here's a
BoolToStringConverter with a pair of public properties for two text strings:

namespace Xamarin.FormsBook.Toolkit

{

public class BoolToStringConverter : IValueConverter

{

public string TrueText { set; get; }

public string FalseText { set; get; }

Chapter 16 Data binding 448
public object Convert(object value, Type targetType,
object parameter, CultureInfo culture)
return (bool)value ? TrueText : FalseText;
public object ConvertBack(object value, Type targetType,
object parameter, CultureInfo culture)

return false;

The body of the Convert method is trivial: it just selects between the two strings based on the Boolean
value argument.

A similar value converter converts a Boolean to one of two colors:

namespace Xamarin.FormsBook.Toolkit

{
public class BoolToColorConverter : IValueConverter
{
public Color TrueColor { set; get; }
public Color FalseColor { set; get; }
public object Convert(object value, Type targetType,
object parameter, CultureInfo culture)
{
return (bool)value ? TrueColor : FalseColor;
}
public object ConvertBack(object value, Type targetType,
object parameter, CultureInfo culture)
{
return false;
}
}
}

The SwitchText program instantiates the BoolToStringConverter converter twice for two differ-
ent pairs of strings: once in the Resources dictionary, and then within Binding.Converter prop-
erty-element tags. Two properties of the final Label are subjected to the BoolToStringConverter
and the BoolToColorConverter based on the same IsToggled property from the Switch:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:toolkit=
"clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"
x:Class="SwitchText.SwitchTextPage"
Padding="10, 0">

Chapter 16 Data binding

<ContentPage.Resources>
<ResourceDictionary>
<toolkit:BoolToStringConverter x:Key="boolToString"
TrueText="Let's do it"
FalseText="Not now" />

<Style TargetType="Label">
<Setter Property="FontSize" Value="Medium" />
<Setter Property="VerticalOptions" Value="Center" />
</Style>
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout>
<!-- First Switch with text. -->
<StackLayout Orientation="Horizontal"
VerticalOptions="CenterAndExpand">
<Label Text="Learn more?" />

<Switch x:Name="switchl"
VerticalOptions="Center" />

<Label Text="{Binding Source={x:Reference switchl},
Path=IsToggled,
Converter={StaticResource boolToString}}"
HorizontalOptions="FillAndExpand" />
</StackLayout>

<!-- Second Switch with text. -->
<StackLayout Orientation="Horizontal"
VerticalOptions="CenterAndExpand">
<Label Text="Subscribe?" />

<Switch x:Name="switch2"
VerticalOptions="Center" />

<Label Text="{Binding Source={x:Reference switch2},
Path=IsToggled,
Converter={StaticResource boolToString}}"
HorizontalOptions="FillAndExpand" />
</StackLayout>

<!-- Third Switch with text and color. -->
<StackLayout Orientation="Horizontal"
VerticalOptions="CenterAndExpand">
<Label Text="Leave page?" />

<Switch x:Name="switch3"
VerticalOptions="Center" />

<Label HorizontalOptions="FillAndExpand">
<Label.Text>
<Binding Source="{x:Reference switch3}"
Path="IsToggled">

449

Chapter 16 Data binding 450

<Binding.Converter>
<toolkit:BoolToStringConverter TrueText="Yes"
FalseText="No" />
</Binding.Converter>
</Binding>
</Label.Text>

<Label.TextColor>
<Binding Source="{x:Reference switch3}"
Path="IsToggled">
<Binding.Converter>
<toolkit:BoolToColorConverter TrueColor="Green"
FalseColor="Red" />
</Binding.Converter>
</Binding>
</Label.TextColor>
</Label>
</StackLayout>
</StackLayout>
</ContentPage>

With the two fairly trivial binding converters, the switch can now display whatever text you want
for the two states and can color that text with custom colors:

30 ®y 025

Learn more? Let's dojit

[Learn more? @ D Not now

Subscribe? @D Let'sdoit

Subscribe? ([) Let'sdoit

Leave page? @D Yes

Leave page?

Now that you've seen a BoolToStringConverter and a BoolToColorConverter, can you gen-
eralize the technique to objects of any type? Here is a generic BoolToObjectConverter also in the
Xamarin.FormsBook.Toolkit library:

public class BoolToObjectConverter<T> : IValueConverter
{
public T TrueObject { set; get; }

Chapter 16 Data binding 451

public T FalseObject { set; get; }

public object Convert(object value, Type targetType,
object parameter, CultureInfo culture)

{

return (bool)value ? this.TrueObject : this.FalseObject;

public object ConvertBack(object value, Type targetType,
object parameter, CultureInfo culture)

{
return ((T)value).Equals(this.TrueObject);

}

The next sample uses this class.

Bindings and custom views

In Chapter 15, “The interactive interface,” you saw a custom view named CheckBox. This view defines a
Text property for setting the text of the CheckBox as well as a Fontsize property. It could also have
defined all the other text-related properties—TextColor, FontAttributes, and FontFamily—but it
did not, mostly because of the work involved. Each property requires a BindableProperty definition,
a CLR property definition, and a property-changed handler that transfers the new setting of the prop-
erty to the Label views that comprise the visuals of the CheckBox.

Data bindings can help simplify this process for some properties by eliminating the property-
changed handlers. Here's the code-behind file for a new version of CheckBox called NewCheckBox.
Like the earlier class, it's part of the Xamarin.FormsBook.Toolkit library. The file has been reorganized
a bit so that each BindableProperty definition is paired with its corresponding CLR property defini-
tion. You might prefer this type of source-code organization of the properties, or perhaps not.

namespace Xamarin.FormsBook.Toolkit

{
public partial class NewCheckBox : ContentView
{

public event EventHandler<bool> CheckedChanged;

public NewCheckBox()
{
InitializeComponent();

}

// Text property.
public static readonly BindableProperty TextProperty =
BindableProperty.Create(
"Text",
typeof(string),

Chapter 16 Data binding 452

typeof (NewCheckBox),
null);

public string Text
{
set { SetValue(TextProperty, value); }
get { return (string)GetValue(TextProperty); }

// TextColor property.
public static readonly BindableProperty TextColorProperty =
BindableProperty.Create(
"TextColor",
typeof(Color),
typeof (NewCheckBox),
Color.Default);

public Color TextColor
{
set { SetValue(TextColorProperty, value); }
get { return (Color)GetValue(TextColorProperty); }

// FontSize property.
public static readonly BindableProperty FontSizeProperty =
BindableProperty.Create(
"FontSize",
typeof(double),
typeof (NewCheckBox),
Device.GetNamedSize(NamedSize.Default, typeof(Label)));

[TypeConverter(typeof(FontSizeConverter))]
public double FontSize
{
set { SetValue(FontSizeProperty, value); }
get { return (double)GetValue(FontSizeProperty); }

// FontAttributes property.
public static readonly BindableProperty FontAttributesProperty =
BindableProperty.Create(
"FontAttributes",
typeof (FontAttributes),
typeof (NewCheckBox),
FontAttributes.None);

public FontAttributes FontAttributes
{
set { SetValue(FontAttributesProperty, value); }
get { return (FontAttributes)GetValue(FontAttributesProperty); }

// IsChecked property.
public static readonly BindableProperty IsCheckedProperty =

Chapter 16 Data binding 453

BindableProperty.Create(

"IsChecked",

typeof(bool),

typeof (NewCheckBox),

false,

propertyChanged: (bindable, oldvalue, newValue) =>

{
// Fire the event.
NewCheckBox checkbox = (NewCheckBox)bindable;
EventHandTer<bool> eventHandler = checkbox.CheckedChanged;
if (eventHandler != null)
{

eventHandler(checkbox, (bool)newValue);

b

public bool IsChecked
{
set { SetValue(IsCheckedProperty, value); }
get { return (bool)GetValue(IsCheckedProperty); }

// TapGestureRecognizer handler.
void OnCheckBoxTapped(object sender, EventArgs args)
{

IsChecked = !IsChecked;

Besides the earlier Text and FontSize properties, this code file now also defines TextColor and
FontAttributes properties. However, the only property-changed handler is for the TsChecked han-
dler to fire the CheckedChanged event. Everything else is handled by data bindings in the XAML file:

<ContentView xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:toolkit="clr-namespace:Xamarin.FormsBook.Toolkit"
x:Class="Xamarin.FormsBook.Toolk1it.NewCheckBox"
x:Name="checkbox">

<StackLayout Orientation="Horizontal"
BindingContext="{x:Reference checkbox}">

<Label x:Name="boxLabel" Text="☐"
TextColor="{Binding TextColor}"
FontSize="{Binding FontSize}">
<Label.Text>
<Binding Path="IsChecked">
<Binding.Converter>
<toolkit:BoolToStringConverter TrueText="☑"
FalseText="☐" />
</Binding.Converter>
</Binding>
</Label.Text>

Chapter 16 Data binding 454

</Label>

<Label x:Name="textLabel" Text="{Binding Path=Text}"
TextColor="{Binding TextColor}"
FontSize="{Binding FontSize}"
FontAttributes="{Binding FontAttributes}" />
</StackLayout>

<ContentView.GestureRecognizers>
<TapGestureRecognizer Tapped="OnCheckBoxTapped" />
</ContentView.GestureRecognizers>
</ContentView>

The root element is given a name of checkbox, and the stackLayout sets that as its Binding-
Context. All the data bindings within that StackLayout can then refer to properties defined by the
code-behind file. The first Label that displays the box has its TextColor and FontSize properties
bound to the values of the underlying properties, while the Text property is targeted by a binding that
uses a BoolToStringConverter to display an empty box or a checked box based on the IsChecked
property. The second Label is more straightforward: the Text, TextColor, FontSize, and FontAt-
tributes properties are all bound to the corresponding properties defined in the code-behind file.

If you'll be creating several custom views that include Text elements and you need definitions of all
the text-related properties, you'll probably want to first create a code-only class (named Customview-
Base, for example) that derives from Contentview and includes only those text-based property defi-
nitions. You can then derive other classes from CustomviewBase and have Text and all the text-
related properties readily available.

Let's write a little program called NewCheckBoxDemo that demonstrates the NewCheckBox view.
Like the earlier CheckBoxDemo program, these check boxes control the bold and italic formatting of a
paragraph of text. But to demonstrate the new properties, these check boxes are given colors and font
attributes, and to demonstrate the BoolToObjectConverter, one of the check boxes controls the
horizontal alignment of that paragraph:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:toolkit=
"clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"
x:Class="NewCheckBoxDemo.NewCheckBoxDemoPage">

<StackLayout Padding="10, 0">
<StackLayout HorizontalOptions="Center"
VerticalOptions="CenterAndExpand">

<StackLayout.Resources>
<ResourceDictionary>
<Style TargetType="toolkit:NewCheckBox">
<Setter Property="FontSize" Value="Large" />
</Style>
</ResourceDictionary>
</StackLayout.Resources>

Chapter 16 Data binding 455

<toolkit:NewCheckBox Text="Italic"
TextColor="Aqua"
FontSize="Large"
FontAttributes="Italic"
CheckedChanged="0nItalicCheckBoxChanged" />

<toolkit:NewCheckBox Text="Boldface"
FontSize="Large"
TextColor="Green"
FontAttributes="Bold"
CheckedChanged="0nBoldCheckBoxChanged" />

<toolkit:NewCheckBox x:Name="centerCheckBox"
Text="Center Text" />
</StackLayout>

<Label x:Name="Tabel"
Text=
"Just a little passage of some sample text that can be formatted
in italic or boldface by toggling the two custom CheckBox views."
FontSize="Large"
VerticalOptions="CenterAndExpand">
<Label.HorizontalTextAlignment>
<Binding Source="{x:Reference centerCheckBox}"
Path="IsChecked">
<Binding.Converter>
<toolkit:BoolToObjectConverter x:TypeArguments="TextAlignment"
TrueObject="Center"
FalseObject="Start" />
</Binding.Converter>
</Binding>
</Label.HorizontalTextAlignment>
</Label>
</StackLayout>
</ContentPage>

Notice the BoolToObjectConverter between the Binding.Converter tags. Because it's a ge-
neric class, it requires an x: TypeArguments attribute that indicates the type of the TrueObject and
FalseObject properties and the type of the return value of the convert method. Both Trueobject
and FalseObject are set to members of the TextAlignment enumeration, and the converter selects
one to be set to the HorizontalTextAlignment property of the Labe1l, as the following screenshots
demonstrate:

Chapter 16 Data binding 456

30 ®a 0745

Jtalic “ Boldface
¥ Center Text

/]
Boldface

| Center Text 4 Center Text

Just a little passage

of some sample text
that can be
formatted in italic or
boldface by toggling
the two custom
CheckBox views.

Just a little passage of some
sample text that can be formatted
in italic or boldface by toggling the
two custom CheckBox views.

However, this program still needs a code-behind file to manage applying the italic and boldface at-
tributes to the block of text. These methods are identical to those in the early CheckBoxDemo
program:

public partial class NewCheckBoxDemoPage : ContentPage

{
public NewCheckBoxDemoPage ()
{
InitializeComponent();
}
void OnItalicCheckBoxChanged(object sender, bool isChecked)
{
if (isChecked)
{
Tlabel.FontAttributes |= FontAttributes.Italic;
}
else
{
label.FontAttributes &= ~FontAttributes.Italic;
}
}
void OnBoldCheckBoxChanged(object sender, bool 1isChecked)
{
if (isChecked)
{
label.FontAttributes |= FontAttributes.Bold;
}
else

{

Chapter 16 Data binding 457

Tlabel.FontAttributes &= ~FontAttributes.Bold;

Xamarin.Forms does not support a “multi-binding” that might allow multiple binding sources to be
combined to change a single binding target. Bindings can do a lot, but without some additional code
support, they can't do everything.

There's still a role for code.

Chapter 17

Mastering the Grid

The Grid is a powerful layout mechanism that organizes its children into rows and columns of cells. At
first, the Grid seems to resemble the HTML table, but there is a very important distinction: The HTML
table is designed for presentation purposes, while the Grid is solely for layout. There is no concept of
a heading in a Grid, for example, and no built-in feature to draw boxes around the cells or to separate
rows and columns with divider lines. The strengths of the Grid are in specifying cell dimensions with
three options of height and width settings.

As you've seen, the stackLayout is ideal for one-dimensional collections of children. Although it's
possible to nest a stackLayout within a StackLayout to accommodate a second dimension and
mimic a table, often the result can exhibit alignment problems. The Grid, however, is designed specifi-
cally for two-dimensional arrays of children. As you'll see toward the end of this chapter, the Grid can
also be very useful for managing layouts that adapt to both portrait and landscape modes.

The basic Grid

A Grid can be defined and filled with children in either code or XAML, but the XAML approach is eas-
ier and clearer, and hence by far the more common.

The Grid in XAML

When defined in XAML, a Grid almost always has a fixed number of rows and columns. The Grid defi-
nition generally begins with two important properties, named RowbDefinitions (which is a collection
of RowDefinition objects) and ColumnDefinitions (a collection of ColumnDefinition objects).
These collections contain one RowDefinition for every row in the Grid and one ColumnDefinition
for every column, and they define the row and column characteristics of the Grid.

A Grid can consist of a single row or single column (in which case it doesn't need one of the two
Definitions collections), or even just a single cell.

RowDefinition has a Height property of type GridLength, and ColumnDefinition hasa
Width property, also of type GridLength. The GridLength structure specifies a row height or a col-
umn width in terms of the GriduUnitType enumeration, which has three members:

e Absolute—the width or height is a value in device-independent units (a number in XAML)
e Auto—the width or height is autosized based on the cell contents (“Auto” in XAML)

e Star—leftover width or height is allocated proportionally (a number with “*" in XAML)

Chapter 17 Mastering the Grid

Here's the first half of the XAML file in the SimpleGridDemo project:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="SimpleGridDemo.SimpTleGridDemoPage">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0s="0, 20, 0, 0" />
</ContentPage.Padding>

<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="100" />
<RowDefinition Height="2*" />
<RowDefinition Height="1*" />
</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="*" />
<ColumnDefinition Width="*" />

</Grid.CoTumnDefinitions>

</Grid>
</ContentPage>

459

This Grid has four rows and two columns. The height of the first row is “Auto”—meaning that the

height is calculated based on the maximum height of all the elements occupying that first row. The

second row is 100 device-independent units in height.

The two Height settings using “*" (pronounced “star”) require some additional explanation: This

particular Grid has an overall height that is the height of the page minus the Padding setting on iOS.

Internally, the Grid determines the height of the first row based on the contents of that row, and it

knows that the height of the second row is 100. It subtracts those two heights from its own height and
allocates the remaining height proportionally among the third and fourth rows based on the number

in the star setting. The third row is twice the height of the fourth row.

The two ColumnDefinition objects both set the width equal to “*" which is the same as “1*"
which means that the width of the screen is divided equally between the two columns.

You'll recall from Chapter 14, “Absolute layout,” that the AbsoluteLayout class defines two at-

tached bindable properties and four static Set and Get methods that allow a program to specify the

position and size of a child of the aAbsoluteLayout in code or XAML.

The Grid is quite similar. The Grid class defines four attached bindable properties for specifying

the cell or cells that a child of the Grid occupies:

e Grid.RowProperty—the zero-based row; default value is 0

Chapter 17 Mastering the Grid 460

e Grid.ColumnProperty—the zero-based column; default value is 0

e Grid.RowSpanProperty—the number of rows that the child spans; default value is 1

e Grid.ColumnSpanProperty—the number of columns that the child spans; default value is 1
All four properties are defined to be of type int.

For example, to specify in code that a Grid child named view resides in a particular row and col-
umn, you can call:

view.SetValue(Grid.RowProperty, 2);
view.SetValue(Grid.ColumnProperty, 1);

Those are zero-based row and column numbers, so the child is assigned to the third row and the sec-
ond column.

The Grid class also defines eight static methods for streamlining the setting and getting of these
properties in code:

e Grid.SetRowand Grid.GetRow

o Grid.SetColumn and Grid.GetColumn

e Grid.SetRowSpan and Grid.GetRowSpan

o Grid.SetColumnSpan and Grid.GetColumnSpan

Here's the equivalent of the two setvalue calls you just saw:

Grid.SetRow(view, 2);
Grid.SetColumn(view, 1);

As you learned in connection with AbsoluteLayout, such static Set and Get methods are imple-
mented with Setvalue and Getvalue calls on the child of Grid. For example, here’s how setRow is
very likely defined within the Grid class:

public static void SetRow(BindableObject bindable, int value)
{

bindable.SetValue(Grid.RowProperty, value);
}

You cannot call these methods in XAML, so instead you use the following attributes for setting the
attached bindable properties on a child of the Grid:

° Grid.Row
. Grid.Column
. Grid.RowSpan

. Grid.ColumnSpan

Chapter 17 Mastering the Grid 461

These XAML attributes are not actually defined by the Grid class, but the XAML parser knows that it
must reference the associated attached bindable properties defined by Grid.

You don't need to set all these properties on every child of the Grid. If the child occupies just one
cell, then don't set Grid.RowSpan or Grid.ColumnSpan because the default value is 1. The
Grid.Row and Grid.Column properties have a default value of 0, so you don't need to set the values
if the child occupies the first row or first column. However, for purposes of clarity, the code in this book
will usually show the settings of these two properties. To save space, often these attributes will appear
on the same line in the XAML listing.

Here's the complete XAML file for SimpleGridDemo:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="SimpleGridDemo.SimpleGridDemoPage">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0os="0, 20, 0, 0" />
</ContentPage.Padding>

<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="100" />
<RowDefinition Height="2*" />
<RowDefinition Height="1*" />
</Grid.RowDefinitions>

<Grid.CoTumnDefinitions>
<ColumnDefinition Width="*" />
<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<Label Text="Grid Demo"
Grid.Row="0" Grid.Column="0"
FontSize="Large"
HorizontalOptions="End" />

<Label Text="Demo the Grid"
Grid.Row="0" Grid.Column="1"
FontSize="Smal1l"
HorizontalOptions="End"
VerticalOptions="End" />

<Image BackgroundColor="Gray"
Grid.Row="1" Grid.Column="0" Grid.ColumnSpan="2">
<Image.Source>
<OnPTatform x:TypeArguments="ImageSource"
i0S="Icon-60.png"
Android="1icon.png"
WinPhone="Assets/StorelLogo.png" />

Chapter 17 Mastering the Grid 462

</Image.Source>
</Image>

<BoxView Color="Green"
Grid.Row="2" Grid.Column="0" />

<BoxView Color="Red"
Grid.Row="2" Grid.Column="1" Grid.RowSpan="2" />

<BoxView Color="Blue"
Opacity="0.5"
Grid.Row="3" Grid.Column="0" Grid.ColumnSpan="2" />
</Grid>
</ContentPage>

Two Label elements with different Fontsize settings occupy the two columns of the first row. The
height of that row is governed by the tallest element. Settings of HorizontalOptions and verti-
calOptions can position a child within the cell.

The second row has a height of 100 device-independent units. That row is occupied by an Image
element displaying an application icon with a gray background. The Image element spans both col-
umns of that row.

The bottom two rows are occupied by three Boxview elements, one that spans two rows, and an-
other that spans two columns, and these overlap in the bottom right cell:

- 1112

309 PM

u
Grid Demo Daro the G == = Grid Demo Demo the Grid

The screenshots confirm that the first row is sized to the height of the large Label; the second row
is 100 device-independent units tall; and the third and fourth rows occupy all the remaining space. The
third row is twice as tall as the fourth. The two columns are equal in width and divide the entire Grid

Chapter 17 Mastering the Grid 463

in half. The red and blue Boxview elements overlap in the bottom right cell, but the blue Boxview is
obviously sitting on top of the red one because it has an opacity setting of 0.5 and the result is

purple.

The left half of the blue semitransparent Boxview is lighter on the iPhone and Windows 10 Mobile
device than on the Android phone because of the white background.

As you can see, children of the Grid can share cells. The order that the children appear in the XAML
file is the order that the children are put into the Grid, with later children seemingly sitting on top of
(and obscuring) earlier children.

You'll notice that a little gap seems to separate the rows and columns where the background peeks
through. This is governed by two Grid properties:

e RowSpacing—default value of 6
e ColumnSpacing—default value of 6

You can set these properties to 0 if you want to close up that space, and you can set the Background-
Color property of the Grid if you want the color peeking through to be something different. You can
also add space on the inside of the Grid around its perimeter with a Padding setting on the Grid.

You have now been introduced to all the public properties and methods defined by Grid.

Before moving on, let's perform a couple of experiments with SimpleGridDemo. First, comment
out or delete the entire RowDefinitions and ColumnDefinitions section near the top of the Grid,
and then redeploy the program. Here's what you'll see:

30w 0313

all %

Grid Demo

Corrier % F12PM

Grid Demo

Demo the Grid]

Chapter 17 Mastering the Grid 464

When you don’t define your own RowDefinition and ColumnDefinition objects, the Grid gen-
erates them automatically as views are added to the children collection. However, the default
RowDefinition and ColumnDefinition is “*” (star), meaning that the four rows now equally divide
the screen in quarters, and each cell is one-eighth of the total Grid.

Here's another experiment. Restore the RowDefinitions and ColumnDefinitions sections and
set the HorizontalOptions and VerticalOptions properties on the Grid itself to Center. By de-
fault these two properties are Fi11, which means that the Grid fills its container. Here's what happens
with Center:

Grid Demo pemo the Gri |§ Grid Demo Demo the Grid

Grid Demo pemo the Grid

The third row is still twice the height of the bottom row, but now the bottom row’s height is based on
the default HeightRequest of Boxview, which is 40.

You'll see a similar effect when you put a Grid in a stackLayout. You can also put a StackLayout
in a Grid cell, or another Grid in a Grid cell, but don't get carried away with this technique: The
deeper you nest Grid and other layouts, the more the nested layouts will impact performance.

The Grid in code

It is also possible to define a Grid entirely in code, but usually without the clarity or orderliness of the
XAML definition. The GridCodeDemo program demonstrates the code approach by reproducing the
layout of SimpleGridDemo.

To specify the height of a RowDefinition and the width of the ColumnbDefinition, you use val-
ues of the GridLength structure, often in combination with the GridunitType enumeration. The row
definitions toward the top of the GridCodeDemoPage class demonstrate the variations of

Chapter 17 Mastering the Grid 465

GridLength. The column definitions aren't included because they are the same as those generated by
default:

public class GridCodeDemoPage : ContentPage

{
public GridCodeDemoPage()
{
Grid grid = new Grid
{
RowDefinitions =
{
new RowDefinition { Height = CridLength.Auto },
new RowDefinition { Height = new GridlLength(100) },
new RowDefinition { Height = new GridLength(2, GridUnitType.Star) },
new RowDefinition { Height = new GridlLength(l, GridUnitType.Star) }
}
b

// First Label (row 0 and column 0).
grid.Children.Add(new Label

{
Text = "Grid Demo",
FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),
HorizontalOptions = LayoutOptions.End

s

// Second Label.
grid.Children.Add(new Label

{
Text = "Demo the Grid",
FontSize = Device.GetNamedSize(NamedSize.Small, typeof(Label)),
HorizontalOptions = LayoutOptions.End,
VerticalOptions = LayoutOptions.End
1,
1, // Tleft
0; // top

// Image element.
grid.Children.Add(new Image

{
BackgroundColor = Color.Gray,
Source = Device.OnPlatform("Icon-60.png",
"icon.png",
"Assets/StorelLogo.png")
1,
0, // left
2, // right
1, // top
2); // bottom

// Three BoxView elements.

BoxView boxViewl = new BoxView { Color = Color.Green };
Grid.SetRow(boxViewl, 2);

Grid.SetColumn(boxViewl, 0);

Chapter 17 Mastering the Grid 466

grid.Children.Add(boxViewl);

BoxView boxView2 = new BoxView { Color = Color.Red };
Grid.SetRow(boxView2, 2);

Grid.SetCoTumn(boxView2, 1);

Grid.SetRowSpan (boxView2, 2);
grid.Children.Add(boxView2);

BoxView boxView3 = new BoxView
{

Color = Color.Blue,

Opacity = 0.5
b
Grid.SetRow(boxView3, 3);
Grid.SetCoTlumn(boxView3, 0);
Grid.SetColumnSpan(boxView3, 2);
grid.Children.Add(boxView3);

Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);
Content = grid;

The program shows several different ways to add children to the Grid and specify the cells in which
they reside. The first Label is in row 0 and column 0, so it only needs to be added to the Children
collection of the Grid to get default row and column settings:

grid.Children.Add(new Label
{

b

The Grid redefines its Children collection to be of type I1GridList<view>, which includes sev-
eral additional add methods. One of these Add methods lets you specify the row and column:

grid.Children.Add(new Label

{
1,
1, // left
0); // top

As the comments indicate, the arguments are actually named left and top rather than column and
row. These names make more sense when you see the syntax for specifying row and column spans:

grid.Children.Add(new Image

{

1,

0, // left
2, // right
1, // top

2); // bottom

Chapter 17 Mastering the Grid 467

What this means is that the child element goes in the column starting at 1eft but ending before
right—in other words, columns 0 and 1. It occupies the row starting at top but ending before bot-
tom, which is row 1. The right argument must always be greater than 1eft, and the bottom argu-
ment must be greater than top. If not, the Grid throws an ArgumentOutOfRangeException.

The IGridList<View> interface also defines AddHorizontal and Addvertical methods to add
children to a single row or single column Grid. The Grid expands in columns or rows as these calls are
made, as well as automatically assigning Grid.Column or Grid.Row settings on the children. You'll
see a use for this facility in the next section.

When adding children to a Grid in code, it's also possible to make explicit calls to Grid.SetRow,
Grid.SetColumn, Grid.SetRowSpan, and Grid.SetColumnSpan. It doesn’t matter whether you
make these calls before or after you add the child to the children collection of the Grid:

BoxView boxViewl = new BoxView { .. };
Grid.SetRow(boxViewl, 2);

Grid.SetColumn(boxViewl, 0);
grid.Children.Add(boxViewl);

BoxView boxView2 = new BoxView { .. };
Grid.SetRow(boxView2, 2);
Grid.SetColumn(boxView2, 1);
Grid.SetRowSpan(boxView2, 2);
grid.Children.Add(boxView2);

BoxView boxView3 = new BoxView

{

};

Grid.SetRow(boxView3, 3);
Grid.SetCoTumn(boxView3, 0);
Grid.SetCoTumnSpan(boxView3, 2);
grid.Children.Add(boxView3);

The Grid bar chart

The addvertical and AddHorizontal methods defined by the Children collection of the Grid
have the capability to add an entire collection of views to the Grid in one shot. By default, the new
rows or columns get a height or width of "*" (star), so the resultant Grid consists of multiple rows or
columns, each with the same size.

Let's use the AddHorizontal method to make a little bar chart that consists of 50 Boxview ele-
ments with random heights. The XAML file for the GridBarChart program defines an AbsoluteLay-
out that is parent to both a Grid and a Frame. This Frame serves as an overlay to display information
about a particular bar in the bar chart. It has its Opacity set to 0, so it is initially invisible:
<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="GridBarChart.GridBarChartPage">

Chapter 17 Mastering the Grid 468

<AbsolutelLayout>

<!-- Grid occupying entire page. -->

<Grid x:Name="grid"
ColumnSpacing="1"
AbsolutelLayout.LayoutBounds="0, 0, 1, 1"
AbsolutelLayout.LayoutFlags="AT1" />

<!-- Overlay in center of screen. -->
<Frame x:Name="overlay"
OutlineColor="Accent"
BackgroundColor="#404040"
Opacity="0"
AbsolutelLayout.LayoutBounds="0.5, 0.5, AutoSize, AutoSize"
Absolutelayout.LayoutFlags="PositionProportional">

<Label x:Name="Tabel"
TextColor="White"
FontSize="Large" />
</Frame>
</AbsolutelLayout>
</ContentPage>

The code-behind file creates 50 BoxView elements with a random HeightRequest property be-
tween 0 and 300. In addition, the styleId property of each Boxview is assigned a string that consists
of alternated random consonants and vowels to resemble a name (perhaps of someone from another
planet). All these Boxview elements are accumulated in a generic List collection and then added to
the Grid. That job is the bulk of the code in the constructor:

public partial class GridBarChartPage : ContentPage
{

const int COUNT = 50;

Random random = new Random();

public GridBarChartPage()
{

InitializeComponent();

List<View> views = new List<View>(Q);
TapGestureRecognizer tapGesture = new TapCestureRecognizer();
tapGesture.Tapped += OnBoxViewTapped;

// Create BoxView elements and add to List.
for (int i = 0; i < COUNT; 1i++)
{
BoxView boxView = new BoxView
{
Color = Color.Accent,
HeightRequest = 300 * random.NextDouble(),
VerticalOptions = LayoutOptions.End,
StyleId = RandomNameGenerator ()

Chapter 17 Mastering the Grid 469

boxView.GestureRecognizers.Add(tapGesture);
views.Add(boxView) ;

// Add whole List of BoxView elements to Grid.
grid.Children.AddHorizontal(views);

// Start a timer at the frame rate.
Device.StartTimer(TimeSpan.FromMilliseconds(15), OnTimerTick);

}

// Arrays for Random Name Generator.

string[] vowels = { "a", "e", "i", "o", "u", "ai", "ei", "ie", "ou", "00" };

string[] consonants = { "b", "c", "d", "f", "g", "h", "j", "k", "1", "m",
Rt R, T, TR, MM, MR, MW, tw', UM, "z 3

string RandomNameGenerator()

{
int numPieces = 1 + 2 * random.Next(1l, 4);
StringBuilder name = new StringBuilder(Q);
for (int i = 0; i < numPieces; i++)
{
name.Append(i % 2 == 0 ?
consonants[random.Next(consonants.Length)]
vowels[random.Next(vowels.Length)]);
}
name[0] = Char.ToUpper(name[0]);
return name.ToString(Q);
}

// Set text to overlay Label and make it visible.
void OnBoxViewTapped(object sender, EventArgs args)

{
BoxView boxView = (BoxView)sender;
label.Text = String.Format("The individual known as {0} " +
"has a height of {1} centimeters.",
boxView.Styleld, (int)boxView.HeightRequest);
overlay.Opacity = 1;
}

// Decrease visibility of overlay.
bool OnTimerTick()

{
overlay.Opacity = Math.Max(0, overlay.Opacity - 0.0025);
return true;

The addHorizontal method of the children collection adds the multiple Boxview elements to
the Grid and gives them sequential Grid.Column settings. Each column by default has a width of “*"
(star), so the width of each BoxView is the same while the height is governed by the HeightRequest

Chapter 17 Mastering the Grid 470

settings. The spacing value of 1 set to the Grid in the XAML file provides a little separation between
the bars of the bar chart:

This program has another feature: When you tap on one of the bars, the overlay is made visible and
displays information about that tapped bar—specifically, the interplanetary visitor's name from the

Chapter 17 Mastering the Grid 471

StyleId and the height of the bar. But a timer set in the constructor continuously decreases the
Opacity value on the overlay, so this information gradually fades from view:

=
w
(7]
o
=
@,

(=]
=-
=
o
=L
o
]

'SI913WIUL 9/7 J0 3ybiay e sey
bispo] se umouy [enpialpul ay]

Even without a native graphics system, Xamarin.Forms is able to display something that looks quite
a lot like graphics.

Alignment in the Grid

A Grid row with a Height property of Auto constrains the height of elements in that row in the same
way as a vertical StackLayout. Similarly, a column with a width of Auto works much like a horizontal
StackLayout.

As you've seen earlier in this chapter, you can set the HorizontalOptions and VerticalOptions
properties of children of the Grid to position them within the cell. Here's a program called GridAlign-
ment that creates a Grid with nine equal-size cells and then puts six Label elements all in the center
cell but with different alignment settings:
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="GridAlignment.GridATignmentPage">

<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="*" />
<RowDefinition Height="*" />

<RowDefinition Height="*" />
</Grid.RowDefinitions>

Chapter 17 Mastering the Grid

<Grid.ColumnDefinitions>

<ColumnDefinition Width
<ColumnDefinition Width

<ColumnDefinition Width="*" />

</Grid.

<Label

<Label

<Label

<Label

<Label

<Label

</Grid>
</ContentPage>

ColumnDefinitions>

Text="Upper Left"
Grid.Row="1" Grid.Column="1"
VerticalOptions="Start"
HorizontalOptions="Start" />

Text="Upper Right"
Grid.Row="1" Grid.Column="1"
VerticalOptions="Start"
HorizontalOptions="End" />

Text="Center Left"
Grid.Row="1" Grid.Column="1"
VerticalOptions="Center"
HorizontalOptions="Start" />

Text="Center Right"
Grid.Row="1" Grid.Column="1"
VerticalOptions="Center"
HorizontalOptions="End" />

Text="Lower Left"
Grid.Row="1" Grid.Column="1"
VerticalOptions="End"
HorizontalOptions="Start" />

Text="Lower Right"
Grid.Row="1" Grid.Column="1"
VerticalOptions="End"
HorizontalOptions="End" />

As you can see, some of the text overlaps:

472

Chapter 17 Mastering the Grid 473

3O wa 0317

UprdppefiRight Uppeipket Right
CeflentastRight T CenatieftRight

LowamdkeftRight Lowdobeft Right

g [«] c

s 2 3

L] g 2
=

E g &

ya Jamo

Wby Jawa) ya saaua)
Wby saddn ya Jeddn

by Jema)
Wby Jewen
1By Jaddn
by Jamo

el ek

Although you can use HorizontalOptions and VerticalOptions on children of a Grid to set
the child’s alignment, you cannot use the Expands flag. Strictly speaking, you actually can use the Ex-
pands flag, but it has no effect on children of a Grid. The Expands flag only affects children of a
StackLayout.

Often you've seen programs that use the Expands flag for children of a stackLayout to provide

Chapter 17 Mastering the Grid 474

extra space to surround elements within the layout. For example, if two Label children of a stack-
Layout both have their verticalOptions properties set to CenterAndExpand, then all the extra
space is divided equally between the two slots in the stackLayout allocated for these children.

In a Grid, you can perform similar layout tricks by using cells sized with the "*" (star) specification
together with HorizontalOptions and VerticalOptions settings on the children. You can even
create empty rows or empty columns just for spacing purposes.

The SpacingButtons program equally spaces three vertical buttons and three horizontal buttons.
The first three buttons occupy a three-row Grid that takes up much of the page, and the three hori-
zontal buttons are in a three-column Grid down at the bottom of the page. The two grids are in a
StackLayout:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="SpacingButtons.SpacingButtonsPage">
<StackLayout>
<Grid VerticalOptions="FiTlAndExpand">
<Grid.RowDefinitions>

<RowDefinition Height="*" />
<RowDefinition Height="*" />
<RowDefinition Height="*" />

</Grid.RowDefinitions>

<Button Text="Button 1"
Grid.Row="0"
VerticalOptions="Center"
HorizontalOptions="Center" />

<Button Text="Button 2"
Grid.Row="1"
VerticalOptions="Center"
HorizontalOptions="Center" />

<Button Text="Button 3"
Grid.Row="2"
VerticalOptions="Center"
HorizontalOptions="Center" />
</Grid>

<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="*" />
<ColumnDefinition Width="*" />
<CoTumnDefinition Width="*
</Grid.CoTumnDefinitions>

<Button Text="Button 4"
Grid.Column="0"
HorizontalOptions="Center" />

<Button Text="Button 5"

Chapter 17 Mastering the Grid 475

Grid.Column="1"
HorizontalOptions="Center" />

<Button Text="Button 6"
Grid.Column="2"
HorizontalOptions="Center" />

</Grid>
</StackLayout>
</ContentPage>

The second Grid has a default Vverticaloptions value of Fi11, while the first Grid has an ex-
plicit setting for verticalOptions to FillAndExpand. This means that the first Grid will occupy all
the area of the screen not occupied by the second Grid. The three RowDefinition objects of the first
Grid divide that area into thirds. Within each cell, the Button is horizontal and vertically centered:

BUTTON 5

The second Grid divides its area into three equally spaced columns, and each Button is horizontally
centered within that area.

Although the Expands flag of LayoutOptions can assist in equally spacing visual objects within a
StackLayout, the technique breaks down when the visual objects are not a uniform size. The Ex-
pands option allocates leftover space equally among all the slots in the stackLayout, but the total
size of each slot depends on the size of the individual visual objects. The Grid, however, allocates
space equally to the cells, and then the visual objects are aligned within that space.

Cell dividers and borders

The Grid doesn't have any built-in cell dividers or borders. But if you'd like some, you can add them
yourself. The GridCellDividers program defines a GridLength value in its Resources dictionary

Chapter 17 Mastering the Grid 476

named dividerThickness. This is used for the height and width of every other row and column in
the Grid. The idea here is that these rows and columns are for the dividers, while the other rows and
columns are for regular content:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="GridCel1Dividers.GridCel1DividersPage">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0s="0, 20, 0, 0"
Android="0"
WinPhone="0" />
</ContentPage.Padding>

<Grid>
<Grid.Resources>
<ResourceDictionary>
<GridLength x:Key="dividerThickness">2</GridLength>

<Style TargetType="BoxView">
<Setter Property="Color" Value="Accent" />
</Style>

<Style TargetType="Label">
<Setter Property="HorizontalOptions" Value="Center" />
<Setter Property="VerticalOptions" Value="Center" />
</Style>
</ResourceDictionary>
</Grid.Resources>

<Grid.RowDefinitions>
<RowDefinition Height="{StaticResource dividerThickness}" />
<RowDefinition Height="*" />
<RowDefinition Height="{StaticResource dividerThickness}" />
<RowDefinition Height="*" />
<RowDefinition Height="{StaticResource dividerThickness}" />
<RowDefinition Height="*" />
<RowDefinition Height="{StaticResource dividerThickness}" />
</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="{StaticResource dividerThickness}" />
<ColumnDefinition Wi "/>
<ColumnDefinition {StaticResource dividerThickness}" />
<ColumnDefinition "/>
<CoTumnDefinition {StaticResource dividerThickness}" />
<ColumnDefinition Width="*" />
<ColumnDefinition Width="{StaticResource dividerThickness}" />
</Grid.ColumnDefinitions>

<BoxView Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="7" />
<BoxView Grid.Row="2" Grid.Column="0" Grid.ColumnSpan="7" />
<BoxView Grid.Row="4" Grid.Column="0" Grid.ColumnSpan="7" />

Chapter 17 Mastering the Grid 477

<BoxView Grid.Row="6" Grid.Column="0" Grid.ColumnSpan="7" />

<BoxView Grid.Row="0" Grid.Column="0" Grid.RowSpan="7" />
<BoxView Grid.Row="0" Grid.Column="2" Grid.RowSpan="7" />
<BoxView Grid.Row="0" Grid.Column="4" Grid.RowSpan="7" />
<BoxView Grid.Row="0" Grid.Column="6" Grid.RowSpan="7" />

<Label Text="Grid"
Grid.Row="1" Grid.Column="1" />

<Label Text="Cell"
Grid.Row="3" Grid.Column="3" />

<Label Text="Dividers"
Grid.Row="5" Grid.Column="5" />
</Grid>
</ContentPage>

Each row and column for the dividers is occupied by a Boxview colored with the Accent color
from an implicit style. For the horizontal dividers, the height is set by the RowDefinition and the
width is governed by the Grid.ColumnSpan attached bindable property; a similar approach is applied
for the vertical dividers.

The Grid also contains three Label elements just to demonstrate how regular content fits in with
these dividers:

30wy 0322

Dividers

Dividers

It is not necessary to allocate entire rows and columns to these dividers. Keep in mind that visual
objects can share cells, so it's possible to add a Boxview (or two or three or four) to a cell and set the
horizontal and vertical options so that it hugs the wall of the cell and resembles a border.

Chapter 17 Mastering the Grid 478

Here's a similar program, called GridCellBorders, that displays content in the same three cells as
GridCellDividers, but those three cells are also adorned with borders.

The Resources dictionary contains no fewer than seven styles that target Boxview! The base style
sets the color, two more styles set the HeightRequest and WidthRequest for the horizontal and ver-
tical borders, and then four more styles set the verticalOptions to Start or End for the top and
bottom borders and HorizontalOptions to Start and End for the left and right borders. The bor-
derThickness dictionary entry is a double because it's used to set WidthRequest and HeightRe-
quest properties of the BoxVview elements:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="GridCel1Borders.GridCel1BordersPage">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="10, 20, 10, 10"
Android="10"
WinPhone="10" />
</ContentPage.Padding>

<Grid>
<Grid.Resources>
<ResourceDictionary>
<x:Double x:Key="borderThickness">1</x:Double>

<Style x:Key="baseBorderStyle" TargetType="BoxView">
<Setter Property="Color" Value="Accent" />
</Style>

<Style x:Key="horzBorderStyle" TargetType="BoxView"
BasedOn="{StaticResource baseBorderStyle}">
<Setter Property="HeightRequest" Value="{StaticResource borderThickness}" />
</Style>

<Style x:Key="topBorderStyle" TargetType="BoxView"
BasedOn="{StaticResource horzBorderStyle}">
<Setter Property="VerticalOptions" Value="Start" />
</Style>

<Style x:Key="bottomBorderStyle" TargetType="BoxView"
BasedOn="{StaticResource horzBorderStyle}">
<Setter Property="VerticalOptions" Value="End" />
</Style>

<Style x:Key="vertBorderStyle" TargetType="BoxView"
BasedOn="{StaticResource baseBorderStyle}">
<Setter Property="WidthRequest" Value="{StaticResource borderThickness}" />
</Style>

<Style x:Key="TeftBorderStyle" TargetType="BoxView"
BasedOn="{StaticResource vertBorderStyle}">

Chapter 17 Mastering the Grid 479

<Setter Property="HorizontalOptions" Value="Start" />
</Style>

<Style x:Key="rightBorderStyle" TargetType="BoxView"
BasedOn="{StaticResource vertBorderStyle}">
<Setter Property="HorizontalOptions" Value="End" />
</Style>

<Style TargetType="Label">
<Setter Property="HorizontalOptions" Value="Center" />
<Setter Property="VerticalOptions" Value="Center" />
</Style>
</ResourceDictionary>
</Grid.Resources>

<Grid.RowDefinitions>
<RowDefinition Height="*" />
<RowDefinition Height="*" />
<RowDefinition Height="*" />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="*" />
<ColumnDefinition Width="*" />
<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<Label Text="Grid"
Grid.Row="0" Grid.Column="0" />

<BoxView Style="{StaticResource topBorderStyle}"
Grid.Row="0" Grid.Column="0" />

<BoxView Style="{StaticResource bottomBorderStyle}"
Grid.Row="0" Grid.Column="0" />

<BoxView Style="{StaticResource TeftBorderStyle}"
Grid.Row="0" Grid.Column="0" />

<BoxView Style="{StaticResource rightBorderStyle}"
Grid.Row="0" Grid.Column="0" />

<Grid Grid.Row="1" Grid.Column="1">
<Label Text="Cell" />
<BoxView Style="{StaticResource topBorderStyle}" />
<BoxView Style="{StaticResource bottomBorderStyle}" />
<BoxView Style="{StaticResource TeftBorderStyle}" />
<BoxView Style="{StaticResource rightBorderStyle}" />
</Grid>

<Grid Grid.Row="2" Grid.Column="2">
<Label Text="Borders" />
<BoxView Style="{StaticResource topBorderStyle}" />
<BoxView Style="{StaticResource bottomBorderStyle}" />

Chapter 17 Mastering the Grid 480

<BoxView Style="{StaticResource leftBorderStyle}" />
<BoxView Style="{StaticResource rightBorderStyle}" />
</Grid>
</Grid>
</ContentPage>

In the cell in the upper-left corner, the Label and four BoxView elements each gets its Grid.Row
and Grid.Column attributes set to 0. However, for the middle Grid and the bottom-right Grid, a ra-
ther easier approach is taken: Another Grid with a single cell occupies the cell, and that single-cell
Grid contains the Label and four BoxView elements. The simplicity results from setting Grid.Row
and Grid.Column only on the single-cell Grid:
<Grid Grid.Row="1" Grid.Column="1">

<Label Text="Cell" />

<BoxView Style="{StaticResource topBorderStyle}" />
<BoxView Style="{StaticResource bottomBorderStyle}" />
<BoxView Style="{StaticResource leftBorderStyle}" />

<BoxView Style="{StaticResource rightBorderStyle}" />
</Grid>

When nesting a Grid inside another Grid, the use of the Grid.Row and Grid.Column attributes
can be confusing. This single-cell Grid occupies the second row and second column of its parent,
which is the Grid that occupies the entire page.

Also, keep in mind that when a Grid is laying itself out, it looks only at the Grid.Row and
Grid.Column settings of its children, and never its grandchildren or other descendants in the visual
tree.

Here's the result:

% w4008

1103 AM

Borders

Chapter 17 Mastering the Grid 481

It might be a little disconcerting that the corners of the borders don't meet, but that's due to the
default row and column spacing of the Grid. Set the RowSpacing and ColumnSpacing attributes to
0, and the corners will meet although the lines will still seem somewhat discontinuous because the bor-
ders are in different cells. If this is unacceptable, use the technique shown in GridCellDividers.

If you want all the rows and columns shown with dividers as in GridCellDividers, another technique
is to set the BackgroundColor property of the Grid and use the RowSpacing and ColumnSpacing
properties to let that color peek through the spaces between the cells. But all the cells must contain
content that has an opaque background for this technique to be visually convincing.

Almost real-life Grid examples

We are now ready to rewrite the XamlKeypad program from Chapter 8 to use a Grid. The new ver-
sion is called KeypadGrid. The use of a Grid not only forces the Button elements that make up the
keypad to be all the same size, but also allows components of the keypad to span cells.

The Grid that makes up the keypad is centered on the page with HorizontalOptions and ver-
ticalOptions settings. It has five rows and three columns but the RowDefinitions and
ColumnDefinitions collections don't need to be explicitly constructed because every cell has a "*"
(star) height and width.

Moreover, the entire Grid is given a platform-specific widthrRequest and HeightRequest, where
the width is three-fifths of the height. (The difference for Windows Phone is based on the somewhat
larger size of the Large font size used for the Button.) This causes every cell in the Grid to be square:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="KeypadGrid.KeypadGridPage">

<Grid RowSpacing="2"
CoTumnSpacing="2"
VerticalOptions="Center"
HorizontalOptions="Center">
<Grid.WidthRequest>
<OnPlatform x:TypeArguments="x:Double"
10S="180"
Android="180"
WinPhone="240" />
</Grid.WidthRequest>

<Grid.HeightRequest>
<OnPlatform x:TypeArguments="x:Double"
i0S="300"
Android="300"
WinPhone="400" />
</Grid.HeightRequest>

<Grid.Resources>

Chapter 17 Mastering the Grid 482

<Re

</R
</Grid.

<Label

<Button

<Button

<Button

<Button

<Button

<Button

<Button

<Button

<Button

<Button

sourceDictionary>
<Style TargetType="Button">
<Setter Property="FontSize" Value="Large" />
<Setter Property="BorderWidth" Value="1" />
</Style>
esourceDictionary>
Resources>

x:Name="displayLabel"

Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="2"
FontSize="Large"

LineBreakMode="HeadTruncation"
VerticalOptions="Center"
HorizontalTextAlignment="End" />

x:Name="backspaceButton"
Text="⇦"

Grid.Row="0" Grid.Column="2"
IsEnabled="False"
Clicked="0OnBackspaceButtonClicked" />

Text="7" StyleId="7"
Grid.Row="1" Grid.Column="0"
Clicked="0OnDigitButtonClicked" />

Text="8" StyleId="8"
Grid.Row="1" Grid.Column="1"
Clicked="0nDigitButtonClicked" />

Text="9" StyleId="9"
Grid.Row="1" Grid.Column="2"
Clicked="0nDigitButtonClicked" />

Text="4" StyleId="4"
Grid.Row="2" Grid.Column="0"
Clicked="0OnDigitButtonClicked" />

Text="5" StyleId="5"
Grid.Row="2" Grid.Column="1"
Clicked="0nDigitButtonClicked" />

Text="6" StyleId="6"
Grid.Row="2" Grid.Column="2"
Clicked="0nDigitButtonClicked" />

Text="1" StyleId="1"
Grid.Row="3" Grid.Column="0"
Clicked="0OnDigitButtonClicked" />

Text="2" StyleId="2"
Grid.Row="3" Grid.Column="1"
Clicked="0OnDigitButtonClicked" />

Text="3" StyleId="3"

Chapter 17 Mastering the Grid 483

Grid.Row="3" Grid.Column="2"
Clicked="0OnDigitButtonClicked" />

<Button Text="0" StyleId="0"
Grid.Row="4" Grid.Column="0" Grid.ColumnSpan="2"
Clicked="0nDigitButtonClicked" />

<Button Text="." StyleId="."
Grid.Row="4" Grid.Column="2"
Clicked="0nDigitButtonClicked" />
</Grid>
</ContentPage>

The Label and the backspace button occupy the top row, but the Label spans two columns and
the backspace button is in the third column. Similarly, the bottom row of the Grid contains the zero
button and the decimal-point button, but the zero button spans two columns as is typical on computer
keypads.

The code-behind file is the same as the XamlKeypad program. In addition, the program saves en-
tries when the program is put to sleep and then restores them when the program starts up again. A
border has been added to the Button in an implicit style so that it looks more like a real keypad on
iOS:

3.14159

e

a

1
.

°
4 6
1 3

|
- |

0

As you might recall, the onDigitButtonClicked handler in the code-behind file uses the
StyleId property to append a new character to the text string. But as you can see in the XAML file, for
each of the buttons with this event handler, the stylelId is set to the same character as the Text
property of the Button. Can't the event handler use that instead?

Yes, it can. But suppose you decide that the decimal point in the Button doesn’t show up very well.

Chapter 17 Mastering the Grid 484

You might prefer to use a heavier and more central dot, such as \u00OB7 (called Middle Dot) or \u22C5
(the mathematical Dot Operator) or even \u2022 (the Bullet). Perhaps you'd also like different styles of
numbers for these other buttons, such as the set of encircled numbers that begin at \u2460 in the
Unicode standard, or the Roman numerals that begin at \u2160. You can replace the Text property in
the XAML file without touching the code-behind file:

1213 PM

0.57721 «

vib v IX

8

<

]
]
10
o]
[]

zilch

The styleld is one of the tools to keep the visuals and mechanics of the user interface restricted to
markup and separated from your code. You'll see more tools to structure your program in the next
chapter, which covers the Model-View-ViewModel application architecture. That chapter also presents
a variation of the keypad program turned into an adding machine.

Responding to orientation changes

The layout of an application’s page is usually tied fairly closely to a particular form factor and aspect
ratio. Sometimes, an application will require that it be used only in portrait or landscape mode. But
usually an application will attempt to move things around on the screen when the phone changes
orientation.

A Grid can help an application accommodate itself to orientation changes. The Grid can be de-
fined in XAML with certain allowances for both portrait and landscape modes, and then a little code
can make the proper adjustments within a sizeChanged handler for the page.

This job is easiest if you can divide the entire layout of your application into two large areas that can
be arranged vertically when the phone is oriented in portrait mode or horizontally for landscape mode.
Put each of these areas in separate cells of a Grid. When the phone is in portrait mode, the Grid has
two rows, and when it's in landscape mode, it has two columns. In the following diagram, the first area

Chapter 17 Mastering the Grid 485

is always at the top or the left. The second area can be in either the second row for portrait mode or
the second column for landscape mode:

Layout Area 2

Layout Area 1 (Landscape Mode)

Row 0 Column 0 Row 0 Column 1

Layout Area 2
(Portrait Mode)

Row 1 Column 0

To keep things reasonably simple, you'll want to define the Grid in XAML with two rows and two
columns, but in portrait mode, the second column has a width of zero, and in landscape mode the sec-
ond row has a zero height.

The GridRgbSliders program demonstrates this technique. It is similar to the RgbSliders program
from Chapter 15, “The interactive interface,” except that the layout uses a combination of a Grid and a
StackLayout, and the Label elements display the current values of the s1ider elements by using
data bindings with a value converter and a value converter parameter. (More on this later.) Setting the
Color property of the Boxview based on the three s1ider elements still requires code because the R,
G, and B properties of the Color struct are not backed by bindable properties, and these properties
cannot be individually changed anyway because they do not have public set accessors. (However, in
the next chapter, on MVVM, you'll see a way to eliminate this logic in the code-behind file.)

As you can see in the following listing, the Grid named mainGrid does indeed have two rows and
two columns. However, it is initialized for portrait mode, so the second column has a width of zero. The
top row of the Grid contains the BoxView, and that's made as large as possible with a "*" (star) set-
ting, while the bottom row contains a stackLayout with all the interactive controls. This is given a
height of Auto:
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmlns:toolkit=
"clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

x:Class="GridRgbST1iders.GridRgbSTidersPage"
SizeChanged="0nPageSizeChanged">

<ContentPage.Padding>

Chapter 17 Mastering the Grid

<OnPlatform x:TypeArguments="Thickness"
i0s="0, 20, 0, 0" />
</ContentPage.Padding>

<ContentPage.Resources>
<ResourceDictionary>
<toolkit:DoubleToIntConverter x:Key="doubleToInt" />

<Style TargetType="Label">
<Setter Property="HorizontalTextAlignment" Value="Center" />
</Style>
</ResourceDictionary>
</ContentPage.Resources>

<Grid x:Name="mainGrid">
<!-- Initialized for portrait mode. -->
<Grid.RowDefinitions>
<RowDefinition Height="*" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="*" />
<ColumnDefinition Width="0" />

</Grid.ColumnDefinitions>

<BoxView x:Name="boxView"
Grid.Row="0" Grid.Column="0" />

<StackLayout x:Name="controlPanelStack"
Grid.Row="1" Grid.Column="0"
Padding="10, 5">

<StackLayout VerticalOptions="CenterAndExpand">
<STider x:Name="redSlider"
ValueChanged="0nS1iderValueChanged" />

<Label Text="{Binding Source={x:Reference redSlider},
Path=Value,
Converter={StaticResource doubleToInt},
ConverterParameter=255,
StringFormat='Red = {0:X2}'}" />
</StackLayout>

<StackLayout VerticalOptions="CenterAndExpand">
<STider x:Name="greenSlider"
ValueChanged="0nS1iderValueChanged" />

<Label Text="{Binding Source={x:Reference greenSlider},
Path=Value,
Converter={StaticResource doubleToInt},
ConverterParameter=255,
StringFormat="'Green = {0:X2}'}" />
</StackLayout>

486

Chapter 17 Mastering the Grid 487

<StackLayout VerticalOptions="CenterAndExpand">
<STlider x:Name="blueSlider"
ValueChanged="0nS1iderValueChanged" />

<Label Text="{Binding Source={x:Reference blueSlider},
Path=Value,
Converter={StaticResource doubleToInt},
ConverterParameter=255,
StringFormat='Blue = {0:X2}'}" />
</StackLayout>
</StackLayout>
</Grid>
</ContentPage>

And here’s the portrait view:

Red = D6

Green = 66

Green = 4B

Blue = 3F

The layout in the XAML file is prepared for landscape mode in a couple of ways. First, the Grid al-
ready has a second column. This means that to switch to landscape mode, the code-behind file needs
to change the height of the second row to zero and the width of the second column to a nonzero
value.

Secondly, the stackLayout containing all the s1ider and Label elements is accessible from code
because it has a name, specifically controlPanelstack. The code-behind file can then make
Grid.SetRow and Grid.SetColumn calls on this StackLayout to move it from row 1 and column 0
to row 0 and column 1.

In portrait mode, the BoxView has a height of “*" (star) and the stackLayout has a height of auto.
Does this mean that the width of the StackLayout should be auto in landscape mode? That wouldn't

Chapter 17 Mastering the Grid 488

be wise because it would shrink the widths of the s1ider elements. A better solution for landscape
mode is to give both the Boxview and the StackLayout a width of "*" (star) to divide the screen in
half.

Here's the code-behind file showing the sizeChanged handler on the page responsible for switch-
ing between portrait and landscape mode, as well as the valueChanged handler for the siider ele-
ments that sets the Boxview color:

public partial class GridRghSTidersPage : ContentPage

{
public GridRgbSlidersPage()
{
// Ensure Tink to Toolkit library.
new Xamarin.FormsBook.Toolkit.DoubleToIntConverter();
InitializeComponent();
}
void OnPageSizeChanged(object sender, EventArgs args)
{
// Portrait mode.
if (Width < Height)
{
mainGrid.RowDefinitions[1].Height = GridlLength.Auto;
mainGrid.ColumnDefinitions[1].Width = new GridLength(0, GridUnitType.Absolute);
Grid.SetRow(controlPanelStack, 1);
Grid.SetColumn(controlPanelStack, 0);
}
// Landscape mode.
else
{
mainGrid.RowDefinitions[1].Height = new GridLength(0, CridUnitType.Absolute);
mainGrid.ColumnDefinitions[1].Width = new GridLength(l, GridUnitType.Star);
Grid.SetRow(controlPanelStack, 0);
Grid.SetColumn(controlPanelStack, 1);
}
}
void OnSliderValueChanged(object sender, ValueChangedEventArgs args)
{
boxView.Color = new Color(redSlider.Value, greenSlider.Value, blueSTider.Value);
}
}

And here’s the landscape layout, displayed sideways as usual:

Chapter 17 Mastering the Grid 489

= 2
£

]
- >

snig

@
]
3
S
1

o
4

2a
€€
66

Notice, particularly on the iOS and Android displays, how each pair of slider and Label elements
is grouped together. This results from a third way that the XAML file is prepared to accommodate
landscape mode. Each pair of S1ider and Label elements is grouped in a nested StackLayout. This
is given a VerticalOptions setting of CenterAndExpand to perform this spacing.

A little thought was given to arranging the Boxview and the control panel: In portrait mode, the
fingers manipulating the s1ider elements won't obscure the result in the Boxview, and in landscape
mode, the fingers of right-handed users won't obscure the Boxview either. (Of course, left-handed us-
ers will probably insist on a program option to swap the locations!)

The screenshots show the s1ider values displayed in hexadecimal. This is done with a data binding,
and that would normally be a problem. The value property of the Slider is of type double, and if
you attempt to format a double with “X2" for hexadecimal, an exception will be raised. A type con-
verter (named DoubleToIntConverter, for example) must convert the source double to an int for
the string formatting. However, the s1ider elements are set up for a range of 0 to 1, while integer val-
ues formatted as hexadecimal must range from 0 to 255.

A solution is to make use of the ConverterParameter property of Binding. Whatever is set to
this property is passed as the third argument to the Convert and ConvertBack methods in the value
converter. Here's the DoubleToIntConverter class in the Xamarin.FormsBook.Toolkit library:

namespace Xamarin.FormsBook.Toolkit
{
public class DoubleToIntConverter : IValueConverter
{
public object Convert(object value, Type targetType,
object parameter, CultureInfo culture)

{

Chapter 17 Mastering the Grid 490

string strParam = parameter as string;
double multiplier = 1;

if (!String.IsNul10rEmpty(strParam))
{

Double.TryParse(strParam, out multiplier);

}

return (int)Math.Round((double)value * multiplier);
}

public object ConvertBack(object value, Type targetType,
object parameter, CultureInfo culture)

{
string strParam = parameter as string;
double divider = 1;
if (!String.IsNul10rEmpty(strParam))
{
Double.TryParse(strParam, out divider);
}
return (int)value / divider;
}

The convert and ConvertBack methods assume that the parameter argument is a string and, if
so, attempt to convert it to a double. This value is then multiplied by the double value being con-
verted, and then the product is cast to an int.

The combination of the value converter, the converter parameter, and the string formatting con-
verts values ranging from 0 to 1 coming from the S1ider to integers in the range of 0 to 255 that are
then formatted as two hexadecimal digits:
<Label Text="{Binding Source={x:Reference redSlider},

Path=Value,
Converter={StaticResource doubleToInt},

ConverterParameter=255,
StringFormat="Red = {0:X2}'}" />

Of course, if you were defining the Binding in code, you would probably set the Converterpa-
rameter property to the numeric value of 255 rather than a string of “255", and the logic in the Dou-
bleToIntConverter would fail. Simple value converters are usually simpler than they should be for
complete bulletproofing.

Can a program like GridRgbSliders be entirely realized without the s1ider event handlers in the
code-behind file? Code will certainly still be required, but some of it will be moved away from the user-
interface logic. That's the main objective of the Model-View-ViewModel architecture explored in the
next chapter.

Chapter 18

MVVM

Can you remember your earliest experiences with programming? It's likely that your main goal was just
getting the program working, and then getting it working correctly. You probably didn’t think much
about the organization or structure of the program. That was something that came later.

The computer industry as a whole has gone through a similar evolution. As developers, we all now
realize that once an application begins growing in size, it's usually a good idea to impose some kind of
structure or architecture on the code. Experience with this process suggests that it's often best to start
thinking about this architecture perhaps before any code is written at all. In most cases, a desirable
program structure strives for a “separation of concerns” through which different pieces of the program
focus on different sorts of tasks.

In a graphically interactive program, one obvious technique is to separate the user interface from
underlying non-user-interface logic, sometimes called business logic. The first formal description of
such an architecture for graphical user interfaces was called Model-View-Controller (MVC), but this ar-
chitecture has since given rise to others derived from it.

To some extent, the nature of the programming interface itself influences the application architec-
ture. For example, a programming interface that includes a markup language with data bindings might
suggest a particular way to structure an application.

There is indeed an architectural model that was designed specifically with XAML in mind. This is
known as Model-View-ViewModel or MVVM. This chapter covers the basics of MVVM (including the
command interface), but you'll see more about MVVM in the next chapter, which covers collection
views. Also, some other features of Xamarin.Forms are often used in conjunction with MVVM; these
features include triggers and behaviors, and they are the subject of Chapter 23.

MVVM interrelationships

MVVM divides an application into three layers:
e The Model provides underlying data, sometimes involving file or web accesses.

e The ViewModel connects the Model and the View. It helps to manage the data from the Model
to make it more amenable to the View, and vice versa.

e The View is the user interface or presentation layer, generally implemented in XAML.

The Model is ignorant of the ViewModel. In other words, the Model knows nothing about the public

Chapter 18 MVVM 492

properties and methods of the ViewModel, and certainly nothing about its internal workings. Similarly,
the ViewModel is ignorant of the View. If all the communication between the three layers occurs
through method calls and property accesses, then calls in only one direction are allowed. The View only
makes calls into the ViewModel or accesses properties of the ViewModel, and the ViewModel similarly
only makes calls into the Model or accesses Model properties:

View Method Calls - Method Calls ~ [N\ s[5!
| L-'. | L-'. me

These method calls allow the View to get information from the ViewModel, which in turn gets infor-
mation from the Model.

In modern environments, however, data is often dynamic. Often the Model will obtain more or
newer data that must be communicated to the ViewModel and eventually to the View. For this reason,
the View can attach handlers to events that are implemented in the ViewModel, and the ViewModel
can attach handlers to events defined by the Model. This allows two-way communication while contin-
uing to hide the View from the ViewModel, and the ViewModel from the Model:

I~

' Method Calls -

1~

| Method Calls

View Model

 Event Callbacks | - * | < Event Callbacks

MVVM was designed to take advantage of XAML and particularly XAML-based data bindings. Gen-
erally, the View is a page class that uses XAML to construct the user interface. Therefore, the connec-
tion between the View and the ViewModel consists largely—and perhaps exclusively—of XAML-based
data bindings:

" Method Calls -
% = . P, m‘ gl

"] < Data Bindings - e Model
. " © | udes | < Event Callbacks|

Programmers who are very passionate about MVVM often have an informal goal of expressing all
interactions between the View and the ViewModel in a page class with XAML-based data bindings, and
in the process reducing the code in the page’s code-behind file to a simple InitializeComponent
call. This goal is difficult to achieve in real-life programming, but it's a pleasure when it happens.

Small programs—such as those in a book like this—often become larger when MVVM is introduced.
Do not let this discourage your use of MVVM! Use the examples here to help you determine how

Chapter 18 MVVM 493

MVVM can be used in a larger program, and you'll eventually see that it helps enormously in architect-
ing your applications.

ViewModels and data binding

In many fairly simple demonstrations of MVVM, the Model is absent or only implied, and the View-
Model contains all the business logic. The View and the ViewModel communicate through XAML-
based data bindings. The visual elements in the View are data-binding targets, and properties in the
ViewModel are data-binding sources.

Ideally, a ViewModel should be independent of any particular platform. This independence allows
ViewModels to be shared among other XAML-based environments (such as Windows) in addition to
Xamarin.Forms. For this reason, you should try to avoid using the following statement in your View-
Models:

using Xamarin.Forms;

That rule is frequently broken in this chapter! One of the ViewModels is based on the Xamarin.Forms
Color structure, and another uses Device.StartTimer. So let's call the avoidance of anything spe-
cific to Xamarin.Forms in the ViewModel a “suggestion” rather than a “rule.”

Visual elements in the View qualify as data-binding targets because the properties of these visual
elements are backed by bindable properties. To be a data-binding source, a ViewModel must imple-
ment a notification protocol to signal when a property in the ViewModel has changed. This notification
protocol is the INotifyPropertyChanged interface, which is defined in the system.Component-
Model namespace very simply with just one event:

public interface INotifyPropertyChanged

{
event PropertyChangedEventHandler PropertyChanged;

}

The INotifyPropertyChanged interface is so central to MVVM that in informal discussions the inter-
face is often abbreviated INPC.

The PropertyChanged event in the INotifyPropertyChanged interface is of type Property-
Changed-EventHandler. A handler for this PropertyChanged event handler gets an instance of the
PropertyChangedEventArgs class, which defines a single property named PropertyName of type
string indicating what property in the ViewModel has changed. The event handler can then access
that property.

A class that implements INotifyPropertyChanged should fire a PropertyChanged event when-
ever a public property changes, but the class should not fire the event when the property is merely set
but not changed.

Chapter 18 MVVM 494

Some classes define immutable properties—properties that are initialized in the constructor and
then never change. Those properties do not need to fire PropertyChanged events because a Prop-
ertyChanged handler can be attached only after the code in the constructor finishes, and the immuta-
ble properties never change after that time.

In theory, a ViewModel class can be derived from BindableObject and implement its public prop-
erties as BindableProperty objects. BindableObject implements INotifyPropertyChanged and
automatically fires a PropertyChanged event when any property backed by a BindableProperty
changes. But deriving from BindableObject is overkill for a ViewModel. Because BindableObject
and BindableProperty are specific to Xamarin.Forms, such a ViewModel is no longer platform inde-
pendent, and the technique provides no real advantages over a simpler implementation of INotify-
PropertyChanged.

A ViewModel clock

Suppose you are writing a program that needs access to the current date and time, and you'd like to
use that information through data bindings. The .NET base class library provides date and time infor-
mation through the DateTime structure. To get the current date and time, just access the
DateTime.Now property. That's the customary way to write a clock application.

But for data-binding purposes, DateTime has a severe flaw: It provides just static information with
no notification when the date or time has changed.

In the context of MVVM, the DateTime structure perhaps qualifies as a Model in the sense that
DateTime provides all the data we need but not in a form that's conducive to data bindings. It's neces-
sary to write a ViewModel that makes use of DateTime but provides notifications when the date or
time has changed.

The Xamarin.FormsBook.Toolkit library contains the DateTimeviewModel class shown below.
The class has only one property, which is named DateTime of type DateTime, but this property dy-
namically changes as a result of frequent calls to DateTime.Now in a Device.StartTimer callback.

Notice that the DateTimeViewModel class is based on the INotifyPropertyChanged interface
and includes a using directive for the System.ComponentModel namespace that defines this inter-
face. To implement this interface, the class defines a public event named PropertyChanged.

Watch out: It is very easy to define a PropertyChanged event in your class without explicitly speci-
fying that the class implements INotifyPropertyChanged! The notifications will be ignored if you
don't explicitly specify that the class is based on the TNotifyPropertyChanged interface:
using System;

using System.ComponentModel;
using Xamarin.Forms;

namespace Xamarin.FormsBook.Toolkit

{
public class DateTimeViewModel : INotifyPropertyChanged

Chapter 18 MVVM 495

{
DateTime dateTime = DateTime.Now;
public event PropertyChangedEventHandler PropertyChanged;
public DateTimeViewModel()
{
Device.StartTimer(TimeSpan.FromMilliseconds(15), OnTimerTick);
}
bool OnTimerTick()
{
DateTime = DateTime.Now;
return true;
}
public DateTime DateTime
{
private set
{
if (dateTime != value)
{
dateTime = value;
// Fire the event.
PropertyChangedEventHandler handler = PropertyChanged;
if (handler != null)
{
handler(this, new PropertyChangedEventArgs("DateTime"));
}
}
}
get
{
return dateTime;
}
}
}

The only public property in this class is called DateTime of type DateTime, and it is associated with
a private backing field named dateTime. Public properties in ViewModels usually have private backing
fields. The set accessor of the DateTime property is private to the class, and it's updated every 15 mil-
liseconds from the timer callback.

Other than that, the set accessor is constructed in a very standard way for ViewModels: It first
checks whether the value being set to the property is different from the dateTime backing field. If not,
it sets that backing field from the incoming value and fires the PropertyChanged handler with the
name of the property. It is considered very bad practice to fire the PropertyChanged handler if the

Chapter 18 MVVM 496

property is merely being set to its existing value, and it might even lead to problems involving infinite
cycles of recursive property settings in two-way bindings.

This is the code in the set accessor that fires the event:

PropertyChangedEventHandler handler = PropertyChanged;

if (handler != null)
{
handler(this, new PropertyChangedEventArgs("DateTime"));

}

That form is preferable to code such as this, which doesn’t save the handler in a separate variable:

if (PropertyChanged != null)
{
PropertyChanged(this, new PropertyChangedEventArgs("DateTime™));

In a multithreaded environment, a PropertyChanged handler might be detached between the if
statement that checks for a nul1 value and the actual firing of the event. Saving the handler in a sepa-
rate variable prevents that from causing a problem, so it's a good habit to adopt even if you're not yet
working in a multithreaded environment.

The get accessor simply returns the dateTime backing field.

The MvvmClock program demonstrates how the DateTimeviewModel class is capable of provid-
ing updated date and time information to the user interface through data bindings:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:sys="clr-namespace:System;assembly=mscorlib"
xmlns:toolkit=
"clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"
x:Class="MvvmClock.MvvmClockPage">

<ContentPage.Resources>
<ResourceDictionary>
<toolkit:DateTimeViewModel x:Key="dateTimeViewModel" />

<Style TargetType="Label">
<Setter Property="FontSize" Value="Large" />
<Setter Property="HorizontalTextAlignment" Value="Center" />
</Style>
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout VerticalOptions="Center">
<Label Text="{Binding Source={x:Static sys:DateTime.Now},

StringFormat='This program started at {0:F}'}" />

<Label Text="But now..." />

Chapter 18 MVVM 497

<Label Text="{Binding Source={StaticResource dateTimeViewModel},
Path=DateTime.Hour,
StringFormat="'The hour is {0}'}" />

<Label Text="{Binding Source={StaticResource dateTimeViewModel},
Path=DateTime.Minute,
StringFormat='The minute is {0}'}" />

<Label Text="{Binding Source={StaticResource dateTimeViewModel},
Path=DateTime.Second,
StringFormat='The seconds are {0}'}" />

<Label Text="{Binding Source={StaticResource dateTimeViewModel},
Path=DateTime.Millisecond,
StringFormat="'The milliseconds are {0}'}" />
</StackLayout>
</ContentPage>

The Resources section for the page instantiates the DateTimevViewModel and also defines an implicit
Style for the Label.

The first of the six Label elements sets its Text property to a Binding object that involves the ac-
tual .NET DateTime structure. The Source property of that binding is an x: Static markup extension
that references the static DateTime.Now property to obtain the date and time when the program first
starts running. No Path is required in this binding. The “F" formatting specification is for the full
date/time pattern, with long versions of the date and time strings. Although this Label displays the
date and time when the program starts up, it will never get updated.

The final four data bindings will be updated. In these data bindings, the Source property is set to a
StaticResource markup extension that references the DateTimeviewModel object. The Path is set
to various subproperties of the DateTime property of that ViewModel. Behind the scenes, the binding
infrastructure attaches a handler on the PropertyChanged event in the DateTimeViewModel. This
handler checks for a change in the DateTime property and updates the Text property of the Label
whenever that property changes.

The code-behind file is empty except for an InitializeComponent call. The data bindings of the
final four labels display an updated time that changes as fast as the video refresh rate:

Chapter 18 MVVM 498

This program started at
Tuesday, February 9,
2016 4:25:29 PM
But now...

The houris 16

This program started at Tuesday,
February 9, 2016 4:23:42 PM
But now...

The hour is 16
The minute

The minute is 23
The seconds are 52
The milliseconds are 540

The] The minute is 25
U e 6 i§ The seconds are 33

The milliseconds are
981

The markup in this XAML file can be simplified by setting the BindingContext property of the
StackLayout to a StaticResource markup extension that references the ViewModel. That Bind-
ingContext is propagated through the visual tree so that you can remove the Source settings on the
final four Label elements:

<StackLayout VerticalOptions="Center"
BindingContext="{StaticResource dateTimeViewModel}">

<Label Text="{Binding Source={x:Static sys:DateTime.Now},
StringFormat='This program started at {0:F}'}" />

<Label Text="But now..." />

<Label Text="{Binding Path=DateTime.Hour,
StringFormat="'The hour is {0}'}" />

<Label Text="{Binding Path=DateTime.Minute,
StringFormat='The minute is {0}'}" />

<Label Text="{Binding Path=DateTime.Second,
StringFormat='The seconds are {0}'}" />

<Label Text="{Binding Path=DateTime.Millisecond,
StringFormat='The milliseconds are {0}'}" />
</StackLayout>

The Binding on the first Label overrides that BindingContext with its own Source setting.

You can even remove the DateTimeViewModel item from the ResourceDictionary and instanti-
ate it right in the stackLayout between BindingContext property-element tags:

Chapter 18 MVVM

499

<StackLayout VerticalOptions="Center">
<StackLayout.BindingContext>

<toolkit:DateTimeViewModel />
</StackLayout.BindingContext>

<Label Text="{Binding Source={x:Static sys:DateTime.Now},

<Label Text="But now..
<Label Text="{Binding
<Label Text="{Binding
<Label Text="{Binding
<Label Text="{Binding
</StackLayout>

StringFormat="'This program started at {0:F}'}" />
s

Path=DateTime.Hour,
StringFormat="'The hour is {0}'}" />

Path=DateTime.Minute,
StringFormat="'The minute is {0}'}" />

Path=DateTime.Second,
StringFormat="'The seconds are {0}'}" />

Path=DateTime.Millisecond,
StringFormat="'The milliseconds are {0}'}" />

Or, you can set the BindingContext property of the StackLayout to a Binding that includes the
DateTime property. The BindingContext then becomes the DateTime value, which allows the indi-
vidual bindings to simply reference properties of the .NET DateTime structure:

<StackLayout VerticalOptions="Center"
BindingContext="{Binding Source={StaticResource dateTimeViewModel},

<Label Text="{Binding
<Label Text="But now..
<Label Text="{Binding
<Label Text="{Binding
<Label Text="{Binding
<Label Text="{Binding
</StackLayout>

Path=DateTime}">

Source={x:Static sys:DateTime.Now},
StringFormat='This program started at {0:F}'}" />

>

Path=Hour,
StringFormat="'The hour is {0}'}" />

Path=Minute,
StringFormat='The minute is {0}'}" />

Path=Second,
StringFormat="'The seconds are {0}'}" />

Path=Millisecond,
StringFormat="'The milliseconds are {0}'}" />

You might have doubts that this will work! Behind the scenes, a data binding normally installs a Prop-
ertyChanged event handler and watches for particular properties being changed, but it cant in this
case because the source of the data binding is a DateTime value, and DateTime doesn't implement
INotifyPropertyChanged. However, the BindingContext of these Label elements changes with

Chapter 18 MVVM 500

each change to the DateTime property in the ViewModel, so the binding infrastructure accesses new
values of these properties at that time.

As the individual bindings on the Text properties decrease in length and complexity, you can re-
move the Path attribute name and put everything on one line and nobody will be confused:
<StackLayout VerticalOptions="Center">

<StackLayout.BindingContext>
<Binding Path="DateTime">
<Binding.Source>
<toolkit:DateTimeViewModel />
</Binding.Source>
</Binding>
</StackLayout.BindingContext>

<Label Text="{Binding Source={x:Static sys:DateTime.Now},
StringFormat='This program started at {0:F}'}" />

<Label Text="But now..." />

<Label Text="{Binding Hour, StringFormat='The hour is {0}'}" />

<Label Text="{Binding Minute, StringFormat='The minute is {0}'}" />

<Label Text="{Binding Second, StringFormat='The seconds are {0}'}" />

<Label Text="{Binding Millisecond, StringFormat='The milliseconds are {0}'}" />
</StackLayout>

In future programs in this book, the individual bindings will mostly be as short and as elegant as
possible.

Interactive properties in a ViewModel

The second example of a ViewModel does something so basic that you'd never write a ViewModel for
this purpose. The SimpleMultiplierviewModel class simply multiplies two numbers together. But
it's a good example for demonstrating the overhead and mechanics of a ViewModel that has multiple
interactive properties. (And although you'd never write a ViewModel for multiplying two numbers to-
gether, you might write a ViewModel for solving quadratic equations or something much more
complex.)

The simpleMultiplierViewModel class is part of the SimpleMultiplier project:

using System;
using System.ComponentModel;

namespace SimpleMultiplier

{
class SimpleMultiplierViewModel : INotifyPropertyChanged

{

double multiplicand, multiplier, product;

public event PropertyChangedEventHandler PropertyChanged;

Chapter 18 MVVM 501

public double Multiplicand

{
set
{
if (multiplicand !'= value)
{
multiplicand = value;
OnPropertyChanged("Multiplicand");
UpdateProduct();
}
}
get
{
return multipTlicand;
}
}
public double Multiplier
{
set
{
if (multiplier != value)
{
multiplier = value;
OnPropertyChanged("Multiplier™);
UpdateProduct();
}
}
get
{
return multiplier;
}
}
public double Product
{
protected set
{
if (product != value)
{
product = value;
OnPropertyChanged("Product™);
}
}
get
{
return product;
}
}

void UpdateProduct()

{
Product = Multiplicand * Multiplier;

Chapter 18 MVVM 502

protected void OnPropertyChanged(string propertyName)

{
PropertyChangedEventHandler handler = PropertyChanged;
if (handler != null)
{
PropertyChanged(this, new PropertyChangedEventArgs(propertyName)) ;
}
}

The class defines three public properties of type double, named Multiplicand, Multiplier, and
pProduct. Each property is backed by a private field. The set and get accessors of the first two proper-
ties are public, but the set accessor of the Product property is protected to prevent it from being set
outside the class while still allowing a descendant class to change it.

The set accessor of each property begins by checking whether the property value is actually chang-
ing, and if so, it sets the backing field to that value and calls a method named OnPropertyChanged
with that property name.

The INotifyPropertyChanged interface does not require an OnPropertyChanged method, but
ViewModel classes often include one to cut down the code repetition. It's usually defined as pro-
tected in case you need to derive one ViewModel from another and fire the event in the derived
class. Later in this chapter, you'll see techniques to cut down the code repetition in INotifyProper-
tyChanged classes even more.

The set accessors for both the Multiplicand and Multiplier properties conclude by calling the
UpdateProduct method. This is the method that performs the job of multiplying the values of the two
properties and setting a new value for the Product property, which then fires its own Property-
Changed event.

Here's the XAML file that makes use of this ViewModel:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmlns:local="clr-namespace:SimpleMultiplier"
x:Class="SimpleMultiplier.SimpleMultiplierPage"
Padding="10, 0">

<ContentPage.Resources>
<ResourceDictionary>
<local:SimpleMultiplierViewModel x:Key="viewModel" />

<Style TargetType="Label">
<Setter Property="FontSize" Value="Large" />
</Style>
</ResourceDictionary>
</ContentPage.Resources>

Chapter 18 MVVM 503

<StackLayout BindingContext="{StaticResource viewModel}">

<StackLayout VerticalOptions="CenterAndExpand">
<STider Value="{Binding Multiplicand}" />
<STider Value="{Binding Multiplier}" />
</StackLayout>

<StackLayout Orientation="Horizontal"
Spacing="0"
VerticalOptions="CenterAndExpand"
HorizontalOptions="Center">
<Label Text="{Binding Multiplicand, StringFormat='{0:F3}'}" />
<Label Text="{Binding Multiplier, StringFormat=' x {0:F3}'}" />
<Label Text="{Binding Product, StringFormat=' = {0:F3}'}" />
</StackLayout>
</StackLayout>
</ContentPage>

The simpleMultiplierViewModel is instantiated in the Resources dictionary and set to the
BindingContext property of the StackLayout by using a staticResource markup extension. That
BindingContext is inherited by all the children and grandchildren of the stackLayout, which in-
cludes two slider and three Label elements. The use of the BindingContext allows these bindings
to be as simple as possible.

The default binding mode of the value property of the S1ider is Twoway. Changes in the value
property of each s1ider cause changes to the properties of the ViewModel.

The three Label elements display the values of all three properties of the ViewModel with some
formatting that inserts times and equals signs with the numbers:
<Label Text="{Binding Multiplicand, StringFormat='{0:F3}'}" />

<Label Text="{Binding Multiplier, StringFormat=' x {0:F3}'}" />
<Label Text="{Binding Product, StringFormat=' = {0:F3}'}" />

For the first two, you can alternatively bind the Text property of the Label elements directly to the
Value property of the corresponding slider, but that would require that you give each slider a
name with x : Name and reference that name in a Source argument by using the x:Reference
markup extension. The approach used in this program is much cleaner and verifies that data is making
a full trip through the ViewModel from each slider to each Label.

There is nothing in the code-behind file except a call to InitializeComponent in the constructor.
All the business logic is in the ViewModel, and the whole user interface is defined in XAML:

Chapter 18 MVVM 504

0.800 x 0.200 = 0.160

0.335x 0.766 = 0.253

If you'd like to, you can initialize the ViewModel as it is instantiated in the Resources dictionary:

<Tocal:SimpTeMultiplierViewModel x:Key="viewModel"
MuTtiplicand="0.5"
Multiplier="0.5" />

The s1ider elements will get these initial values as a result of the two-way binding.

The advantage to separating the user interface from the underlying business logic becomes evident
when you want to change the user interface somewhat, perhaps by substituting a Stepper for the
Slider for one or both numbers:
<StackLayout VerticalOptions="CenterAndExpand">

<STider Value="{Binding Multiplicand}" />

<Stepper Value="{Binding Multiplier}" />
</StackLayout>

Aside from the different ranges of the two elements, the functionality is identical:

Chapter 18 MVVM 505

% %4 01000

0.577 x 25.000 = 14.425

0.700 x 25.000 = 17.50Q

0.276 x 12.000 = 3.313

You could also substitute an Entry:

<StackLayout VerticalOptions="CenterAndExpand">
<STider Value="{Binding Multiplicand}" />
<Entry Text="{Binding Multiplier}" />
</StackLayout>

The default binding mode for the Text property of the Entry is also Twoway, so all you need to worry
about is the conversion between the source property double and target property string. Fortunately,
this conversion is automatically handled by the binding infrastructure:

Chapter 18 MVVM 506

_—

123.456 456.789

U 0.700 x 1.234 = 0.864

0.301 x 123.456 = 37.211

If you type a series of characters that cannot be converted to a double, the binding will maintain
the last valid value. If you want more sophisticated validation, you'll have to implement your own (such
as with a trigger, which will be discussed in Chapter 23).

One interesting experiment is to type 1E-1, which is scientific notation that is convertible to a dou-
ble. You'll see it immediately change to “0.1" in the Entry. This is the effect of the Twoway binding:
The Multiplier property is set to 1E-1 from the Entry but the ToString method that the binding
infrastructure calls when the value comes back to the Entry returns the text “0.1.” Because that is dif-
ferent from the existing Entry text, the new text is set. To prevent that from happening, you can set
the binding mode to OneWayToSource:
<StackLayout VerticalOptions="CenterAndExpand">

<STlider Value="{Binding Multiplicand}" />

<Entry Text="{Binding Multiplier, Mode=OneWayToSource}" />
</StackLayout>

Now the Multiplier property of the ViewModel is set from the Text property of the Entry, but not
the other way around. If you don't need these two views to be updated from the ViewModel, you can
set both of them to onelayTosource. But generally you'll want MVVM bindings to be Twoway.

Should you worry about infinite cycles in two-way bindings? Usually not, because property-
Changed events are fired only when the property actually changes and not when it's merely set to the
same value. Generally the source and target will stop updating each other after a bounce or two. How-
ever, it is possible to write a “pathological” value converter that doesn't provide for round-trip conver-
sions, and that could indeed cause infinite update cycles in two-way bindings.

Chapter 18 MVVM 507

A Color ViewModel

Color always provides a good means of exploring the features of a graphical user interface, so you
probably won't be surprised to learn that the Xamarin.FormsBook.Toolkit library contains a class
called ColorviewModel.

The ColorviewModel class exposes a Color property but also Red, Green, Blue, Alpha, Hue,
Saturation, and Luminosity properties, all of which are individually settable. This is not a feature
that the Xamarin.Form Color structure provides. Once a Color value is created from a Color con-
structor or one of the methods in Color beginning with the words Add, From, Multiply, or With, it is
immutable.

This ColorviewModel class is complicated by the interrelationship of its Color property and all the
component properties. For example, suppose the Color property is set. The class should fire a Prop-
ertyChanged handler not only for Color but also for any component (such as Red or Hue) that also
changes. Similarly, if the Red property changes, then the class should fire a PropertyChanged event
for both Red and Color, and probably Hue, Saturation, and Luminosity as well.

The ColorviewModel class solves this problem by storing a backing field for the color property
only. All the set accessors for the individual components create a new Color by using the incoming
value with a call to Color.FromRgba or Color.FromHsla. This new Color value is set to the Color
property rather than the color field, which means that the new Color value is subjected to processing
in the set accessor of the Color property:

public class ColorViewModel : INotifyPropertyChanged
{

Color color;
public event PropertyChangedEventHandler PropertyChanged;

public double Red
{

set

{
if (Round(color.R) != value)
Color = Color.FromRgba(value, color.G, color.B, color.A);

return Round(color.R);

}

public double Green
{
set
{
if (Round(color.G) != value)
Color = Color.FromRgba(color.R, value, color.B, color.A);

Chapter 18 MVVM 508

get
{
return Round(color.G);
}
}
public double Blue
{
set
{
if (Round(color.B) != value)
Color = Color.FromRgba(color.R, color.G, value, color.A);
get
{
return Round(color.B);
}
}
public double Alpha
{
set
{
if (Round(color.A) != value)
Color = Color.FromRgba(color.R, color.G, color.B, value);
}
get
{
return Round(color.A);
}
}
public double Hue
{
set
{
if (Round(color.Hue) != value)
Color = Color.FromHsTa(value, color.Saturation, color.Luminosity, color.A);
get
{
return Round(color.Hue);
}
}
public double Saturation
{
set
{
if (Round(color.Saturation) != value)
Color = Color.FromHsTa(color.Hue, value, color.Luminosity, color.A);
get

Chapter 18 MVVM 509

return Round(color.Saturation);

}
}
public double Luminosity
{
set
{
if (Round(color.Luminosity) != value)
Color = Color.FromHsTa(color.Hue, color.Saturation, value, color.A);
get
{
return Round(color.Luminosity);
}
}
public Color Color
{
set
{
Color oldColor = color;
if (color != value)
{
color = value;
OnPropertyChanged("Color");
}
if (color.R != oldColor.R)
OnPropertyChanged("Red");
if (color.G != oldColor.G)
OnPropertyChanged("Green");
if (color.B != oldColor.B)
OnPropertyChanged("Blue");
if (color.A != oldColor.A)
OnPropertyChanged("Alpha");
if (color.Hue != oldColor.Hue)
OnPropertyChanged("Hue");
if (color.Saturation != oldColor.Saturation)
OnPropertyChanged("Saturation");
if (color.Luminosity != oldColor.Luminosity)
OnPropertyChanged("Luminosity");
get
{

return color;

Chapter 18 MVVM 510

}
protected void OnPropertyChanged(string propertyName)
{
PropertyChangedEventHandler handler = PropertyChanged;
if (handler != null)
{
handler(this, new PropertyChangedEventArgs(propertyName));
}
}
double Round(double value)
{
return Device.OnPlatform(value, Math.Round(value, 3), value);
}

The set accessor for the Color property is responsible for the firings of all PropertyChanged events
based on changes to the properties.

Notice the device-dependent Round method at the bottom of the class and its use in the set and
get accessors of the first seven properties. This was added when the MultiColorSliders sample in
Chapter 23, "Triggers and behaviors,” revealed a problem. Android seemed to be internally rounding
the color components, causing inconsistencies between the properties being passed to the
Color.FromRgba and Color.FromHsla methods and the properties of the resultant Color value,
which lead to infinite set and get loops.

The HslSliders program instantiates the ColorviewModel between Grid.BindingContext tags
so that it becomes the BindingContext for all the S1ider and Label elements within the Grid:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmlns:toolkit=
"clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"
x:Class="Hs1S1liders.Hs1STidersPage"
SizeChanged="0nPageSizeChanged">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="0, 20, 0, 0" />
</ContentPage.Padding>

<Grid x:Name="mainGrid">
<Grid.BindingContext>
<toolkit:ColorViewModel Color="Gray" />
</Grid.BindingContext>

<Grid.Resources>
<ResourceDictionary>
<Style TargetType="Label">
<Setter Property="FontSize" Value="Large" />

Chapter 18 MVVM 511

<Setter Property="HorizontalTextAlignment" Value="Center" />
</Style>
</ResourceDictionary>
</Grid.Resources>

<!-- Initialized for portrait mode. -->
<Grid.RowDefinitions>
<RowDefinition Height="*" />

<RowDefinition Height="Auto" />
</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="*" />
<ColumnDefinition Width="0" />

</Grid.CoTumnDefinitions>

<BoxView Color="{Binding Color}"
Grid.Row="0" Grid.Column="0" />

<StackLayout x:Name="controlPanelStack"
Grid.Row="1" Grid.Column="0"
Padding="10, 5">

<StackLayout VerticalOptions="CenterAndExpand">

<STider Value="{Binding Hue}" />

<Label Text="{Binding Hue, StringFormat='Hue = {0:F2}'}" />
</StackLayout>

<StackLayout VerticalOptions="CenterAndExpand">

<STider Value="{Binding Saturation}" />

<Label Text="{Binding Saturation, StringFormat='Saturation = {0:F2}'}" />
</StackLayout>

<StackLayout VerticalOptions="CenterAndExpand">
<STider Value="{Binding Luminosity}" />
<Label Text="{Binding Luminosity, StringFormat='Luminosity = {0:F2}'}" />
</StackLayout>
</StackLayout>
</Grid>
</ContentPage>

Notice that the Color property of ColorviewModel is initialized when ColorviewModel is instanti-
ated. The two-way bindings of the sliders then pick up the resultant values of the Hue, Saturation,
and Luminosity properties.

If you instead want to implement a display of hexadecimal values of Red, Green, and Blue, you can
use the DoubleToIntConverter class demonstrated in connection with the GridRgbSliders program
in the previous chapter.

The HslSliders program implements the same technique for switching between portrait and land-
scape modes as that GridRgbSliders program. The code-behind file handles the mechanics of this
switch:

Chapter 18 MVVM 512

public partial class Hsl1SlidersPage : ContentPage

{
public Hs1S1idersPage()

{

InitializeComponent();

void OnPageSizeChanged(object sender, EventArgs args)

{
// Portrait mode.
if (Width < Height)

{
mainGrid.RowDefinitions[1].Height = GridlLength.Auto;
mainGrid.ColumnDefinitions[1].Width = new GridLength(0, GridUnitType.Absolute);

Grid.SetRow(controlPanelStack, 1);
Grid.SetColumn(controlPanelStack, 0);

}
// Landscape mode.

else

{
mainGrid.RowDefinitions[1].Height = new GridLength(0, GridUnitType.Absolute);
mainGrid.ColumnDefinitions[1].Width = new GridlLength(1l, GridUnitType.Star);

Grid.SetRow(controlPanelStack, 0);
Grid.SetColumn(controlPanelStack, 1);
}

This code-behind file isn't quite as pretty as a file that merely calls TnitializeComponent, but even
in the context of MVVM, switching between portrait and landscape modes is a legitimate use of the
code-behind file because it is solely devoted to the user interface rather than underlying business logic.

Here's the HslSliders program in action:

Chapter 18 MVVM 513

Hue = 0.20

Saturation = 0.70

Hue = 0.55

Saturation = 0.73

Luminosity = 0.70

Luminosity = 0.59

Streamlining the ViewModel

A typical implementation of INotifyPropertyChanged has a private backing field for every public
property defined by the class, for example:

double number;

It also has an OnPropertyChanged method responsible for firing the PropertyChanged event:

protected void OnPropertyChanged(string propertyName)

{
PropertyChangedEventHandler handler = PropertyChanged;
if (handler != null)
{
PropertyChanged(this, new PropertyChangedEventArgs (propertyName));
}
}

A typical property definition looks like this:

public double Number
{

set

{

if (number != value)

{
number = value;
OnPropertyChanged("Number");

// Do something with the new value.

Chapter 18 MVVM 514

return number;

A potential problem involves the text string you pass to the OnPropertyChanged method. If you
misspell it, you won't get any type of error message, and yet bindings involving that property won't
work. Also, the backing field appears three times within this single property. If you had several similar
properties and defined them through copy-and-paste operations, it's possible to omit the renaming of
one of the three appearances of the backing field, and that bug might be very difficult to track down.

You can solve the first problem with a feature introduced in C# 5.0. The CallerMemberNameAt -
tribute class allows you to replace an optional method argument with the name of the calling
method or property.

You can make use of this feature by redefining the OnPropertyChanged method. Make the argu-
ment optional by assigning nul1l to it and preceding it with the CallerMemberName attribute in
square brackets. You'll also need a using directive for System.Runtime.CompilerServices:

protected void OnPropertyChanged([CallerMemberName] string propertyName = null)

{
PropertyChangedEventHandler handler = PropertyChanged;

if (handler != null)
{
PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

}

Now the Number property can call the onPropertyChanged method without the argument that
indicates the property name. That argument will be automatically set to the property name “Number”
because that's where the call to OnPropertyChanged is originating:

public double Number

{
set
{
if (number != value)
{
number = value;
OnPropertyChanged();
// Do something with the new value.
}
}
get
{

return number;

Chapter 18 MVVM 515

This approach avoids a misspelled text property name and also allows property names to be
changed during program development without worrying about also changing the text strings. Indeed,
one of the primary reasons that the CallerMemberName attribute was invented was to simplify classes
that implement INotifyPropertyChanged

However, this works only when onPropertyChanged is called from the property whose value is
changing. In the earlier colorviewModel, explicit property names would still be required in all but
one of the calls to onPropertyChanged

It's possible to go even further to simplify the set accessor logic: You'll need to define a generic
method, probably named setProperty or something similar. This set Property method is also de-
fined with the callerMemberName attribute:

bool SetProperty<T>(ref T storage, T value, [CallerMemberName] string propertyName = null)
{
if (Object.Equals(storage, value))
return false;

storage = value;
OnPropertyChanged(propertyName) ;
return true;

protected void OnPropertyChanged([CallerMemberName] string propertyName = null)

{
PropertyChangedEventHandler handler = PropertyChanged;
if (handler != null)
{
PropertyChanged(this, new PropertyChangedEventArgs (propertyName));

The first argument to SetProperty is a reference to the backing field, and the second argument is
the value being set to the property. setProperty automates the checking and setting of the backing
field. Notice that it explicitly includes the propertyName argument when calling OnProperty-
Changed. (Otherwise the propertyName argument would become the string “SetProperty”!) The
method returns true if the property was changed. You can use this return value to perform additional
processing with the new value.

Now the Number property looks like this:

public double Number
{

set

{
if (SetProperty(ref number, value))
{

// Do something with the new value.

Chapter 18 MVVM 516

return number;

Although setProperty is a generic method, the C# compiler can deduce the type from the argu-
ments. If you don't need to do anything with the new value in the property set accessor, you can even
reduce the two accessors to single lines without obscuring the operations:

public double Number

{
set { SetProperty(ref number, value); }
get { return number; }

You might like this streamlining so much that you'll want to put the SetProperty and OnProper-
tyChanged methods in their own class and derive from that class when creating your own ViewMod-
els. Such a class, called viewModelBase, is already in the Xamarin.FormsBook.Toolkit library:
using System;

using System.ComponentModeT;
using System.Runtime.CompilerServices;

namespace Xamarin.FormsBook.Toolkit

{
public class ViewModelBase : INotifyPropertyChanged
{
public event PropertyChangedEventHandler PropertyChanged;
protected bool SetProperty<T>(ref T storage, T value,
[CallerMemberName] string propertyName = null)
{
if (Object.Equals(storage, value))
return false;
storage = value;
OnPropertyChanged(propertyName) ;
return true;
}
protected void OnPropertyChanged([CallerMemberName] string propertyName = null)
{
PropertyChangedEventHandler handler = PropertyChanged;
if (handler != null)
{
PropertyChanged(this, new PropertyChangedEventArgs(propertyName)) ;
}
}
}

Chapter 18 MVVM 517

This class is used in the two remaining examples in this chapter.

The Command interface

Data bindings are very powerful. Data bindings connect properties of visual elements in the View with
properties of data in the ViewModel, and allow the direct manipulation of data items through the user
interface.

But not everything is a property. Sometimes ViewModels expose public methods that must be called
from the View based on a user’s interaction with a visual element. Without MVVM, you'd probably call
such a method from a Clicked event handler of a Button or a Tapped event handler of a TapGes-
tureRecognizer. When considering these needs, the whole concept of data bindings and MVVM
might start to seem hopelessly flawed. How can the code-behind file of a page class be stripped down
toan InitializeComponent call if it must still make method calls from the View to the ViewModel?

Don’t give up on MVVM so quickly! Xamarin.Forms supports a feature that allows data bindings to
make method calls in the ViewModel directly from Button and TapGestureRecognizer and a few
other elements. This is a protocol called the command interface or the commanding interface.

The command interface is supported by eight classes:
[Button
e Menultem (covered in Chapter 19, "Collection views"), and hence also ToolbarItem
J SearchBar
e TextCell, and hence also TmageCel1 (also to be covered in Chapter 19)
e ListView (also to be covered in Chapter 19)
J TapGestureRecognizer
It is also possible to implement commanding in your own custom classes.
The command interface is likely to be a little confusing at first. Let's focus on Button.

Button defines two ways for code to be notified when the element is clicked. The first is the
Clicked event. But you can also use the button’s command interface as an alternative to (or in addi-
tion to) the Clicked event. This interface consists of two public properties that Button defines:

J Command of type System.Windows.Input.ICommand.
e CommandParameter of type Object.

To support commanding, a ViewModel must define a public property of type I1Command that is then
connected to the Command property of the Button through a normal data binding.

Chapter 18 MVVM 518

Like INotifyPropertyChanged, the ICommand interface is not a part of Xamarin.Forms. It's de-
fined in the system.Windows . Input namespace and implemented in the System.ObjectModel as-
sembly, which is one of the .NET assemblies linked to a Xamarin.Forms application. TCommand is the
only type in the System.Windows. Input namespace that Xamarin.Forms supports. Indeed it's the
only type in any system.Windows namespace supported by Xamarin.Forms.

Is it a coincidence that INotifyPropertyChanged and ICommand are both defined in .NET assem-
blies rather than Xamarin.Forms? No. These interfaces are often used in ViewModels, and some devel-
opers might already have ViewModels developed for one or more of Microsoft's XAML-based environ-
ments. It's easiest for developers to incorporate these existing ViewModels into Xamarin.Forms if TNo-
tifyPropertyChanged and ICommand are defined in standard .NET namespaces and assemblies ra-
ther than in Xamarin.Forms.

The ICcommand interface defines two methods and one event:

public interface ICommand

{

void Execute(object arg);

bool CanExecute(object arg);

event EventHandler CanExecuteChanged;
}

To implement commanding, the ViewModel defines one or more properties of type ICommand,
meaning that the property is a type that implements these two methods and the event. A property in
the ViewModel that implements ICommand can then be bound to the Command property of a Button.
When the Button is clicked, the Button fires its normal c1icked event as usual, but it also calls the
Execute method of the object bound to its Command property. The argument to the Execute method
is the object set to the CommandParameter property of the Button.

That's the basic technique. However, it could be that certain conditions in the ViewModel prohibit a
Button click at the current time. In that case, the Button should be disabled. This is the purpose of
the CanExecute method and the CanExecuteChanged event in ICommand. The Button calls CanEx-
ecute when its Command property is first set. If CanExecute returns false, the Button disables itself
and doesn’t generate Execute calls. The Button also installs a handler for the CanExecuteChanged
event. Thereafter, whenever the ViewModel fires the CanExecuteChanged event, the button calls
CanExecute again to determine whether the button should be enabled.

A ViewModel that supports the command interface defines one or more properties of type TCom-
mand and internally sets this property to a class that implements the ICommand interface. What is this
class, and how does it work?

If you were implementing the commanding protocol in one of Microsoft's XAML-based environ-
ments, you would be writing your own class that implements ICommand, or perhaps using one that you
found on the web, or one that was included with some MVVM tools. Sometimes such classes are
named CommandDelegate or something similar.

Chapter 18 MVVM 519

You can use that same class in the ViewModels of your Xamarin.Forms applications. However, for
your convenience, Xamarin.Forms includes two classes that implement T1Command that you can use in-
stead. These two classes are named simply Command and Command<T>, where T is the type of the argu-
ments to Execute and CanExecute.

If you are indeed sharing a ViewModel between Microsoft environments and Xamarin.Forms, you
can't use the Command classes defined by Xamarin.Forms. However, you'll be using something similar to
these Command classes, so the following discussion will certainly be applicable regardless.

The Command class includes the two methods and event of the TCommand interface and also defines
a ChangeCanExecute method. This method causes the Command object to fire the CanExecute-
Changed event, and that facility turns out to be very handy.

Within the ViewModel, you'll probably create an object of type Command or Command<T> for every
public property in the ViewModel of type ICommand. The Command or Command<T> constructor re-
quires a callback method in the form of an Action object that is called when the Button calls the Ex-
ecute method of the ICommand interface. The CanExecute method is optional but takes the form of
a Func object that returns bool.

In many cases, the properties of type ICommand are set in the ViewModel's constructor and do not
change thereafter. For that reason, these 1Command properties do not generally need to fire Proper-
tyChanged events.

Simple method executions

Let's look at a simple example. A program called PowersOfThree lets you use two buttons to explore
various powers of 3. One button increases the exponent and the other button decreases the exponent.

The PowersViewModel class derives from the vViewModelBase class in the Xamarin.Forms-
Book.Toolkit library, but the ViewModel itself is in the PowersOfThree application project. It is not
restricted to powers of 3, but the constructor requires an argument that the class uses as a base value
for the power calculation, and which it exposes as the Basevalue property. Because this property has
a private set accessor and doesn’t change after the constructor concludes, the property does not fire a
PropertyChanged event.

Two other properties, named Exponent and Power, do fire PropertyChanged events, but both
properties also have private set accessors. The Exponent property is increased and decreased only
from external button clicks.

To implement the response to Button taps, the PowersviewModel class defines two properties of
type ICommand, named IncreaseExponentCommand and DecreaseExponentCommand. Again, both
properties have private set accessors. As you can see, the constructor sets these two properties by in-
stantiating Command objects that reference little private methods immediately following the construc-
tor. These two little methods are called when the Execute method of Command is called. The View-
Model uses the Command class rather than Command<T> because the program doesn't make use of any

Chapter 18 MVVM

argument to the Execute methods:

class PowersViewModel : ViewModelBase

{

double exponent, power;

public PowersViewModel(double baseValue)

{
// Initialize properties.
BaseValue = baseValue;
Exponent = 0;
// Initialize ICommand properties.
IncreaseExponentCommand = new Command(ExecuteIncreaseExponent);
DecreaseExponentCommand = new Command(ExecuteDecreaseExponent);
}
void ExecutelIncreaseExponent()
{
Exponent += 1;
}
void ExecuteDecreaseExponent()
{
Exponent -= 1;
}

public double BaseValue { private set; get; }

public double Exponent

{
private set
{
if (SetProperty(ref exponent, value))
{
Power = Math.Pow(BaseValue, exponent);
}
}
get
{
return exponent;
}
}
public double Power
{
private set { SetProperty(ref power, value); }
get { return power; }
}

public ICommand IncreaseExponentCommand { private set; get; }

public ICommand DecreaseExponentCommand { private set; get; }

520

Chapter 18 MVVM 521

TheExecuteIncreaseExponentandExecuteDecreaseExponentIﬂeﬂmdsb0ﬂ1makeachange
to the Exponent property (which fires a PropertyChanged event), and the Exponent property recal-
culates the Power property, which also fires a PropertyChanged event.

Very often a ViewModel will instantiate its Command objects by passing lambda functions to the
Command constructor. This approach allows these methods to be defined right in the ViewModel con-
structor, like so:

IncreaseExponentCommand = new Command(() =>

{
Exponent += 1;
s
DecreaseExponentCommand = new Command(() =>
{
Exponent -= 1;
b;

The PowersOfThreePage XAML file binds the Text properties of three Label elements to the
BaseValue, Exponent, and Power properties of the PowersviewModel class, and binds the Command
properties of the two Button elements to the IncreaseExponentCommand and DecreaseExpo-
nentCommand properties of the ViewModel.

Notice how an argument of 3 is passed to the constructor of PowersviewModel as it is instantiated
in the Resources dictionary. Passing arguments to ViewModel constructors is the primary reason for
the existence of the x:Arguments tag:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:local="clr-namespace:PowersOfThree"
x:Class="PowersOfThree.PowersOfThreePage">

<ContentPage.Resources>
<ResourceDictionary>
<local:PowersViewModel x:Key="viewModel">
<x:Arguments>
<x:Double>3</x:Double>
</x:Arguments>
</Tlocal:PowersViewModel>
</ResourceDictionary>
</ContentPage.Resources>

<StackLayout BindingContext="{StaticResource viewModel}">
<StackLayout Orientation="Horizontal"
Spacing="0"
HorizontalOptions="Center"
VerticalOptions="CenterAndExpand">
<Label FontSize="Large"
Text="{Binding BaseValue, StringFormat='{0}'}" />

<Label FontSize="Small"
Text="{Binding Exponent, StringFormat='{0}'}" />

Chapter 18 MVVM 522

<Label FontSize="Large"
Text="{Binding Power, StringFormat=' = {0}'}" />
</StackLayout>

<StackLayout Orientation="Horizontal"
VerticalOptions="CenterAndExpand">

<Button Text="Increase"
Command="{Binding IncreaseExponentCommand}"
HorizontalOptions="CenterAndExpand" />

<Button Text="Decrease"
Command="{Binding DecreaseExponentCommand}"
HorizontalOptions="CenterAndExpand" />
</StackLayout>
</StackLayout>
</ContentPage>

Here's what it looks like after several presses of one button or the other:

QEa 9 % w4034

370 = 1.69350878084303E-05

INCREASE DECREASE
Decrease

Once again, the wisdom of separating the user interface from the underlying business logic is re-
vealed when the time comes to change the View. For example, suppose you want to replace the but-
tons with an element with a TapGestureRecognizer. Fortunately, TapGestureRecognizer has a
Command property:

<StackLayout Orientation="Horizontal"
VerticalOptions="CenterAndExpand">

<Frame OutlineColor="Accent"
BackgroundColor="Transparent"

Chapter 18 MVVM 523

Padding="20, 40"

HorizontalOptions="CenterAndExpand">
<Frame.GestureRecognizers>

<TapGestureRecognizer Command="{Binding IncreaseExponentCommand}" />
</Frame.GestureRecognizers>

<Label Text="Increase"
FontSize="Large" />
</Frame>

<Frame OutlineColor="Accent"
BackgroundColor="Transparent"
Padding="20, 40"
HorizontalOptions="CenterAndExpand">
<Frame.GestureRecognizers>
<TapGestureRecognizer Command="{Binding DecreaseExponentCommand}" />
</Frame.GestureRecognizers>

<Label Text="Decrease"
FontSize="Large" />
</Frame>
</StackLayout>

Without touching the ViewModel or even renaming an event handler so that it applies to a tap ra-
ther than a button, the program works the same, but with a different look:

w403z

310 = 59049 R FEEIE 3" = 14348907

Increase Decrease

Increase Decrease

A calculator, almost

Now it's time to make a more sophisticated ViewModel with TCommand objects that have both Exe-
cute and CanExecute methods. The next program is almost like a calculator except that it only adds a

Chapter 18 MVVM 524

series of numbers together. The ViewModel is named AdderviewModel, and the program is called
AddingMachine.

Let's look at the screenshots first:

all 7
aries % 4128 P -

14243444546+ 74849410411+
124134144154+

3+46+9+12+15+18+21+24+27+30
+33+436+390+42+45+

At the top of the page you can see a history of the series of numbers that have already been en-
tered and added. This is a Label in a ScrollvView, so it can get rather long.

The sum of those numbers is displayed in the Entry view above the keypad. Normally, that Entry
view contains the number that you're typing in, but after you hit the big plus sign at the right of the
keypad, the Entry displays the accumulated sum and the plus sign button becomes disabled. You
need to begin typing another number for the accumulated sum to disappear and for the button with
the plus sign to be enabled. Similarly, the backspace button is enabled as soon as you begin to type.

These are not the only keys that can be disabled. The decimal point is disabled when the number
you're typing already has a decimal point, and all the number keys become disabled when the number
contains 16 characters. This is to avoid the number in the Entry from becoming too long to display.

The disabling of these buttons is the result of implementing the CanExecute method in the TCom-
mand interface.

The adderviewModel class is in the Xamarin.FormsBook.Toolkit library and derives from view-
ModelBase. Here is the part of the class with all the public properties and their backing fields:

public class AdderViewModel : ViewModelBase
{

string currentEntry = "0";

string historyString = "";

Chapter 18 MVVM 525

public string CurrentEntry

{
private set { SetProperty(ref currentEntry, value); }
get { return currentEntry; }

}

public string HistoryString

{
private set { SetProperty(ref historyString, value); }
get { return historyString; }

}

public ICommand ClearCommand { private set; get; }

public ICommand ClearEntryCommand { private set; get; }
public ICommand BackspaceCommand { private set; get; }
public ICommand NumericCommand { private set; get; }
public ICommand DecimalPointCommand { private set; get; }

public ICommand AddCommand { private set; get; }

All the properties have private set accessors. The two properties of type string are only set inter-
nally based on the key taps, and the properties of type 1Command are set in the AdderviewModel con-
structor (which you'll see shortly).

These eight public properties are the only part of AdderviewModel that the XAML file in the
AddingMachine project needs to know about. Here is that XAML file. It contains a two-row and two-
column main Grid for switching between portrait and landscape mode, and a Label, Entry, and 15
Button elements, all of which are bound to one of the eight public properties of the Adderview-
Model. Notice that the Command properties of all 10 digit buttons are bound to the NumericCommand
property and that the buttons are differentiated by the Commandparameter property. The setting of
this CommandParameter property is passed as an argument to the Execute and CanExecute
methods:
<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"

x:Class="AddingMachine.AddingMachinePage"
SizeChanged="0nPageSizeChanged">

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="10, 20, 10, 10"
Android="10"
WinPhone="10" />
</ContentPage.Padding>

Chapter 18 MVVM 526

<Grid x:Name="mainGrid">
<!-- Initialized for Portrait mode. -->
<Grid.RowDefinitions>
<RowDefinition Height="*" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="*"
<ColumnDefinition Width="0" />

</Grid.ColumnDefinitions>

<!-- History display. -->
<Scrol1View Grid.Row="0" Grid.CoTumn="0"
Padding="5, 0">
<Label Text="{Binding HistoryString}" />
</Scrol1View>

<!-- Keypad. -->
<Grid x:Name="keypadGrid"
Grid.Row="1" Grid.Column="0"
RowSpacing="2"
CoTumnSpacing="2"
WidthRequest="240"
HeightRequest="360"
VerticalOptions="Center"
HorizontalOptions="Center">
<Grid.Resources>
<ResourceDictionary>
<Style TargetType="Button">
<Setter Property="FontSize" Value="Large" />
<Setter Property="BorderWidth" Value="1" />
</Style>
</ResourceDictionary>
</Grid.Resources>

<Label Text="{Binding CurrentEntry}"
Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="4"
FontSize="Large"
LineBreakMode="HeadTruncation"
VerticalOptions="Center"
HorizontalTextAlignment="End" />

<Button Text="C"
Grid.Row="1" Grid.Column="0"
Command="{Binding ClearCommand}" />

<Button Text="CE"
Grid.Row="1" Grid.Column="1"
Command="{Binding ClearEntryCommand}" />

<Button Text="⇦"
Grid.Row="1" Grid.Column="2"
Command="{Binding BackspaceCommand}" />

Chapter 18

MVVM

<Button

<Button

<Button

<Button

<Button

<Button

<Button

<Button

<Button

<Button

<Button

Text="+
Grid.Row="1" Grid.Column="3" Grid.RowSpan="5"
Command="{Binding AddCommand}" />

Text="7"

Grid.Row="2" Grid.Column="0"
Command="{Binding NumericCommand}"
CommandParameter="7" />

Text="8"

Grid.Row="2" Grid.Column="1"
Command="{Binding NumericCommand}"
CommandParameter="8" />

Text="9"

Grid.Row="2" Grid.Column="2"
Command="{Binding NumericCommand}"
CommandParameter="9" />

Text="4"

Grid.Row="3" Grid.Column="0"
Command="{Binding NumericCommand}"
CommandParameter="4" />

Text="5"

Grid.Row="3" Grid.Column="1"
Command="{Binding NumericCommand}"
CommandParameter="5" />

Text="6"

Grid.Row="3" Grid.Column="2"
Command="{Binding NumericCommand}"
CommandParameter="6" />

Text="1"

Grid.Row="4" Grid.CoTumn="0"
Command="{Binding NumericCommand}"
CommandParameter="1" />

Text="2"

Grid.Row="4" Grid.Column="1"
Command="{Binding NumericCommand}"
CommandParameter="2" />

Text="3"

Grid.Row="4" Grid.Column="2"
Command="{Binding NumericCommand}"
CommandParameter="3" />

Text="0"

Grid.Row="5" Grid.Column="0" Grid.ColumnSpan="2"
Command="{Binding NumericCommand}"
CommandParameter="0" />

527

Chapter 18 MVVM

<Button Text="·"

Grid.Row="5" Grid.Column="2"
Command="{Binding DecimalPointCommand}" />

</Grid>

</Grid>
</ContentPage>

528

What you won't find in the XAML file is a reference to AdderviewModel. For reasons you'll see shortly,
AdderViewModel is instantiated in code.

The core of the adding-machine logic is in the Execute and CanExecute methods of the six TCom-
mand properties. These properties are all initialized in the AdderviewModel constructor shown below,

and the Execute and CanExecute methods are all lambda functions.

When only one lambda function appears in the Command constructor, that's the Execute method
(as the parameter name indicates), and the Button is always enabled. This is the case for ClearCom-

mand and ClearEntryCommand.

All the other command constructors have two lambda functions. The first is the Execute method,
and the second is the CanExecute method. The CanExecute method returns t rue if the Button

should be enabled and false otherwise.

All the 1command properties are set with the nongeneric form of the Command class except for Nu-

mericCommand, which requires an argument to the Execute and CanExecute methods to identify

which key has been tapped:

public class AdderViewModel

{

bool isSumDisplayed = false;
double accumulatedSum = 0;

public AdderViewModel()

{

ClearCommand = new Command(
execute: () =>

{
HistoryString = "";
accumulatedSum = 0;
CurrentEntry = "0";
isSumDisplayed = false;
RefreshCanExecutes();
b

ClearEntryCommand = new Command(
execute: () =>
{
CurrentEntry = "0";
isSumDisplayed = false;
RefreshCanExecutes();

s

: ViewModelBase

Chapter 18 MVVM 529

BackspaceCommand = new Command(
execute: () =>

{
CurrentEntry = CurrentEntry.Substring(0, CurrentEntry.Length - 1);
if (CurrentEntry.Length == 0)
{
CurrentEntry = "0";
}
RefreshCanExecutes();
},
canExecute: () =>
{
return !isSumDisplayed & & (CurrentEntry.Length > 1 || CurrentEntry[0] '= '0");
B;

NumericCommand = new Command<string>(
execute: (string parameter) =>

{
if (isSumDisplayed || CurrentEntry == "0")
CurrentEntry = parameter;
else
CurrentEntry += parameter;
isSumDisplayed = false;
RefreshCanExecutes();
1,
canExecute: (string parameter) =>
{
return isSumDisplayed || CurrentEntry.Length < 16;
s

DecimalPointCommand = new Command(
execute: () =>

{
if (isSumDisplayed)
CurrentEntry = "0.";
else
CurrentEntry += ".";
isSumDisplayed = false;
RefreshCanExecutes();
1,
canExecute: () =>
{
return isSumDisplayed || !CurrentEntry.Contains(".");
b;

AddCommand = new Command(
execute: () =>
{

double value = Double.Parse(CurrentEntry);

Chapter 18 MVVM 530

HistoryString += value.ToString() + " + ";
accumulatedSum += value;

CurrentEntry = accumulatedSum.ToString(Q);
isSumDisplayed = true;
RefreshCanExecutes();

i

canExecute: () =>

{

return !isSumDisplayed;
s
}

void RefreshCanExecutes()

{
((Command)BackspaceCommand) .ChangeCanExecute() ;
((Command)NumericCommand) .ChangeCanExecute();
((Command)DecimalPointCommand) .ChangeCanExecute();
((Command)AddCommand) .ChangeCanExecute();

All the Execute methods conclude by calling a method named RefreshCanExecute following
the constructor. This method calls the ChangeCanExecute method of each of the four Command ob-
jects that implement CankExecute methods. That method call causes the Command object to fire a
ChangeCanExecute event. Each Button responds to that event by making another call to the canEx-
ecute method to determine if the Button should be enabled or not.

It is not necessary for every Execute method to conclude with a call to all four ChangeCanExe-
cute methods. For example, the ChangeCanExecute method for the DecimalPointCommand need
not be called when the Execute method for NumericCommand executes. However, it turned out to be
easier—both in terms of logic and code consolidation—to simply call them all after every key tap.

You might be more comfortable implementing these Execute and CanExecute methods as regu-
lar methods rather than lambda functions. Or you might be more comfortable having just one Com-
mand object that handles all the keys. Each key could have an identifying CommandParameter string
and you could distinguish between them with a switch and case statement.

There are lots of ways to implement the commanding logic, but it should be clear that the use of
commanding tends to structure the code in a flexible and ideal way.

Once the adding logic is in place, why not add a couple of more buttons for subtraction, multiplica-
tion, and division?

Well, it's not quite so easy to enhance the logic to accept multiple operations rather than just one
operation. If the program supports multiple operations, then when the user types one of the operation
keys, that operation needs to be saved to await the next number. Only after the next number is com-
pleted (signaled by the press of another operation key or the equals key) is that saved operation
applied.

Chapter 18 MVVM 531

An easier approach would be to write a Reverse Polish Notation (RPN) calculator, where the opera-
tion follows the entry of the second number. The simplicity of RPN logic is one big reason why RPN cal-
culators appeal to programmers so much!

ViewModels and the application lifecycle

In a real calculator program on a mobile device, one important feature involves saving the entire state
of the calculator when the program is terminated, and restoring it when the program starts up again.

And once again, the concept of the ViewModel seems to break down.

Sure, it's possible to write some application code that accesses the public properties of the View-
Model and saves them, but the state of the calculator depends on private fields as well. The isSum-
Displayed and accumulatedsum fields of AdderviewModel are essential for restoring the calcula-
tor's state.

It's obvious that code external to the AdderviewModel can't save and restore the Adderview-
Model state without the ViewModel exposing more public properties. There's only one class that
knows what's necessary to represent the entire internal state of a ViewModel, and that’s the ViewModel
itself.

The solution is for the ViewModel to define public methods that save and restore its internal state.
But because a ViewModel should strive to be platform independent, these methods shouldn't use any-
thing specific to a particular platform. For example, they shouldn't access the Xamarin.Forms Applica-
tion object and then add items to (or retrieve items from) the Properties dictionary of that Appli-
cation object. That is much too specific to Xamarin.Forms.

However, working with a generic IDictionary object in methods named SaveState and Re-
storeState is possible in any .NET environment, and that's how AdderviewModel implements these
methods:

public class AdderViewModel : ViewModelBase

{

public void SaveState(IDictionary<string, object> dictionary)

{
dictionary["CurrentEntry"] = CurrentEntry;
dictionary["HistoryString"] = HistoryString;
dictionary["isSumDisplayed"] = isSumDisplayed;
dictionary["accumulatedSum"] = accumulatedSum;

}

public void RestoreState(IDictionary<string, object> dictionary)

{
CurrentEntry = GetDictionaryEntry(dictionary, "CurrentEntry", "0");
HistoryString = GetDictionaryEntry(dictionary, "HistoryString", "");

isSumDisplayed = GetDictionaryEntry(dictionary, "isSumDisplayed", false);

Chapter 18 MVVM 532

accumulatedSum = GetDictionaryEntry(dictionary, "accumulatedSum", 0.0);

RefreshCanExecutes();

public T GetDictionaryEntry<T>(IDictionary<string, object> dictionary,
string key, T defaultValue)

{
if (dictionary.ContainsKey(key))
return (T)dictionary[key];
return defaultValue;
}

The code in AddingMachine involved in saving and restoring this state is mostly implemented in
the app class. The App class instantiates the AdderviewModel and calls RestoreState using the
Properties dictionary of the current Application class. That AdderviewModel is then passed as an
argument to the AddingMachinePage constructor:

public class App : Application

{

AdderViewModel adderViewModel;

pubTic AppQ

{
// Instantiate and initialize ViewModel for page.
adderViewModel = new AdderViewModel(Q);
adderViewModel.RestoreState(Current.Properties);
MainPage = new AddingMachinePage(adderViewModel);

}

protected override void OnStart()

{
// Handle when your app starts.

}

protected override void OnSleep()

{
// Handle when your app sleeps.
adderViewModel.SaveState(Current.Properties);

}

protected override void OnResume()

{
// Handle when your app resumes.

}

}

The app class is also responsible for calling savestate on AddervViewModel during processing of the
OnSleep method.

The AddingMachinePage constructor merely needs to set the instance of AdderviewModel to the

Chapter 18 MVVM 533

page's BindingContext property. The code-behind file also manages the switch between portrait and
landscape layouts:

public partial class AddingMachinePage : ContentPage

{
public AddingMachinePage(AdderViewModel viewModel)

{

InitializeComponent();

// Set ViewModel as BindingContext.
BindingContext = viewModel;

3

void OnPageSizeChanged(object sender, EventArgs args)
{
// Portrait mode.
if (Width < Height)
{
mainGrid.RowDefinitions[1].Height = GridlLength.Auto;
mainGrid.ColumnDefinitions[1].Width = new GridLength(0, GridUnitType.Absolute);

Grid.SetRow(keypadGrid, 1);
Grid.SetColumn(keypadGrid, 0);
}
// Landscape mode.
else

{
mainGrid.RowDefinitions[1].Height = new GridLength(0, GridUnitType.Absolute);
mainGrid.ColumnDefinitions[1].Width = GridlLength.Auto;

Grid.SetRow(keypadGrid, 0);
Grid.SetColumn(keypadGrid, 1);

The AddingMachine program demonstrates one way to handle the ViewModel, but it's not the
only way. Alternatively, it's possible for App to instantiate the adderviewModel but define a property
of type AdderviewModel that the constructor of AddingMachinePage can access.

Or, if you want the page to have full control over the ViewModel, you can do that as well. Adding-
MachinePage can define its own onSleep method that is called from the onsleep method in the app
class, and the page class can also handle the instantiation of AdderviewModel and the calling of the
RestoreState and saveState methods. However, this approach might become somewhat clumsy
for multipage applications.

In a multipage application, you might have separate ViewModels for each page, perhaps deriving
from a ViewModel with properties applicable to the entire application. In such a case, you'll want to
avoid properties with the same name using the same dictionary keys for saving each ViewModel's
state. You can use more extensive dictionary keys that include the class name, for example, "Adder-
ViewModel.CurrentEntry”.

Chapter 18 MVVM 534

Although the power and advantages of data binding and ViewModels should be apparent by now,
these features really blossom when used with the Xamarin.Forms Listview. That's up in the next
chapter.

Chapter 19
Collection views

Many of the views in Xamarin.Forms correspond to basic C# and .NET data types: The sl1ider and
Stepper are visual representations of a double, the Switch is a bool, and an Entry allows the user
to edit text exposed as a string. But can this correspondence also apply to collection types in C# and
.NET?

Collections of various sorts have always been essential in digital computing. Even the oldest of high-
level programming languages support both arrays and structures. These two archetypal collections
complement each other: An array is a collection of values or objects generally of the same type, while a
structure is an assemblage of related data items generally of a variety of types.

To supplement these basic collection types, .NET added several useful classes in the System.Col-
lections and System.Collections.Generic namespaces, most notably List and List<T>, which
are expandable collections of objects of the same type. Underlying these collection classes are three
important interfaces that you'll encounter in this chapter:

e IEnumerable allows iterating through the items in a collection.
e ICollection derives from IEnumerable and adds a count of the items in the collection.

e IList derives from ICollection and supports indexing as well as adding and removing

items.

Xamarin.Forms defines three views that maintain collections of various sorts, sometimes also allow-
ing the user to select an item from the collection or interact with the item. The three views discussed in

this chapter are:

e Ppicker:A list of text items that lets the user choose one. The Picker usually maintains a short
list of items, generally no more than a dozen or so.

e ListView: Very often a long list of data items of the same type rendered in a uniform (or
nearly uniform) manner that is specified by a visual tree described by an object called a cell.

e TableView: A collection of cells, usually of various sorts, to display data or to manage user in-
put. A TableView might take the form of a menu, or a fill-out form, or a collection of applica-

tion settings.
All three of these views provide built-in scrolling.

At first encounter these three views might seem somewhat similar. The purpose of this chapter is to
provide enough examples of how these views are used so that you shouldn’t have any difficulty choos-
ing the right tool for the job.

Chapter 19 Collection views 536

Both Picker and ListView allow selection, but Picker is restricted to strings, while Listview
can display any object rendered in whatever way you want. Picker is generally a short list, while
ListView can maintain must longer lists.

The relationship between ListView and TableView is potentially confusing because both involve
the use of cells, which are derivatives of the cel1 class. Cel1 derives from Element but not visu-
alElement. A cell is not a visual element itself, but instead provides a description of a visual element.
These cells are used by ListView and TableView in two different ways: Listview generally displays
a list of objects of the same type, the display of which is specified by a single cell. A Tableview is a
collection of multiple cells, each of which displays an individual item in a collection of related items.

If you like to equate Xamarin.Forms views with C# and .NET data types, then:
e Picker is a visual representation of an array of string.

e ListView is a more generalized array of objects, often a List<T> collection. The individual
items in this collection often implement the INotifyPropertyChanged interface.

e Tableview could be a structure, but it is more likely a class, and possibly a class that imple-
ments INotifyPropertyChanged, otherwise known as a ViewModel.

Let's begin with the simplest of these three, which is the Picker.

Program options with Picker

Picker is a good choice when you need a view that allows the user to choose one item among a small
collection of several items. Picker is implemented in a platform-specific manner and has the limita-
tion that each item is identified solely by a text string.

The Picker and event handling

Here's a program named PickerDemo that implements a Picker to allow you to choose a specialized
keyboard for an Entry view. In the XAML file, the Entry and the Picker are children of a StackLay-
out, and the Picker is initialized to contain a list of the various keyboard types supported by the
Keyboard class:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="PickerDemo.PickerDemoPage">
<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0s="0, 20, 0, 0" />
</ContentPage.Padding>

<StackLayout Padding="20"
Spacing="50">

Chapter 19 Collection views 537

<Entry x:Name="entry"
Placeholder="Type something, type anything" />

<Picker Title="Keyboard Type"
SelectedIndexChanged="0nPickerSelectedIndexChanged">
<Picker.Items>

<X:
<X:
<X:
<X:
<X:
<X:
<X:

String>Default</x:String>
String>Text</x:String>
String>Chat</x:String>
String>Url</x:String>
String>Email</x:String>
String>Telephone</x:String>
String>Numeric</x:String>

</Picker.Items>

</Picker>
</StackLayout>
</ContentPage>

The program sets two properties of Picker: The Title property is a string that identifies the function
of the Picker. The Items property is of type IList<string>, and generally you initialize it with a list
of x:String tags in the XAML file. (Picker has no content property attribute, so the explicit
Picker.Items tags are required.) In code, you can use the Add or Insert method defined by
IList<string> to put string items into the collection.

Here's what you'll see when you first run the program:

3O w4050

Keyboard Type

The visual representation of the Picker is quite similar to the Entry but with the Tit1e property
displayed. Tapping the Picker invokes a platform-specific scrollable list of items:

Chapter 19 Collection views 538

Default

Text

Chat

Keyboard Type

urd
Email
Telephone

Telephone

Numeric

When you press Done on the iOS screen, or OK on the Android screen, or just tap an item on the
Windows list, the Picker fires a SelectedIndexChanged event. The SelectedIndex property of
Picker is a zero-based number indicating the particular item the user selected. If no item is selected—
which is the case when the Picker is first created and initialized—sSelectedIndex equals —1.

The PickerDemo program handles the SselectedIndexChanged event in the code-behind file. It
obtains the SelectedIndex from the Picker, uses that number to index the Ttems collection of the
Picker, and then uses reflection to obtain the corresponding Keyboard object, which it sets to the
Keyboard property of the Entry:

public partial class PickerDemoPage : ContentPage

{
public PickerDemoPage()
{
InitializeComponent();
}

void OnPickerSelectedIndexChanged(object sender, EventArgs args)

{
if (entry == null)
return;

Picker picker = (Picker)sender;
int selectedIndex = picker.SelectedIndex;

if (selectedIndex == -1)
return;

string selectedItem = picker.Items[selectedIndex];
PropertyInfo propertyInfo = typeof(Keyboard).GetRuntimeProperty(selectedItem);

Chapter 19 Collection views 539

entry.Keyboard = (Keyboard)propertyInfo.GetValue(null);

At the same time, the interactive Picker display is dismissed, and the Picker now displays the se-
lected item:

Keyboard Type

Telephone
: Numeric

On iOS and Android, the selection replaces the Title property, so in a real-life program you might
want to provide a simple Label on these two platforms to remind the user of the function of the

Picker.

You can initialize the Picker to display a particular item by setting the SelectedIndex property.
However, you must set SelectedIndex after filling the Items collection, so you'll probably do it from
code or use property-element syntax:

<Picker Title="Keyboard Type"

SelectedIndexChanged="0nPickerSelectedIndexChanged">

<Picker.Items>
<x:String>Default</x:String>
<x:String>Text</x:String>
<x:String>Chat</x:String>
<x:String>Url</x:String>
<x:String>Email</x:String>
<x:String>Telephone</x:String>
<x:String>Numeric</x:String>

</Picker.Items>

<Picker.SelectedIndex>
6
</Picker.SelectedIndex>

Chapter 19 Collection views 540

</Picker>

Data binding the Picker

The Items property of Picker is not backed by a bindable property; hence, it cannot be the target of
a data binding. You cannot bind a collection to a pPicker. If you need that facility, you'll probably want
to use ListView instead.

On the other hand, the selectedIndex property of the Picker is backed by a BindableProp-
erty and has a default binding mode of Twoway. This seems to suggest that you can use selected-
Index in a data binding, and that is true. However, an integer index is usually not what you want in a
data binding.

Even if Picker had a SelectedItem property that provided the actual item rather than the index
of the item, that wouldn’t be optimum either. This hypothetical SelectedItem property would be of
type string, and usually that's not very useful in data bindings either.

After contemplating this problem—and perhaps being exposed to the Listview coming up next—
you might try to create a class named BindablePicker that derives from Picker. Such a class could
have an ObjectItems property of type IList<object> and a SelectedItem property of type ob-
ject. However, without any additional information, this BindablePicker class would be forced to
convert each object in the collection to a string for the underlying Picker, and the only generalized
way to convert an object to a string is with the object's Tostring method. Perhaps the string obtained
from Tostring is useful; perhaps not. (You'll see shortly how the Listview solves this problem in a
very flexible manner.)

Perhaps a better solution for data binding a Picker is a value converter that converts between the
SelectedIndex property of the Picker and an object corresponding to each text string in the Ttems
collection. To accomplish this conversion, the value converter can maintain its own collection of objects
that correspond to the strings displayed by the Picker. This means that you'll have two lists associated
with the Picker—one list of strings displayed by the picker and another list of objects associated
with these strings. These two lists must be in exact correspondence, of course, but if the two lists are
defined close to each other in the XAML file, there shouldn’t be much confusion, and the scheme will
have the advantage of being very flexible.

Such a value converter might be called IndexToObjectConverter.

Or maybe not. In the general case, you'll want the selectedIndex property of the Picker to be
the target of the data binding. If SelectedIndex is the data-binding target, then the picker can be
used with a ViewModel as the data-binding source. For that reason, the value converter is better
named ObjectToIndexConverter. Here's the class in the Xamarin.FormsBook.Toolkit library:
using System;
using System.Collections.Generic;

using System.Globalization;
using Xamarin.Forms;

Chapter 19 Collection views

namespace Xamarin.FormsBook.Toolkit

{

[ContentProperty("Items")]
public class ObjectToIndexConverter<T> : IValueConverter

{

public IList<T> Items { set; get; }

public ObjectToIndexConverter()
{

Items = new List<T>(Q);

public object Convert(object value, Type targetType,
object parameter, CultureInfo culture)

{
if (value == null || !'(value is T) || Items == null)
return -1;
return Items.IndexOf((T)value);
}

public object ConvertBack(object value, Type targetType,
object parameter, CultureInfo culture)

{
int index = (int)value;
if (index < 0 || Items == null || index >= Items.Count)
return null;
return Items[index];
}

541

This is a generic class, and it defines a public Ttems property of type 11ist<T>, which is also de-
fined as the content property of the converter. The Convert method assumes that the value parame-
ter is an object of type T and returns the index of that object within the collection. The ConvertBack

method assumes that the value parameter is an index into the Items collection and returns that
object.

The PickerBinding program uses the ObjectToIndexConverter to define a binding that allows a
picker to be used for selecting a font size for a Label. The Picker is the data-binding target and the
FontSize property of the Label is the source. The Binding object is instantiated in element tags to
allow the ObjectToIndexConverter to be instantiated and initialized locally and provide an easy vis-
ual confirmation that the two lists correspond to the same values:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"

xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:toolkit=

"clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

x:Class="PickerBinding.PickerBindingPage">

Chapter 19 Collection views 542

<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0s="0, 20, 0, 0" />
</ContentPage.Padding>

<StackLayout Padding="20"
Spacing="50">

<Label x:Name="Tabel"
Text="Sample Text"
FontSize="16" />

<Picker Title="Font Size">

<Picker.Items>
<x:String>Font Size = 8</x:String>
<x:String>Font Size = 10</x:String>
<x:String>Font Size = 12</x:String>
<x:String>Font Size = 14</x:String>
<x:String>Font Size = 16</x:String>
<x:String>Font Size = 20</x:String>
<x:String>Font Size = 24</x:String>
<x:String>Font Size = 30</x:String>

</Picker.Items>

<Picker.SelectedIndex>
<Binding Source="{x:Reference Tlabel}"
Path="FontSize">
<Binding.Converter>
<toolkit:0bjectToIndexConverter x:TypeArguments="x:Double">
<x:DoubTle>8</x:Double>
<x:DoubTe>10</x:Double>
<x:DoubTle>12</x:Double>
<x:DoubTle>14</x:Double>
<x:DoubTe>16</x:Double>
<x:DoubTe>20</x:Double>
<x:DoubTle>24</x:Double>
<x:DoubTe>30</x:Double>
</toolkit:0bjectToIndexConverter>
</Binding.Converter>
</Binding>
</Picker.SelectedIndex>
</Picker>
</StackLayout>
</ContentPage>

By maintaining separate lists of strings and objects, you can make the strings whatever you want. In
this case, they include some text to indicate what the number actually means. The Label itself is initial-
ized with a Fontsize setting of 16, and the binding picks up that value to display the corresponding
string in the Picker when the program first starts up:

Chapter 19 Collection views 543

Sample Text Sample Text

Font Size = 16 Font Size = 16 Font Size

Font Size = 16

The implementations of Picker on these three platforms should make it obvious that you don't
want to use the Picker for more than (say) a dozen items. It's convenient and easy to use, but for lots
of items, you want a view made for the job—a view that is designed to display objects not just as sim-
ple text strings but with whatever visuals you want.

Rendering data with ListView

Let's move to ListView, which is the primary view for displaying collections of items, usually of the
same type. The ListView always displays the items in a vertical list and implements scrolling if
necessary.

ListView is the only class that derives from Itemsview<T>, but from that class it inherits its most
important property: ItemsSource of type IEnumerable. To this property a program sets an enumer-
able collection of data, and it can be any type of data. For that reason, Listview is one of the back-
bones of the View part of the Model-View-ViewModel architectural pattern.

ListView also supports single-item selection. The Listview highlights the selected item and
makes it available as the selectedItem property. Notice that this property is named SelectedItem
rather than selectedIndex. The property is of type object. If no item is currently selected in the
ListView, the property is null. ListView fires an ItemSelected event when the selected item
changes, but often you'll be using data binding in connection with the SelectedItem property.

Chapter 19 Collection views 544

ListView defines more properties by far than any other single view in Xamarin.Forms. The discus-
sion in this chapter begins with the most important properties and then progressively covers the more
obscure and less common properties.

Collections and selections

The ListViewList program defines a ListView that displays 17 Xamarin.Forms color values. The
XAML file instantiates the Listview but leaves the initialization to the code-behind file:
<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ListViewList.ListViewListPage">
<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="10, 20, 10, 0"
Android="10, 0"
WinPhone="10, 0" />
</ContentPage.Padding>

<ListView x:Name="TistView" />
</ContentPage>

The bulk of this XAML file is devoted to setting a Padding so that the Listview doesn't extend to the
left and right edges of the screen. In some cases, you might want to set an explicit widthRequest for
the Listview based on the width of the widest item that you anticipate.

The TtemsSource property of ListView is of type TEnumerable, an interface implemented by
arrays and the List class, but the property is nul1 by default. Unlike the Picker, the Listview does
not provide its own collection object. That's your responsibility. The code-behind file of ListViewList
sets the TtemsSource property to an instance of List<Color> that is initialized with color values:

public partial class ListViewListPage : ContentPage

{
public ListViewListPage()
{
InitializeComponent();
TistView.ItemsSource = new List<Color>
{
Color.Aqua, Color.Black, Color.Blue, Color.Fuchsia,
Color.Gray, Color.Green, Color.Lime, Color.Maroon,
Color.Navy, Color.0live, Color.Pink, Color.Purple,
Color.Red, Color.Silver, Color.Teal, Color.White, Color.Yellow
};
}

Chapter 19 Collection views 545

When you run this program, you'll discover that you can scroll through the items and select one
item by tapping it. These screenshots show how the selected item is highlighted on the three
platforms:

LR R | al & (- 934
Grrier ® o7 A [Color: A=1, R=0, G=1, B=1, Hue=05,

[Color: A=1, R=0, G=1, B=1, Hue=0.5, Saturation=1, Luminosity=0.5]
[Color: A=1, R=0, G=0, B=0, Hue=0,

[Color: A=1, R=0, G=0, B=0, Hue=0, Sat Ul saturation=0, Luminosity=0]
[Color: A=1, R=0, G=0, B=1,

[Colar: A=1, R=0, G=0, B=1, Hue=0.686... Hue=0.666666686534882, Saturation=1,
Luminosity=0.5]

[Coler: A=1, R=1, G=0, B=1, Hue=0.833... [Color: A=1, R=1, G=0, B=1,
Hue=0.833333313465118, Saturation=1,
Luminosity=0.5]

[Color: A=1, R=0.501960813999176,
G=0.501960813999176, B=0.501960813999176,
Hue=0, Saturation=0,
Luminosity=0.501960813993176]
[Color: A=1, R=0.501960813899176, G... [Color: A=1, R=0, G=0.501960813999176, B=0,

Hue=0.333333343267441, Saturation=1,
[Colar: A=1, R=0, G=0, B=0.501960813... Luminosity=0.250980406999588]

[Color: A=1, R=0, G=1, B=0,
[Color: A=1, R=0.501960813999176, G.... Hue=0.333333343267441, Saturation=1,

{l Luminosity=0.5]

[Colar: A=1, R=1, G=0.4000000059604... |l (Color: A=1, R=0.501960813999176, G=0, B=0,
Hue=1, Saturation=1,
Luminosity=0.250980406999588]
[Color: A=1, R=0, G=0, B=0.501960813999176,
Hue=0.666666686534882, Saturation=1,

[Color: A=1, R=0.501960813999176, G...
[Color: A=1, R=0, G=0.5019608139991...

[Color: A=1, R=0, G=1, B=0, Hue=0.333..

[Color: A=1, R=0.501960813999176, G...

[Color: A=1, R=1, G=0, B=0, Hue=1, Sat

[Color: A=1, R=0.752941191196442, G... { Luminosity=0.250980406999588]
{ [Color: A=1, R=0.501960813999176,

. R=0, G=0.5019608139991...

Tapping an item also causes the ListView to fire both an ItemTapped and an Itemselected
event. If you tap the same item again, the ItemTapped event is fired again but not the Ttemselected
event. The TtemSelected event is fired only if the SelectedItem property changes.

Of course, the items themselves aren't very attractive. By default, the Listview displays each item
by calling the item’s Tostring method, and that's what you see in this Listview. But do not fret:
Much of the discussion about the Listview in this chapter focuses on making the items appear ex-
actly how you'd like!

The row separator

Look closely at the iOS and Android displays and you'll see a thin line separating the rows. You can
suppress the display of that row by setting the Separatorvisibility property to the enumeration
member SeparatorVisibility.None. The default is Separatorvisibility.Default, which
means that a separator line is displayed on the iOS and Android screens but not Windows Phone.

For performance reasons, you should set the separatorvisibility property before adding items
to the ListView. You can try this in the ListViewList program by setting the property in the XAML
file:

<ListView x:Name="TistView"
SeparatorVisibility="None" />

Chapter 19 Collection views

Here's how it looks:

Corrier %

[Color:

[Color:

[Color

[Color:
[Color:
[Color:
[Color:
[Color:

[Colar:

[Color:

[Color:
[Color:
[Color:

[Color:

You
ample:

<ListView x:Name="TistView"
SeparatorColor="Red" />

Now it shows up in red:

A=1, R=0, G=1, B=1, Hue=0.5, §

A=1, R=0, G=0, B=0, Hue=0, Sat...
A=1, R=0, G=0, B=1, Hue=0.686...

A=1, R=1, G=0, B=1, Hue=0.833...

A=1, R=0.501960813998176, G

A=1, R=0, G=0.5019608139991...
A=1, R=0, G=1, B=0, Hue=0.333...
A=1, R=0.501960813999176, G...
A=1, R=0, G=0, B=0.501960813...

A=1, R=0.501960813999176, G...

A=1, R=1, G=0.4000000059604.

A=1, R=0.501960813999176, G...
A=1, R=1, G=0, B=0, Hue=1, Sat...
A=1, R=0.762941191196442, G...

: A=1, R=0, G=0.50196081393991_

Saturation=0,

=0.501960813999176]

, R=0, G=0.501960813939176, B=0,
Hue=0.333333343267441, Saturation=1,
Luminosity=0.250980406999588]

[Color: A=1, R=0, G=1, B=0,
Hue=0.333333343267441, Saturation=1,
=0.5]

, R=0.501960813999176, G=0, B=0,
Hue=1, Saturation=1,

.250980406999588]

546

can also set the separator line to a different color with the SeparatorColor property; for ex-

Chapter 19 Collection views

Corrier % 10,08 AM

[Color: A=1, R=0, G=1, B=1, Hue=0.5, S

[Color: A=1, R=0, G=0, B=0, Hue=0, Sat.

[Color: A=1, R=0, G=0, B=1, Hue=0.686...
[Coler: A=1, R=1, G=0, B=1, Hue=0.833...
[Color: A=1, R=0.501960813998176, G...
[Color: A=1, R=0, G=0.5019608139991...
[Color: A=1, R=0, G=1, B=0, Hue=0.333..
[Color: A=1, R=0.501960813988176, ...

[Color: A=1, R=0, G=0, B=0.501960813...

[Color: A=1, R=0.501960813999176, G...

[Colar: A=1, R=1, G=0.4000000059604...
[Color: A=1, R=0.501960813999176, G...
[Colar: A=1, R=1, G=0, B=0, Hue=1, Sat...
[Color: A=1, R=0.752941191196442, G...

. R=0, G=0.5019608139991...

LA R

aill - 938
[Color: A=1, R=0, G=1, B=1, Hue=05,
Saturation=1, Luminosity=0.5]

[Color: A=1, R=0, G=0, B=0, Hue=0,
Saturation=0, Luminosity=0]

[Color: A=1, R=0, G=0, B=1,
Hue=0.666666686534882, Saturation=1,
Luminosity=0.5]

[Color: A=1, R=1, G=0, B=1,
Hue=0.833333313465118, Saturation=1,
Luminosity=0.5]

[Color: A=1, R=0.501960813999176,
G=0.501960813999176, B=0.501960813999176,
Hue=0, Saturation=0,
Luminosity=0.501960813999176]

[Color: A=1, R=0, G=0.501960813999176, B=0,
Hue=0.333333343267441, Saturation=1,
Luminosity=0.250980406999588]

[Color: A=1, R=0, G=1, B=0,
Hue=0.333333343267441, Saturation=1,
Luminasity=0.5]

[Color: A=1, R=0.501960813999176, G=0, B=0,
Hue=1, Saturation=1,
Luminosity=0.250980406999588]

[Color: A=1, R=0, G=0, B=0.501960813999176,
Hue=0.666666686534882, Saturation=1,
Luminosity=0.250980406999588]

[Color: A=1, R=0.501960813999176,

547

The line is rendered in a platform-specific manner. On iOS, that means it doesn’t extend fully to the
left edge of the Listview, and on the Windows platforms, that means that there's no separator line at

all.

Data binding the selected item

One approach to working with the selected item involves handling the ItemSelected event of the
ListView in the code-behind file and using the SelectedItem property to obtain the new selected
item. (An example is shown later in this chapter.) But in many cases you'll want to use a data binding
with the SelectedItem property. The ListViewArray program defines a data binding between the
SelectedItem property of the Listview with the Color property of a Boxview:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ListViewArray.ListViewArrayPage">
<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="10, 20, 10, 0"
Android="10, 0"
WinPhone="10, 0" />
</ContentPage.Padding>

<StackLayout>
<ListView x:Name="TistView"
SelectedItem="{Binding Source={x:Reference boxView},
Path=Color,
Mode=TwoWay}">
<ListView.ItemsSource>
<x:Array Type="{x:Type Color}">

Chapter 19 Collection views 548

<x:Static Member="Color.Aqua" />
<x:Static Member="Color.Black" />
<x:Static Member="Color.Blue" />
<x:Static Member="Color.Fuchsia" />
<x:Static Member="Color.Gray" />
<x:Static Member="Color.Green" />
<x:Static Member="Color.Lime" />
<x:Static Member="Color.Maroon" />
<Color>Navy</Color>
<Color>0Tive</Color>
<Color>Pink</Color>
<Color>Purple</Color>
<Color>Red</Color>
<CoTlor>Silver</Color>
<Color>Teal</Color>
<CoTlor>White</Color>
<CoTlor>Yellow</Color>
</x:Array>
</ListView.ItemsSource>
</ListView>

<BoxView x:Name="boxView"
Color="Lime"
HeightRequest="100" />

</StackLayout>
</ContentPage>

This XAML file sets the ItemsSource property of the Listview directly from an array of items.
ItemsSource is not the content property of Listview (in fact, Listview has no content property at
all), so you'll need explicit ListView. ItemsSource tags. The x:Array element requires a Type at-
tribute indicating the type of the items in the array. For the sake of variety, two different approaches of
specifying a Color value are shown. You can use anything that results in a value of type Color.

The ItemsSource property of ListView is always populated with objects rather than visual ele-
ments. For example, if you want to display strings in the ListView, use string objects from code or
x:String elements in the XAML file. Do not fill the TtemsSource collection with Label elements!

The Listview is scrollable, and normally when a scrollable view is a child of a StackLayout, a
VerticalOptions setting of Fill1AndExpand is required. However, the ListView itself sets its Hor-
izontalOptions and VerticalOptions properties to FillAndExpand.

The data binding targets the selectedItem property of the Listview from the Color property of
the Boxview. You might be more inclined to reverse the source and target property of that binding
like this:

<BoxView x:Name="boxView"
Color="{Binding Source={x:Reference listView},
Path=SelectedItem}"
HeightRequest="100" />

Chapter 19 Collection views 549

However, the selectedItem property of the ListView is null by default, which indicates that noth-
ing is selected, and the binding will fail with a Nul1ReferenceException. To make the binding on
the Boxview work, you would need to initialize the SelectedItem property of the Listview after
the items have been added:

<ListView x:Name="TistView">

<ListView.ItemsSource>
<x:Array Type="{x:Type Color}">

</x:Array>
</ListView.ItemsSource>

<ListView.SelectedItem>
<Color>Lime</Color>
</ListView.SelectedItem>
</ListView>

A better approach—and one that you'll be using in conjunction with MVVM—is to set the binding
on the selectedItem property of the Listview. The default binding mode for SelectedItemis
OneWayToSource, which means that the following binding sets the Color of the Boxview to whatever
item is selected in the Listview:
<ListView x:Name="TistView"

SelectedItem="{Binding Source={x:Reference boxView},
Path=Color}">

</ListView>

However, if you also want to initialize the selectedTtem property from the binding source, use a
TwoWay binding as shown in the XAML file in the ListViewArray program:

<StackLayout>
<ListView x:Name="TistView"
SelectedItem="{Binding Source={x:Reference boxView},
Path=Color,
Mode=TwoWay}">

</ListView>
<BoxView x:Name="boxView"
Color="Lime"
HeightRequest="100" />
</StackLayout>

You'll see that the “Lime” entry in the ListView is selected when the program starts up:

Chapter 19 Collection views

Corrier %

Tt AM
[Color: A=1, R=0.501960813993176, G...

[Color: A=1, R=0.752941191196442, G...
[Color: A=1, R=1, G=1, B=1, Hue=0, Sat....
[Color: A=1, R=0.501960813999176, G...
[Color: A=1, R=1, G=1, B=0, Hue=0.166...
[Color: A=1, R=0, G=0.5019608139991...
[Color: A=1, R=0, G=1, B=0, Hue=0.333...
[Colar: A=1, R=0, G=0.5019608139991...

[Color: A=1, R=0, G=1, B=1, Hue=0.5, S...

[Color: A=1, R=0, G=0, B=0.501960813.

[Color: A=1, R=0, G=0, B=1, Hue=0.666...

[Coler: A=1, R=0.501960813993176, G...

30 ®dianaz

ail "7

Hue=0, Saturation=0,
Luminasity=0.752941191196442]

[Color: A=1, R=1, G=1, B=1, Hue=0,
Saturation=0, Luminosity=1]

[Color: A=1, R=0.501960813999176,
G=0.501960813999176, B=0,
Hue=0.16666667163372, Saturation=1,
Luminosity=0.250980406999588]
[Color: A=1, R=1, G=1, B=0,
Hue=0.16666667163372, Saturation=1,
Luminosity=0.5]

[Color: A=1, R=0, G=0.501960813939176, B=0,
Hue=0.333333343267441, Saturation=1,
Luminasity=0.250980406999588]
[Coler: A=1, R=0, G=1, B=0,
Hue=0.333333343267441, Saturation=1,
Luminosity=0.5]

[Color: A=1, R=0, G=0.501960813999176,
B=0.501960813999176, Hue=0.5, Saturation=1,
Luminosity=0.250980406993588]
[Color: A=1, R=0, G=1, B=1, Hue=0.5,
Saturation=1, Luminosity=0.5]

550

[Color: A=1. R=1. G=0. B=1. Hue=0.833...

Actually, it's hard to tell whether that really is the “Lime"” entry without examining the RGB values. Alt-
hough the color structure defines a bunch of static fields with color names, Color values themselves
are not identifiable by name. When the data binding sets a Lime color value to the SelectedItem
property of the ListView, the Listview probably finds a match among its contents using the
Equals method of the Color structure, which compares the components of the two colors.

The improvement of the ListVview display is certainly a high priority!

If you examine the ListViewArray screen very closely, you'll discover that the Color items are not
displayed in the same order in which they are defined in the array. The ListViewArray program has
another purpose: to demonstrate that the Listview does not make a copy of the collection set to its
ItemsSource property. Instead, it uses that collection object directly as a source of the items. In the
code-behind file, after the InitializeComponent call returns, the constructor of ListviewArray-
Page performs an in-place array sort to order the items by Hue:

public partial class ListViewArrayPage : ContentPage
{

public ListViewArrayPage()

{

InitializeComponent();

Array.Sort<Color>((Color[])TistView.ItemsSource,
(Color colorl, Color color2) =>
{
if (colorl.Hue == color2.Hue)
return Math.Sign(colorl.Luminosity - color2.Luminosity);

return Math.Sign(colorl.Hue - color2.Hue);

DN

Chapter 19 Collection views 551

This sorting occurs after the TtemsSource property is set, which occurs when the XAML is parsed
by the InitializeComponent call, but before the Listview actually displays its contents during the
layout process.

This code implies that you can change the collection used by the Listview dynamically. However,
if you want a Listview to change its display when the collection changes, the Listview must some-
how be notified that changes have occurred in the collection that is referenced by its ITtemsSource

property.

Let's examine this problem in more detail.

The ObservableCollection difference

The ItemsSource property of ListView is of type IEnumerable. Arrays implement the IEnumera-
ble interface, and so do the List and List<T> classes. The List and List<T> collections are partic-
ularly popular for Listview because these classes can dynamically reallocate memory to accommo-
date a collection of almost any size.

You've seen that a collection can be modified after it's been assigned to the ItemsSource property
of a ListView. It should be possible to add items or remove items from the collection referenced by
ItemsSource, and for the Listview to update itself to reflect those changes.

Let's try it. This ListViewLogger program instantiates a Listview in its XAML file:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
x:Class="ListViewLogger.ListViewLoggerPage">
<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0s="10, 20, 10, 0"
Android="10, 0"
WinPhone="10, 0" />
</ContentPage.Padding>

<ListView x:Name="TistView" />
</ContentPage>

The code-behind file sets the TtemsSource property of the Listview to a List<DateTime> ob-
ject and adds a DateTime value to this collection every second:

public partial class ListViewLoggerPage : ContentPage

{
public ListViewLoggerPage()

{

InitializeComponent();

List<DateTime> 1ist = new List<DateTime>();

Chapter 19 Collection views 552

TistView.ItemsSource = list;

Device.StartTimer(TimeSpan.FromSeconds(1), () =>
{

Tist.Add(DateTime.Now);

return true;

b

When you first run this program, it will seem as if nothing is happening. But if you turn the phone
or emulator sideways, all the items that have been added to the collection since the program started
will be displayed. But you won't see any more until you turn the phone's orientation again.

What's happening? When the ListView needs to redraw itself—which is the case when you change
the orientation of the phone or emulator—it will use the current TEnumerable collection. (This is how
the ListViewArray program displayed the sorted array. The array was sorted before the Listview dis-
played itself for the first time.)

However, if the Listview does not need to redraw itself, there is no way for the Listview to know
when an item has been added to or removed from the collection. This is not the fault of Listview. It's
really the fault of the List class. The List and List<T> classes don't implement a notification mecha-
nism that signals the Listview when the collection has changed.

To persuade a ListView to keep its display updated with newly added data, we need a class very
much like List<T>, but which includes a notification mechanism.

We need a class exactly like ObservableCollection.

ObservableCollection is a.NET class. It is defined in the System.Collections.ObjectModel
namespace, and it implements an interface called INotifyCollectionChanged, which is defined in
the system.Collections.Specialized namespace. In implementing this interface, an Observa-
bleCollection fires a CollectionChanged event whenever items are added to or removed from
the collection, or when items are replaced or reordered.

How does Listview know that an ObservableCollection object is set to its ItemsSource
property? When the ItemsSource property is set, the ListVview checks whether the object set to the
property implements INotifyCollectionChanged. If so, the ListVview attaches a Collection-
Changed handler to the collection to be notified of changes. Whenever the collection changes, the
ListView updates itself.

The ObservableLogger program is identical to the ListViewLogger program except that it uses an
ObservableCollection<DateTime> rather than a List<DateTime> to maintain the collection:

public partial class ObservableloggerPage : ContentPage

{
public ObservablelLoggerPage()

{

InitializeComponent();

Chapter 19 Collection views 553

ObservableCollection<DateTime> Tist = new ObservableCollection<DateTime>();
TistView.ItemsSource = list;

Device.StartTimer(TimeSpan.FromSeconds(1), () =>
{

Tist.Add(DateTime.Now);

return true;

s
}
Now the Listview updates itself every second.

Of course, not every application needs this facility, and observableCollection is overkill for
those that don't. But it's an essential part of versatile Listview usage.

Sometimes you'll be working with a collection of data items, and the collection itself does not
change dynamically—in other words, it always contains the same objects—but properties of the indi-
vidual items change. Can the ListView respond to changes of that sort?

Yes it can, and you'll see an example later in this chapter. Enabling a ListVview to respond to prop-
erty changes in the individual items does not require ObservableCollection or INotifyCollec-
tionChanged. But the data items must implement INotifyPropertyChanged, and the ListView
must display the items using an object called a cell.

Templates and cells

The purpose of ListView is to display data. In the real world, data is everywhere, and we are com-
pelled to write computer programs to deal with this data. In programming tutorials such as this book,
however, data is harder to come by. So let's invent a little bit of data to explore Listview in more
depth, and if the data turns out to be otherwise useful, so much the better!

As you know, the colors supported by the Xamarin.Forms Color structure are based on the 16 col-
ors defined in the HTML 4.01 standard. Another popular collection of colors is defined in the Cascading
Style Sheets (CSS) 3.0 standard. That collection contains 147 named colors (seven of which are dupli-
cates for variant spellings) that were originally derived from color names in the X11 windowing system
but converted to camel case.

The NamedColor class included in the Xamarin.FormsBook.Toolkit library lets your Xama-
rin.Forms program get access to those 147 colors. The bulk of NamedColor is the definition of 147
public static read-only fields of type color. Only a few are shown in an abbreviated list toward the end
of the class:

public class NamedColor
{
// Instance members.
private NamedColor()

{

Chapter 19 Collection views 554

public string Name { private set; get; }
public string FriendlyName { private set; get; }
public Color Color { private set; get; }
public string RgbDisplay { private set; get; }

// Static members.

static NamedColor()

{
List<NamedColor> all = new List<NamedColor>();
StringBuilder stringBuilder = new StringBuilder();

// Loop through the public static fields of type Color.
foreach (FieldInfo fieldInfo in typeof(NamedColor).GetRuntimeFields ())
{
if (fieldInfo.IsPublic &&
fieldInfo.IsStatic &&
fieldInfo.FieldType == typeof (Color))

// Convert the name to a friendly name.
string name = fieldInfo.Name;
stringBuilder.Clear();

int index = 0;

foreach (char ch in name)

{
if (index != 0 && Char.IsUpper(ch))
{
stringBuilder.Append(' ');
}
stringBuilder.Append(ch);
index++;
}

// Instantiate a NamedColor object.
Color color = (Color)fieldInfo.GetValue(null);

NamedColor namedColor = new NamedColor

{
Name = name,
FriendlyName = stringBuilder.ToString(),
Color = color,
RgbDisplay = String.Format("{0:X2}-{1:X2}-{2:X2}",
(int) (255 * color.R),
(int) (255 * color.Q),
(int) (255 * color.B))
1

// Add it to the collection.
all.Add(namedColor);

Chapter 19 Collection views 555

3

all.TrimExcess(Q);
A1l = all;

public static IList<NamedColor> A1l { private set; get; }

// Color names and definitions from http://www.w3.org/TR/css3-color/

// (but with color names converted to camel case).

public static readonly Color AliceBlue = Color.FromRgb(240, 248, 255);
public static readonly Color AntiqueWhite = Color.FromRgb(250, 235, 215);
public static readonly Color Aqua = Color.FromRgb(0, 255, 255);

public static readonly Color WhiteSmoke = Color.FromRgb(245, 245, 245);
public static readonly Color Yellow = Color.FromRgb(255, 255, 0);
public static readonly Color YellowGreen = Color.FromRgb(154, 205, 50);

If your application has a reference to Xamarin.FormsBook.Toolkit and a using directive for the
Xamarin.FormsBook.Toolkit namespace, you can use these fields just like the static fields in the
Color structure. For example:

BoxView boxView = new BoxView

{

Color = NamedColor.Chocolate

b

You can also use them in XAML without too much more difficulty. If you have an XML namespace dec-
laration for the Xamarin.FormsBook.Toolkit assembly, you can reference NamedColor in an
x:Static markup extension:

<BoxView Color="{x:Static toolkit:NamedColor.CornflowerBlue}" />

But that's not all: In its static constructor, NamedColor uses reflection to create 147 instances of the
NamedColor class that it stores in a list that is publicly available from the static 211 property. Each in-
stance of the NamedColor class has a Name property, a Color property of type Color, a Friend-
lyName property that is the same as the Name except with some spaces inserted, and an RgbDisplay
property that formats the hexadecimal color values.

The NamedColor class does not derive from BindableObject and does not implement INotify-
PropertyChanged. Regardless, you can use this class as a binding source. That's because these prop-
erties remain constant after each NamedColor object is instantiated. Only if these properties later
changed would the class need to implement INotifyPropertyChanged to serve as a successful bind-
ing source.

The NamedColor.all property is defined to be of type IList<NamedColor>, SO we can set it to
the TtemsSource property of a Listview. This is demonstrated by the NaiveNamedColorList pro-
gram:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

Chapter 19 Collection views

xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:toolkit=

"clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

x:Class="NaiveNamedColorList.NaiveNamedColorListPage">
<ContentPage.Padding>
<OnPTatform x:TypeArguments="Thickness"

i0S="10, 20, 10, 0"
Android="10, 0"
WinPhone="10, 0" />

</ContentPage.Padding>

<ListView ItemsSource="{x:Static toolkit:NamedColor.A11}" />

</ContentPage>

556

Because this program accesses the NamedColor class solely from the XAML file, the program calls
Toolkit.Init from its App constructor.

You'll discover that you can scroll this list and select items, but the items themselves might be a little
disappointing, for what you'll see is a list of 147 fully qualified class names:

Corrier % 1417 M

Xamarin.FormsBook. Toolkit. NamedColor

Xamarin.FormsBook.Toolkit. NamedColor

Xamarin.FormsBook. Toolkit. NamedColor

Xamarin.FormsBook.Toolkit. NamedColor

Xamarin.FormsBook Toolkit NamedColor

Xamarin.FormsBook. Toolkit. NamedColor

Xamarin.FormsBook.Toolkit. NamedColor

Xamarin.FormsBook. Toolkit. NamedColor

Xamarin.FormsBook.Toolkit. NamedColor

Xamarin.FormsBook, Toolkit NamedColor

Xamarin_FormsBook Toolkit NamadColor

Xamarin.FormsBook. Toolkit.NamedColor

Xamarin.FormsBook.Toolkit. NamedColor

Xamarin.FormsBook, Toolkit NamedColor

Xamarin_FormsBook Toolkit. NamadColor

LRUR

[RBE]

il "7 - 546

Xamarin.FormsBook.Toolkit. MamedColor
Xamarin.FormsBook.Toolkit. MamedColor
Xamarin.FormsBook.Toolkit.NamedColor
Xamarin.FormsBook.Toolkit. NamedColor
Xamarin.FormsBook.Toolkit. NamedColor
Xamarin.FormsBook.Toolkit. NamedColor
Xamarin.FormsBook.Toolkit. NamedColor
Xamarin.FormsBook.Teolkit. NamedColor
Xamarin.FormsBook.Teolkit.NamedColor
Xamarin.FormsBook.Toolkit.NamedColor
Xamarin.FormsBook.Toolkit.NamedColor
Xamarin.FormsBook.Toolkit.NamedColor
Xamarin.FormsBook.Toolkit.NamedColor
Xamarin.FormsBook.Toolkit.NamedColor
Xamarin.FormsBook.Toolkit. MamedColor
Xamarin.FormsBook.Toolkit. NamedColor
Xamarin.FormsBook.Toolkit. NamedColor
Xamarin.FormsBook.Toolkit. NamedColor
Xamarin.FormsBook.Toolkit.NamedColor
Xamarin.FormsBook.Toolkit. MamedColor
Xamarin.FormsBook.Toolkit.NamedColor
Xamarin.FormsBook.Toolkit. NamedColor
Xamarin.FormsBook.Toolkit.NamedColor
Xamarin.FormsBook.Toolkit.NamedColor
Xamarin.FormsBook.Toolkit.NamedColor
Xamarin.FormsBook.Toolkit.NamedColor
Xamarin.FormsBook Toolkit.NamedColor

This might seem disappointing, but in your future real-life programming work involving Listview,

you'll probably cheer when you see something like this display because it means that you've success-
fully set TtemsSource to a valid collection. The objects are there. You just need to display them a little

better.

This particular Listview displays the fully qualified class name of NamedColor because

NamedColor does not define its own ToString method, and the default implementation of Tostring

displays the class name. One simple solution is to add a ToString method to NamedColor:

Chapter 19 Collection views 557

public override string ToString(Q)

{
return FriendlyName;

}
Now the Listview displays the friendly names of all the colors. Simple enough.

However, in real-life programming, you might not have the option to add code to your data classes
because you might not have access to the source code. So let's pursue solutions that are independent
of the actual implementation of the data.

ListView derives from ItemsView, and besides defining the TtemsSource property, ITtemsview
also defines a property named ItemTemplate Of type DataTemplate. The DataTemplate Object
gives you (the programmer) the power to display the items of your Listview in whatever way you
want.

When used in connection with ListView, the DataTemplate references a Cell class to render the
items. The cel1l class derives from Element, from which it picks up support for parent/child relation-
ships. But unlike view, Cel1 does not derive from visualElement. A Cell is more like a description
of a tree of visual elements rather than a visual element itself.

Here's the class hierarchy showing the five classes that derive from ce11:

Object
BindableObject
Element
Cell

TextCell — two Label views
ImageCell — derives from TextCell and adds an Tmage view
EntryCell — an Entry view with a Label
SwitchCell — a Switch with a Label
ViewCell — any View (likely with children)

The descriptions of ce11 types are conceptual only: For performance reasons, the actual composition
of a cel1 is defined within each platform.

As you begin exploring these cel1 classes and contemplating their use in connection with
ListView, you might question the relevance of a couple of them. But they're not all intended solely
for Listview. As you'll see later in this chapter, the cel11 classes also play a major role in the
TableView, where they are used in somewhat different ways.

The cel1 derivatives that have the most applicability to ListView are probably TextCell, Image-
cell, and the powerful viewCell, which lets you define your own visuals for the items.

Let's look at Textcell first, which defines six properties backed by bindable properties:

e Text of type string

Chapter 19 Collection views 558

e TextColor of type Color

e Detail oftype string

e DetailColor of type Color

e Command of type ICommand

[CommandParameter of type Object

The TextCell incorporates two Label views that you can set to two different strings and colors. The
font characteristics are fixed in a platform-dependent way.

The TextCellListCode program contains no XAML. Instead, it demonstrates how to use a TextCell
in code to display properties of all the NamedColor objects:

public class TextCelllListCodePage : ContentPage

{
public TextCellListCodePage()
{
// Define the DataTemplate.
DataTemplate dataTemplate = new DataTemplate(typeof(TextCell));
dataTemplate.SetBinding(TextCell.TextProperty, "FriendlyName™);
dataTemplate.SetBinding(TextCell.DetailProperty,
new Binding(path: "RgbDisplay", stringFormat: "RGB = {0}"));
// Build the page.
Padding = new Thickness(10, Device.OnPlatform(20, 0, 0), 10, 0);
Content = new ListView
{
ItemsSource = NamedColor.Al11,
ItemTemplate = dataTemplate
b
}
}

The first step in using a Cell in a ListView is to create an object of type DataTemplate:

DataTemplate dataTemplate = new DataTemplate(typeof(TextCell));
Notice that the argument to the constructor is not an instance of TextCell but the type of TextCell.

The second step is to call a SetBinding method on the DataTemplate object, but notice how
these SetBinding calls actually target bindable properties of the Textcell:
dataTemplate.SetBinding(TextCell.TextProperty, "FriendlyName");

dataTemplate.SetBinding(TextCell.DetailProperty,
new Binding(path: "RgbDisplay", stringFormat: "RGB = {0}"));

These setBinding calls are identical to bindings that you might set on a TextCell object, but at the
time of these calls, there are no instances of TextCel1 on which to set the bindings!

Chapter 19 Collection views 559

If you'd like, you can also set some properties of the TextCel1 to constant values by calling the
SetValue method of the DataTemplate class:

dataTemplate.SetValue(TextCell.TextColorProperty, Color.Blue);
dataTemplate.SetValue(TextCell.DetailColorProperty, Color.Red);

These setvalue calls are similar to calls you might make on visual elements instead of setting proper-
ties directly.

The setBinding and setvalue methods should be very familiar to you because they are defined
by BindableObject and inherited by very many classes in Xamarin.Forms. However, DataTemplate
does not derive from BindableObject and instead defines its own SetBinding and Setvalue
methods. The purpose of these methods is not to bind or set properties of the DataTemplate in-
stance. Because DataTemplate doesn't derive from BindableObject, it has no bindable properties of
its own. Instead, DataTemplate simply saves these settings in two internal dictionaries that are pub-
licly accessible through two properties that DataTemplate defines, named Bindings and values.

The third step in using a Ce11 with ListView is to set the DataTemplate object to the ItemTem-
plate property of the Listview:

Content = new ListView

{
ItemsSource = NamedColor.All,
ItemTemplate = dataTemplate
};

Here's what happens (conceptually anyway):

When the Listview needs to display a particular item (in this case, a NamedColor object), it in-
stantiates the type passed to the bataTemplate constructor, in this case a TextCel1. Any bindings or
values that have been set on the DataTemplate are then transferred to this TextCel1l. The Binding-
Context of each TextCel1 is set to the particular item being displayed, which in this case is a particu-
lar NamedColor object, and that's how each item in the Listview displays properties of a particular
NamedColor object. Each TextCell is a visual tree with identical data bindings, but with a unique
BindingContext setting. Here's the result:

Chapter 19 Collection views

mier %
Alice Blue
P s

Antique White
E L
Aqua
e
Aquamarine
RGE - 7F-FF-D4
Azure
.
Beige
e
Bisque
REE - FFE
Black
5
Blanched Almond
REGE - FFE

Blue
E

Blue Violet
B - 64-28F

Brown
:

Burlywood

R - OF

Cadet Blus
.

Chartreuse

w4022

-Bb-Ut
Dark Gray
RGB = AS-A9-AG
Dark Green
RGB = 00-64-00
Dark Grey
RGB = A9-A9-A9
Dark Khaki
RGB = BD-B7-6B
Dark Magenta
RGE = 8B-00-8B
Dark Olive Green
RGEB = 55-6B-2F
Dark Orange
RGE = FF-BC-00
Dark Orchid
RGB = 99-32-CC
Dark Red
RGB = 88-00-00
Dark Salmon
RGB = E9-96-TA
Dark Sea Green
RGEB = 8F-BC-8F
Dark Slate Blue
RGE = 48-3D-8B
Dark Slate Gray
RGB = 2F-4F-4F
o G

560

- 10:01

In general, the Listview will not create all the visual trees at once. For performance purposes, it

will create them only as necessary as the user scrolls new items into view. You can get some sense of
this if you install handlers for the TtemAppearing and ItemDisappearing events defined by
ListView. You'll discover that these events don't exactly track the visuals—items are reported as ap-
pearing before they scroll into view, and are reported as disappearing after they scroll out of view—but
the exercise is instructive nevertheless.

You can also get a sense of what's going on with an alternative constructor for DataTemplate that
takes a Func object:

DataTemplate dataTemplate = new DataTemplate(() =>

{

return new TextCell(Q);

b

The Func object is called only as the TextCel1 objects are required for the items, although these calls
actually are made somewhat in advance of the items scrolling into view.

You might want to include code that actually counts the number of TextCel1 instances being cre-
ated and displays the result in the Output window of Visual Studio or Xamarin Studio:

int count = 0;
DataTemplate dataTemplate = new DataTemplate(() =>

{

System.Diagnostics.Debug.WriteLine("Text Cell Number
return new TextCell(Q);

+ (++count));

b

Chapter 19 Collection views 561

As you scroll down to the bottom, you'll discover that a maximum of 147 TextCel1l objects are cre-
ated for the 147 items in the Listview. The TextCell objects are cached, but not reused as items
scroll in and out of view. However, on a lower level—in particular, involving the platform-specific
TextCellRenderer objects and the underlying platform-specific visuals created by these renderers—
the visuals are reused.

This alternative DataTemplate constructor with the Func argument might be handy if you need to
set some properties on the cell object that you can't set using data bindings. Perhaps you've created a
ViewCell derivative that requires an argument in its constructor. In general, however, use the con-
structor with the Type argument or define the data template in XAML.

In XAML, the binding syntax somewhat distorts the actual mechanics used to generate visual trees
for the Listview items, but at the same time the syntax is conceptually clearer and visually more ele-
gant. Here's the XAML file from the TextCellListXaml program that is functionally identical to the
TextCellListCode program:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:toolkit=
"clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"
x:Class="TextCellListXaml.TextCellListXamlPage">
<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="10, 20, 10, 0"
Android="10, 0"
WinPhone="10, 0" />
</ContentPage.Padding>

<ListView ItemsSource="{x:Static toolkit:NamedColor.A11}">
<ListView.ItemTemplate>
<DataTemplate>
<TextCell Text="{Binding FriendlyName}"
Detail="{Binding RgbDisplay, StringFormat='RGB = {0}'}" />
</DataTemplate>
</ListView.ItemTemplate>
</ListView>
</ContentPage>

In XAML, set a DataTemplate to the TtemTemplate property of the Listview and define TextCell
as a child of DataTemplate. Then simply set the data bindings on the TextCell properties as if the
TextCell were a normal visual element. These bindings don't need Source settings because a Bind-
ingContext has been set on each item by the ListView.

You'll appreciate this syntax even more when you define your own custom cells.

Custom cells

One of the classes that derives from cel1l is named viewCell, which defines a single property named
View that lets you define a custom visual tree for the display of items in a ListView.

Chapter 19 Collection views 562

There are several ways to define a custom cell, but some are less pleasant than others. Perhaps the
greatest amount of work involves mimicking the existing Ce11 classes, which doesn't involve view-
Cell at all but instead requires that you create platform-specific cell renderers. You can alternatively
derive a class from viewCel1, define several bindable properties of that class similar to the bindable
properties of TextCell and the other cel1 derivatives, and define a visual tree for the cell in either
XAML or code, much as you would do for a custom view derived from Contentview. You can then use
that custom cell in code or XAML just like TextCell.

If you want to do the job entirely in code, you can use the DataTemplate constructor with the
Func argument and build the visual tree in code as each item is requested. This approach allows you to
define the data bindings as the visual tree is being built instead of setting bindings on the
DataTemplate.

But certainly the easiest approach is defining the visual tree and bindings of the cell right in XAML
within the Listview element. The CustomNamedColorList program demonstrates this technique.
Everything is in the XAML file:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmlns:toolkit=
"clr-namespace:Xamarin.FormsBook.TooTlkit;assembly=Xamarin.FormsBook.Toolkit"
x:Class="CustomNamedColorList.CustomNamedColorListPage">
<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="10, 20, 10, 0"
Android="10, 0"
WinPhone="10, 0" />
</ContentPage.Padding>

<ListView SeparatorVisibility="None"
ItemsSource="{x:Static toolkit:NamedColor.A11}">
<ListView.RowHeight>
<OnPlatform x:TypeArguments="x:Int32"

i0S="80"
Android="80"
WinPhone="90" />

</ListView.RowHeight>

<ListView.ItemTemplate>
<DataTemplate>
<ViewCell>
<ContentView Padding="5">
<Frame OutlineColor="Accent"
Padding="10">
<StackLayout Orientation="Horizontal">
<BoxView x:Name="boxView"
Color="{Binding Color}"
WidthRequest="50"
HeightRequest="50" />
<StackLayout>
<Label Text="{Binding FriendlyName}"

Chapter 19 Collection views 563

FontSize="22"
VerticalOptions="StartAndExpand" />
<Label Text="{Binding RgbDisplay, StringFormat='RGB = {0}'}"
FontSize="16"
VerticalOptions="CenterAndExpand" />
</StackLayout>
</StackLayout>
</Frame>
</ContentView>
</ViewCell>
</DataTemplate>
</ListView.ItemTemplate>
</ListView>
</ContentPage>

Within the DataTemplate property-element tags is a viewCell. The content property of view-
Cell is View, so you don't need viewCell.View tags. Instead, a visual tree within the viewCel1 tags
is implicitly set to the view property. The visual tree begins with a Contentview to add a little pad-
ding, then a Frame and a pair of nested StackLayout elements with a Boxview and two Label ele-
ments. When the ListView renders its items, the BindingContext for each displayed item is the item
itself, so the Binding markup extensions are generally very simple.

Notice that the RowHeight property of the ListVview is set with property element tags for plat-
form-dependent values. These values here were obtained empirically by trial and error, and result in
the following displays:

10:21 AM » |

- = | RGB = A5-2A-2A
Alice Blue |
RGB = FO-F8-FF i e

Burlywood

Antigue White RGB = DE-B8-87
RGE = FA-EB-D7

Aqua 00 Cadet Blue
RGB = 00-FF-FF . RGB = 5F-9E-AQ
. . Blanched Almond

Aguamarine
RGB = 7F-FF-D4 Chartreuse

RGB = 7F-FF-00

Azure
RGB = FO-FF-FF

Chocolate

Beige | RGE = D2-69-1E
RGB = F5-F5-DC } = BA-2B-EZ

Bisque
RGE = FF-£4-C4 6 RGB = FF-7F-50

Black - 4 |

urlywoo
RGE = 00-00-00 Il 5riyvood | Cornflower Blue
q (0] |

Throughout this book, you have seen several scrollable lists of colors, such as the ColorBlocks pro-
gram in Chapter 4, “Scrolling the stack,” and the ColorViewList program in Chapter 8, “Code and
XAML in harmony,” but | think you'll agree that this is the most elegant solution to the problem.

Chapter 19 Collection views 564

Explicitly setting the RowHeight property of the Listview is one of two ways to set the height of
the rows. You can experiment with another approach by removing the RowHeight setting and instead
setting the HasUnevenRows property to True. Here's a variation of the CustomNamedColorList pro-
gram:
<ListView SeparatorVisibility="None"

ItemsSource="{x:Static toolkit:NamedColor.A11}"
HasUnevenRows="True">

<ListView.ItemTemplate>

</ListView.ItemTemplate>
</ListView>

The HasUnevenRows property is designed specifically to handle cases when the heights of the cells
in the ListVview are not uniform. However, you can also use it for cases when all the cells are the same
height but you don’t know precisely what that height is. With this setting, the heights of the individual
rows are calculated based on the visual tree, and that height is used to space the rows. In this example,
the heights of the cells are governed by the heights of the two Label elements. The rows are just a lit-
tle different than the heights explicitly set from the RowHeight property:

10:37 M
Alice Blue | Blue Violet
RGE = FO-F8-FF SrereRe RGB = 8A-2B-E2

Antique White
RGB = FA-EB-D7

Agua
RGE = 00-FF-FF - e Burlywood

. RGB = DE-B8-87
Aquamarine

RGE = 7F-FF-D4

adet Blue
RGB = 5F-9E-AQ

Azure
RGB = FO-FF-FF

Beige d | Chartreuse
RGB = F5-F5-DC RGB = 7F-FF-00

Bisque S—
RGB = FF-E4-C4 T ’ Chocolate

RGBE = D2-69-1E

Black
RGE = 00-00-00

Although the HasUnevenRows property seems to provide an easier approach to sizing cell heights
than RowHeight, it does have a performance penalty and you should avoid it unless you need it.

But for iOS and Android, you must use one or the other of the two properties when defining a cus-
tom cell. Here's what happens when neither property is set:

Chapter 19 Collection views 565

T4 0104
10:40 AM

Alice Blue .
Alice Blue Alice Blue

-
‘)
W] ./ ntique White RGB = FO-F8-FF
J
1
J

Antique
RGE = FA-EB-D7
Agua

— Agqua

Antique White
— Aquamarine RGB = FA-EB-D7
-

RGB = 00-FF-FF

L Aguamarine J

(— RGB=JF-FF-DA |
Azure

Azure

[pe=rorr Aqua
| Beige J L] Beige
Bisque —

RGB = 00-FF-FF

RGEB = FF-E4-C4 sque ;
| — ok) Aquamarine
[ReB=gO-0000 | Black
Blanched Almand

RGB = FF-EB-CD
| — Be

RGB = 7F-FF-D4

S ;) anched Almond

J
J
[RGB = 00-00-FF Azure
B Bye Violet J RGE = FO-FF-FF
J
J
J

| RGB = BA-7B-E2
| - own

RGB = A5-2A-2A

Burlywood Beige

RGB = F5-F5-DC

(7GE - DE.B8-87
| W Cadet

W wood
< o]

{ RGB = 5F-9E-AD

Only the Windows platforms automatically use the rendered size of the visual tree to determine the
row height.

In summary, for best Listview performance, use one of the predefined cel1 classes. If you can't,
use ViewCell and define your own visual tree. Try your best to supply a specific RowHeight property
setting with viewCell. Use HasUnevenRows only when that is not possible.

Grouping the ListView items

It's sometimes convenient for the items in a Listview to be grouped in some way. For example, a
ListView that lists the names of a user’s friends or contacts is easily navigable if the items are in al-
phabetical order, but it's even more navigable if all the A’s, B's, C's, and so forth are in separate groups,
and a few taps are all that's necessary to navigate to a particular group.

The Listview supports such grouping and navigation.

As you've discovered, the object you set to the TtemsSource property of Listview must imple-
ment IEnumerable. This IEnumerable object is a collection of items.

When using ListView with the grouping feature, the IEnumerable collection you set to Items-
Source contains one item for each group, and these items themselves implement TEnumerable and
contain the objects in that group. In other words, you set the TtemsSource property of Listview to a
collection of collections.

One easy way for the group class to implement IEnumerable is to derive from List or Observa-
bleCollection, depending on whether items can be dynamically added to or removed from the col-
lection. However, you'll want to add a couple of other properties to this class: One property (typically

Chapter 19 Collection views 566

called Tit1e) should be a text description of the group. Another property is a shorter text description
that's used to navigate the list. Based on how this text description is used on Windows 10 Mobile, you
should keep this short text description to three letters or fewer.

For example, suppose you want to display a list of colors but divided into groups indicating the
dominant hue (or lack of hue). Here are seven such groups: grays, reds, yellows, greens, cyans, blues,
and magentas.

The NamedColorGroup class in the Xamarin.FormsBook.Toolkit library derives from
List<NamedColor> and hence is a collection of NamedColor objects. It also defines text Tit1le and
ShortName properties and a ColorShade property intended to serve as a pastel-like representative
color of the group:

public class NamedColorGroup : List<NamedColor>
{
// Instance members.
private NamedColorGroup(string title, string shortName, Color colorShade)
{
this.Title = title;
this.ShortName = shortName;
this.ColorShade = colorShade;

public string Title { private set; get; }
public string ShortName { private set; get; }
public Color ColorShade { private set; get; }
// Static members.

static NamedColorGroup()

{
// Create all the groups.
List<NamedColorGroup> groups = new List<NamedColorGroup>

{
new NamedColorGroup("Grays", "Gry", new Color(0.75, 0.75, 0.75)),
new NamedColorGroup("Reds", "Red", new Color(l, 0.75, 0.75)),
new NamedColorGroup("Yellows", "Yel", new Color(l, 1, 0.75)),
new NamedColorGroup("Greens", "Grn", new Color(0.75, 1, 0.75)),
new NamedColorGroup("Cyans", "Cyn", new Color(0.75, 1, 1)),
new NamedColorGroup("BTues", "Blu", new Color(0.75, 0.75, 1)),
new NamedColorGroup("Magentas", "Mag", new Color(l, 0.75, 1))

};

foreach (NamedColor namedColor in NamedColor.ATT)
{
Color color = namedColor.Color;
int index = 0;
if (color.Saturation != 0)

{
index = 1 + (int)((12 * color.Hue + 1) / 2) % 6;

Chapter 19 Collection views 567

}
groups[index] .Add(namedColor);

foreach (NamedColorGroup group in groups)

{

group.TrimExcess();

A1l = groups;

public static IList<NamedColorGroup> A1l { private set; get; }

A static constructor assembles seven NamedColorGroup instances and sets the static A11 property to
the collection of these seven objects.

The ColorGrouplList program uses this new class for its Listview. Notice that the ItemsSource is
set to NamedColorGroup.2All (a collection of seven items) rather than NamedColor.211 (a collection
of 147 items).

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmlns:toolkit=
"clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"
x:Class="ColorGroupList.ColorGroupListPage">
<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="10, 20, 10, 0"
Android="10, 0"
WinPhone="10, 0" />
</ContentPage.Padding>

<ListView ItemsSource="{x:Static toolkit:NamedColorGroup.AT1}"
IsGroupingEnabled="True"
GroupDisplayBinding="{Binding Title}"
GroupShortNameBinding="{Binding ShortName}">
<ListView.RowHeight>
<OnPlatform x:TypeArguments="x:Int32"
i0S="80"
Android="80"
WinPhone="90" />
</ListView.RowHeight>

<ListView.ItemTemplate>

<DataTemplate>
<ViewCell>

<ContentView Padding="5">

<Frame OutlineColor="Accent"
Padding="10">
<StackLayout Orientation="Horizontal">
<BoxView x:Name="boxView"

Chapter 19 Collection views 568

Color="{Binding Color}"
WidthRequest="50"
HeightRequest="50" />
<StackLayout>
<Label Text="{Binding FriendlyName}"
FontSize="22"
VerticalOptions="StartAndExpand" />
<Label Text="{Binding RgbDisplay, StringFormat='RGB = {0}'}"
FontSize="16"
VerticalOptions="CenterAndExpand" />
</StackLayout>
</StackLayout>
</Frame>
</ContentView>
</ViewCell>
</DataTemplate>
</ListView.ItemTemplate>
</ListView>
</ContentPage>

Setting IsGroupingEnabled to True is very important. Remove that (as well as the TtemTemplate
setting), and the ListView displays seven items identified by the fully qualified class name “Xama-
rin.FormsBook.Toolkit. NamedColorGroup”.

The GroupDisplayBinding property is a Binding referencing the name of a property in the
group items that contains a heading or title for the group. This is displayed in the Listview to identify
each group:

rrier % 10:61 AM

Reds

Brown
.nea:as-u-m Dark Blue
r RGB = 00-00-88

Chaocolate
RGB = D2-69-1E

Dark Slate Blue
RGB = 48-3D-88

Coral
RGB = FF-7F-50

. Crimson . Ghost White

RGB = DC-14-3C C F-FF-00 RGB = F8-F8-FF

Dark Red Dark Green
RGE = 88-00-00 Lavender

RGB = 00-64-00 RGB = E6-E6-FA

Dark Salmon =
RGB = E9-96-7A ark S .

, Light Steel Blue
Firebrick 3 RGB = BO-C4-DE
RGB = B2-22-22 at P

The GroupshortNameBinding property is bound to another property in the group objects that
displays a condensed version of the header. If the group headings are just the letters A, B, C, and so

Chapter 19 Collection views 569

forth, you can use the same property for the short names.

On the iPhone screen, you can see the short names at the right side of the screen. In iOS terminol-
ogy, this is called an index for the list, and tapping one moves to that part of the list.

On the Windows 10 Mobile screen, the headings incorrectly use the shortName rather than the Ti-
tle property. Tapping a heading goes to a navigation screen (called a jump list) where all the short
names are arranged in a grid. Tapping one goes back to the ListVview with the corresponding header
at the top of the screen.

Android provides no navigation.

Even though the Listview is now really a collection of NamedColorGroup objects, SelectedItem
is still a NamedColor object.

In general, if an TtemSelected handler needs to determine the group of a selected item, you can
do that “manually” by accessing the collection set to the TtemsSource property and using one of the
Find methods defined by List. Or you can store a group identifier within each item. The Tapped han-
dler provides the group as well as the item.

Custom group headers

If you don't like the particular style of the group headers that Xamarin.Forms supplies, there’s some-
thing you can do about it. Rather than setting a binding to the GroupDisplayBinding property, set a
DataTemplate to the GroupHeaderTemplate property:

<ListView ItemsSource="{x:Static toolkit:NamedColorGroup.A11}"
IsGroupingEnabled="True"
GroupShortNameBinding="{Binding ShortName}">

<ListView.GroupHeaderTempTlate>
<DataTemplate>
<ViewCell>
<Label Text="{Binding Title}"
BackgroundColor="{Binding ColorShade}"
TextCoTlor="Black"
FontAttributes="Bold,Italic"
HorizontalTextAlignment="Center"
VerticalTextAlignment="Center">
<Label.FontSize>
<OnPlatform x:TypeArguments="x:Double"
i0S="30"
Android="30"
WinPhone="45" />
</Label.FontSize>
</Label>
</ViewCell>
</DataTemplate>
</ListView.GroupHeaderTemplate>
</ListView>

Chapter 19 Collection views 570

Notice that the Label has a fixed text color of black, so the BackgroundColor property should be
set to something light that provides a good contrast with the text. Such a color is available from the
NamedColorGroup class as the ColorShade property. This allows the background of the header to
reflect the dominant hue associated with the group:

tSch F I RIEY

11:02 AM

Blues i | Grays

WU gl Ui

RGB = 19-19-70

RGB = FF-FF-FF

| RGE = 00-00-80 . White Smoke

. Royal Blue FAFA RGB = F5-F5-F5
RGB = 41-69-E1

RGB = 6A-5A-CD

Slate Blue l ‘ : 7 Reds

Magentas Brown
RGB = A5-2A-2A

Blue Violet
RGB = BA-2B-E2
Chocolate
Dark Magenta " RGE = D2-69-1E
RGB = 8B-00-88

Dark Orchid

Notice how the header for the topmost item remains fixed at the top on iOS and Windows 10 Mobile
and scrolls off the top of the screen only when another header replaces it.

ListView and interactivity

An application can interact with its ListView in a variety of ways: If the user taps an item, the
ListView fires an ItemTapped event and, if the item is previously not selected, also an Item-
Selected event. A program can also define a data binding by using the selectedItem property. The
ListView has a Scrol1To method that lets a program scroll the ListVview to make a particular item
visible. Later in this chapter you'll see a refresh facility implemented by Listview.

cell itself defines a Tapped event, but you'll probably use that event in connection with Table-
View rather than ListView. TextCell defines the same Command and CommandParameter proper-
ties as Button and ToolbarItem, but you'll probably use those properties in connection with
TableView as well. You can also define a context menu on a cell; this is demonstrated in the section
“Context menus” later in this chapter.

It is also possible for a ce11 derivative to contain some interactive views. The EntryCell and
SwitchCell allow the user to interact with an Entry or a Switch. You can also include interactive
views in a viewCell.

Chapter 19 Collection views

The InteractiveListView program contains in its XAML file a Listview named listView. The
code-behind file sets the TtemsSource property of that Listview to a collection of type List<Col-
orViewModel>, containing 100 instances of ColorviewModel—a class described in Chapter 18,
“MVVM,"” and which can be found in the Xamarin.FormsBook.Toolkit library. Each instance of co1-
orViewModel is initialized to a random color:

public partial class InteractivelListViewPage : ContentPage

{
public InteractivelListViewPage()
{
InitializeComponent();
const int count = 100;
List<ColorViewModel> colorList = new List<ColorViewModel>(count);
Random random = new Random();
for (int i = 0; i < count; i++)
{
ColorViewModel colorViewModel = new ColorViewModel();
colorViewModel.Color = new Color(random.NextDouble(),
random.NextDouble(),
random.NextDoubTe());
colorList.Add(colorViewModel);
}
TistView.ItemsSource = colorList;
}
}

The Listview in the XAML file contains a data template using a viewCell that contains three
Slider views, a BoxView, and a few Label elements to display the hue, saturation, and luminosity
values, all of which are bound to properties of the ColorviewModel class:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"
xmIns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmlns:toolkit=
"clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"
x:Class="InteractivelListView.InteractivelListViewPage">
<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0S="10, 20, 10, 0"
Android="10, 0"
WinPhone="10, 0" />
</ContentPage.Padding>

<ContentPage.Resources>
<ResourceDictionary>
<toolkit:ColorToContrastColorConverter x:Key="contrastColor" />
</ResourceDictionary>
</ContentPage.Resources>

<ListView x:Name="TistView"
HasUnevenRows="True">
<ListView.ItemTemplate>

Chapter 19

Collection views 572

<DataTemplate>
<ViewCell>
<Grid Padding="0, 5">
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="*" />
<ColumnDefinition Width="Auto" />

</Grid.ColumnDefinitions>

<STider Value="{Binding Hue, Mode=TwoWay}"
Grid.Row="0" Grid.Column="0" />

<STider Value="{Binding Saturation, Mode=TwoWay}"
Grid.Row="1" Grid.Column="0" />

<STider Value="{Binding Luminosity, Mode=TwoWay}"
Grid.Row="2" Grid.Column="0" />

<ContentView BackgroundColor="{Binding Color}"
Grid.Row="0" Grid.Column="1" Grid.RowSpan="3"
Padding="10">

<StackLayout Orientation="Horizontal"
VerticalOptions="Center">
<Label Text="{Binding Hue, StringFormat='{0:F2}, '}"
TextColor="{Binding Color,
Converter={StaticResource contrastColor}" />

<Label Text="{Binding Saturation, StringFormat='{0:F2}, '}"
TextColor="{Binding Color,
Converter={StaticResource contrastColor}" />

<Label Text="{Binding Luminosity, StringFormat='{0:F2}'}"
TextColor="{Binding Color,
Converter={StaticResource contrastColor}" />
</StackLayout>
</ContentView>

</Grid>
</ViewCell>
</DataTemplate>

</ListView.ItemTemplate>
</ListView>
</ContentPage>

The Label elements sit on top of the BoxView, so they should be made a color that contrasts with
the background. This is accomplished with the ColorToContrastColorConverter class (also in
Xamarin.FormsBook.Toolkit), which calculates the luminance of the color by using a standard for-
mula and then converts to Color.Black for a light color and Color.white for a dark color:

Chapter 19 Collection views

namespace Xamarin.FormsBook.Toolkit

{
public class ColorToContrastColorConverter : IValueConverter
{
public object Convert(object value, Type targetType,
object parameter, CultureInfo culture)
{
return ColorToContrastColor((Color)value);
}
public object ConvertBack(object value, Type targetType,
object parameter, CultureInfo culture)
{
return ColorToContrastColor((Color)value);
}
Color ColorToContrastColor(Color color)
{
// Standard Tuminance calculation.
double Tuminance = 0.30 * color.R +
0.59 * color.G +
0.11 * color.B;
return Tuminance > 0.5 ? Color.Black : Color.White;
}
}
}

Here's the result:

0.7, 0.82, 063
0.50, 0.25, 0.70

0.76, 0.83, 047

0.50, 0.56, 0.18

0.67, 0.56, 0.42

0.66, 0.85, 0.58 { 0.50, 0.84, 0.61

0.68, 0.31, 0.42
0.09, 0.98, 0.68

Each of the items independently lets you manipulate the three S1ider elements to select a new

573

Chapter 19 Collection views 574

color, and while this example might seem a little artificial, a real-life example involving a collection of
identical visual trees is not inconceivable. Even if there are just a few items in the collection, it might
make sense to use a ListView that displays all the items on the screen and doesn't scroll. Listview is
one of the most powerful tools that XAML provides to compensate for its lack of programming loops.

ListView and MVVM

ListView is one of the major players in the view part of the Model-View-ViewModel architecture.
Whenever a ViewModel contains a collection, a Listview generally displays the items.

A collection of ViewModels

Let's explore the use of Listview in MVVM with some data that more closely approximates a real-life
example. This is a collection of information about 65 fictitious students of the fictitious School of Fine
Art, including images of their overly spherical heads. These images and an XML file containing the stu-
dent names and references to the bitmaps are in a website at http://xamarin.github.io/xamarin-forms-
book-samples/SchoolOfFineArt. This website is hosted from the same GitHub repository as the source
code for this book, and the contents of the site can be found in the gh-pages branch of that reposi-
tory.

The Students.xml file at that site contains information about the school and students. Here's the be-
ginning and the end with abbreviated URLs of the photos.

<StudentBody xmIns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<Schoo1>School of Fine Art</School>
<Students>

<Student>
<FulTName>Adam Harmetz</FullName>
<FirstName>Adam</FirstName>
<MiddleName />
<LastName>Harmetz</LastName>
<Sex>Male</Sex>
<PhotoFilename>http://xamarin.github.io/.../.../AdamHarmetz.png</PhotoFilename>
<GradePointAverage>3.01</GradePointAverage>

</Student>

<Student>
<Ful1Name>ATlan Brewer</FullName>
<FirstName>Alan</FirstName>
<MiddleName />
<LastName>Brewer</LastName>
<Sex>Male</Sex>
<PhotoFilename>http://xamarin.github.io/.../.../AlanBrewer.png</PhotoFilename>
<GradePointAverage>1.17</GradePointAverage>

</Student>

<Student>

http://xamarin.github.io/xamarin-forms-book-samples/SchoolOfFineArt
http://xamarin.github.io/xamarin-forms-book-samples/SchoolOfFineArt
http://www.w3.org/2001/XMLSchema-instance

Chapter 19 Collection views 575

<FulTName>Tzipi Butnaru</FullName>
<FirstName>Tzipi</FirstName>
<MiddleName />
<LastName>Butnaru</LastName>
<Sex>Female</Sex>
<PhotoFiTlename>http://xamarin.github.io/.../.../TzipiButnaru.png</PhotoFilename>
<GradePointAverage>3.76</GradePointAverage>

</Student>

<Student>
<Ful1Name>Zrinka Makovac</FullName>
<FirstName>Zrinka</FirstName>
<MiddleName />
<LastName>Makovac</LastName>
<Sex>Female</Sex>
<PhotoFiTlename>http://xamarin.github.io/.../.../ZrinkaMakovac.png</PhotoFiTlename>
<GradePointAverage>2.73</GradePointAverage>

</Student>

</Students>
</StudentBody>

The grade point averages were randomly generated when this file was created.

In the Libraries directory among the source code for this book, you'll find a library project named
SchoolOfFineArt that accesses this XML file and uses XML deserialization to convert it into classes
named Student, StudentBody, and SchoolViewModel. Although the student and studentBody
classes don't have the words viewModel in their names, they qualify as ViewModels regardless.

The student class derives from vViewModelBase (a copy of which is included in the SchoolOfFine-
Art library) and defines the seven properties associated with each student element in the XML file. An
eighth property is used in a future chapter. The class also defines four additional properties of type
ICommand and a final property named studentBody. These final five properties are not set from the
XML deserialization, as the xm1Ignore attributes indicate:

namespace SchoolOfFineArt
{
public class Student : ViewModelBase
{
string fullName, firstName, middleName;
string TastName, sex, photoFilename;
double gradePointAverage;
string notes;

public Student()

{
ResetGpaCommand = new Command(() => GradePointAverage = 2.5m);
MoveToTopCommand = new Command(() => StudentBody.MoveStudentToTop(this));
MoveToBottomCommand = new Command(() => StudentBody.MoveStudentToBottom(this));
RemoveCommand = new Command(() => StudentBody.RemoveStudent(this));

}

public string FullName
{

Chapter 19 Collection views 576

set { SetProperty(ref fullName, value); }
get { return fullName; }

}

public string FirstName

{
set { SetProperty(ref firstName, value); }
get { return firstName; }

}

public string MiddleName

{
set { SetProperty(ref middleName, value); }
get { return middleName; }

}

public string LastName

{
set { SetProperty(ref lastName, value); }
get { return TlastName; }

}

public string Sex

{
set { SetProperty(ref sex, value); }
get { return sex; }

}

public string PhotoFilename

{
set { SetProperty(ref photoFilename, value); }
get { return photoFilename; }

}

public double GradePointAverage

{
set { SetProperty(ref gradePointAverage, value); }
get { return gradePointAverage; }

}

// For program in Chapter 25.

public string Notes

{
set { SetProperty(ref notes, value); }
get { return notes; }

// Properties for implementing commands.
[Xm1Ignore]
public ICommand ResetGpaCommand { private set; get; }

[Xm1Ignore]
public ICommand MoveToTopCommand { private set; get; }

Chapter 19 Collection views 577

}

[Xm1Ignore]
public ICommand MoveToBottomCommand { private set; get; }

[Xm1Ignore]
public ICommand RemoveCommand { private set; get; }

[Xm1Ignore]
public StudentBody StudentBody { set; get; }

The four properties of type ICommand are set in the student constructor and associated with short
methods, three of which call methods in the studentBody class. These will be discussed in more detail

later.

The studentBody class defines the School and Students properties. The constructor initializes
the students property as an ObservableCollection<Student> object. In addition, StudentBody
defines three methods called from the Student class that can remove a student from the list or move
a student to the top or bottom of the list:

namespace SchoolOfFineArt

{

public class StudentBody : ViewModelBase

{

string school;
ObservableCollection<Student> students = new ObservableCollection<Student>();

public string School

{
set { SetProperty(ref school, value); }
get { return school; }
}
public ObservableCollection<Student> Students
{
set { SetProperty(ref students, value); }
get { return students; }
}

// Methods to implement commands to move and remove students.
public void MoveStudentToTop(Student student)

{
Students.Move(Students.IndexOf(student), 0);
}
public void MoveStudentToBottom(Student student)
{
Students.Move(Students.IndexOf(student), Students.Count - 1);
}

public void RemoveStudent(Student student)
{

Students.Remove(student);

Chapter 19 Collection views

578

The schoolVviewModel class is responsible for loading the XML file and deserializing it. It contains a
single property named studentBody, which corresponds to the root tag of the XAML file. This prop-
erty is set to the StudentBody object obtained from the Deserialize method of the xmlserial-
izer class.

namespace SchoolOfFineArt

{

public class SchoolViewModel : ViewModelBase

{

StudentBody studentBody;
Random rand = new Random();

public SchoolViewModel() : this(null)
{
}

public SchoolViewModel(IDictionary<string, object> properties)
{
// Avoid problems with a null or empty collection.
StudentBody = new StudentBody(Q);
StudentBody.Students.Add(new Student());

string uri = "http://xamarin.github.io/xamarin-forms-book-samples" +
"/Schoo10fFineArt/students.xm1";

HttpWebRequest request = WebRequest.CreateHttp(uri);

request.BeginGetResponse((arg) =>

{
// Deserialize XML file.
Stream stream = request.EndGetResponse(arg).GetResponseStream();
StreamReader reader = new StreamReader(stream);
XmlSerializer xml = new XmlSerializer(typeof(StudentBody));
StudentBody = xml.Deserialize(reader) as StudentBody;

// Enumerate through all the students
foreach (Student student in StudentBody.Students)

{
// Set StudentBody property in each Student object.
student.StudentBody = StudentBody;
// Load possible Notes from properties dictionary
// (for program in Chapter 25).
if (properties != null && properties.ContainsKey(student.FullName))
{
student.Notes = (string)properties[student.FullName];
}
}

}, null);

Chapter 19 Collection views 579

// Adjust GradePointAverage randomly.
Device.StartTimer(TimeSpan.FromSeconds(0.1),

O =
{
if (studentBody != null)
{
int index = rand.Next(studentBody.Students.Count);
Student student = studentBody.Students[index];
double factor = 1 + (rand.NextDouble() - 0.5) / 5;
student.GradePointAverage = Math.Round(
Math.Max(0, Math.Min(5, factor * student.GradePointAverage)), 2);
}

return true;

b

// Save Notes 1in properties dictionary for program in Chapter 25.
public void SaveNotes(IDictionary<string, object> properties)

{
foreach (Student student in StudentBody.Students)
{

properties[student.FulIName] = student.Notes;

}

}

public StudentBody StudentBody

{
protected set { SetProperty(ref studentBody, value); }
get { return studentBody; }

}

}

Notice that the data is obtained asynchronously. The properties of the various classes are not set until
sometime after the constructor of this class completes. But the implementation of the INotifyProp-
ertyChanged interface should allow a user interface to react to data that is acquired sometime after
the program starts up.

The callback to BeginGetResponse runs in the same secondary thread of execution that is used to
download the data in the background. This callback sets some properties that cause Property-
Changed events to fire, which result in updates to data bindings and changes to user-interface objects.
Doesn't this mean that user-interface objects are being accessed from a second thread of execution?
Shouldn’t Device.BeginInvokeOnMainThread be used to avoid that?

Actually, it's not necessary. Changes in ViewModel properties that are linked to properties of user-
interface objects via data bindings don't need to be marshalled to the user-interface thread.

The schoolviewModel class is also responsible for randomly modifying the GradePointAverage
property of the students, in effect simulating dynamic data. Because student implements INotify-

Chapter 19 Collection views 580

PropertyChanged (by virtue of deriving from viewModelBase), we should be able to see these val-
ues change dynamically when displayed by the ListVview.

The SchoolOfFineArt library also has a static Library.Init method that your program should call
if it's referring to the library only from XAML to ensure that the assembly is properly bound to the
application.

You might want to play around with the studentviewModel class to get a feel for the nested
properties and how they are expressed in data bindings. You can create a new Xamarin.Forms project
(named Tryout, for example), include the SchoolOfFineArt project in the solution, and add a refer-
ence from Tryout to the SchoolOfFineArt library. Then create a ContentPage that looks something
like this:
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmIns:school="clr-namespace:School0fFineArt;assembly=School0OfFineArt"
x:Class="Tryout.TryoutListPage">
<ContentPage.Padding>
<OnPlatform x:TypeArguments="Thickness"
i0s="0, 20, 0, 0" />
</ContentPage.Padding>

<ContentPage.BindingContext>
<school:SchoolViewModel />
</ContentPage.BindingContext>

<Label />
</ContentPage>

The BindingContext of the page is set to the SchoolviewModel instance, and you can experi-
ment with bindings on the Text property of the Label. For example, here's an empty binding:

<Label Text="{Binding StringFormat='{0}'}" />
That displays the fully qualified class name of the inherited BindingContext:
SchoolOfFineArt.SchoolViewModel

The schoolviewModel class has one property named StudentBody, so set the path of the Bind-
ing to that:

<Label Text="{Binding Path=StudentBody, StringFormat='{0}'}" />
Now you'll see the fully-qualified name of the StudentBody class:
SchoolOfFineArt.StudentBody

The studentBody class has two properties, named School and students. Try the School
property:

<Label Text="{Binding Path=StudentBody.School,
StringFormat="'{0}'}" />

Chapter 19 Collection views 581

Finally, some actual data is displayed rather than just a class name. It's the string from the XML file set
to the School property:

School of Fine Art

The StringFormat isn't required in the Binding expression because the property is of type string.
Now try the students property:

<Label Text="{Binding Path=StudentBody.Students,
StringFormat="'{0}'}" />

This displays the fully qualified class name of ObservableCollection with a collection of Student
objects:

System.Collections.ObjectModel.ObservableCollection’1[SchoolOfFineArt.Student]

It should be possible to index this collection, like so:

<Label Text="{Binding Path=StudentBody.Students[0],
StringFormat="'{0}'}" />

That is an object of type student:
SchoolOfFineArt.Student

If the entire students collection is loaded at the time of this binding, you should be able to specify
any index on the students collection, but an index of 0 is always safe.

You can then access a property of that Student, for example:

<Label Text="{Binding Path=StudentBody.Students[0].FulTName,
StringFormat="'{0}'}" />

And you'll see that student’s name:
Adam Harmetz

Or, try the GradePointAverage property:

<Label Text="{Binding Path=StudentBody.Students[0].GradePointAverage,
StringFormat="{0}'}" />

Initially you'll see the randomly generated value stored in the XML file:
3.01
But wait a little while and you should see it change.

Would you like to see a picture of Adam Harmetz? Just change the Label to an Image, and change
the target property to source and the source path to PhotoFilename:

<Image Source="{Binding Path=StudentBody.Students[0].PhotoFilename}" />

Chapter 19 Collection views 582

And there he is, from the class of 2019:

30 WA 244

all % B

O

With that understanding of data-binding paths, it should be possible to construct a page that con-
tains both a Label that displays the name of the school and a Listview that displays all the students
with their full names, grade-point averages, and photos. Each item in the Listview must display two
pieces of text and an image. This is ideal for an ImageCel1, which derives from TextCell and adds an
image to the two text items. Here is the StudentList program:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmlns:school="clr-namespace:School0fFineArt;assembly=School0fFineArt"
x:Class="StudentList.StudentListPage">

<ContentPage.Padding>

<OnPlatform x:TypeArguments="Thickness"
i0S="0, 20, 0, 0" />
</ContentPage.Padding>

<ContentPage.BindingContext>
<school:SchoolViewModel />
</ContentPage.BindingContext>

<StackLayout BindingContext="{Binding StudentBody}">
<Label Text="{Binding School}"
FontSize="Large"
FontAttributes="Bold"

Chapter 19 Collection views 583

HorizontalTextAlignment="Center" />

<ListView ItemsSource="{Binding Students}">
<ListView.ItemTemplate>
<DataTemplate>
<ImageCell ImageSource="{Binding PhotoFilename}"
Text="{Binding FullName}"
Detail="{Binding GradePointAverage,
StringFormat="G.P.A. = {0:F2}'}" />
</DataTemplate>
</ListView.ItemTemplate>
</ListView>
</StackLayout>
</ContentPage>

As in the experimental XAML file, the BindingContext of the ContentPage is the SchoolvView-
Model object. The stackLayout inherits that BindingContext but sets its own BindingContext to
the studentBody property, and that's the BindingContext inherited by the children of the stack-
Layout. The Text property of the Label is bound to the School property of the studentBody class,
and the ItemsSource property of the ListView is bound to the Students collection.

This means that the BindingContext for each of the items in the ListView is a Student object,
and the ImageCell properties can be bound to properties of the student class. The result is scrolla-
ble and selectable, although the selection is displayed in a platform-specific manner:

3O Wa 308 [all 7 B (- 3:09
Carrier ® 308 PM] School of Fine Art

School of Fine Art School of Fine Art

LA LU
R Jack 5. Richins
Cynthia Carey
PA 4
Eliot J. Graff
GRA m%
Endre Bognar
PA.=13
Guy Gilbert
P
Isabelle Scemla
PA =26
Ivo Haemels
A
Jacek Masliniski G.PA. =252
PA. = 2.28
Jack S. Richins
G.PA = 2.44
James ‘Hendergart James
fA o [Hendergart
Jason Kozleski
S
Jeff Phillips
PA =111
Jenny Liu
G.PA =279

Jesse Merriam
PA =274

b ¢
@
"
@
®
¢
L 4
?:
L 4
L ¢
4
L ¢
4
b 4

Unfortunately, the Windows Runtime version of the ImageCell works a little differently from those

Chapter 19 Collection views 584

on the other two platforms. If you don't like the default size of these rows, you might be tempted to
set the RowHeight property, but it doesn’t work in the same way across the platforms, and the only
consistent solution is to switch to a custom viewCell derivative, perhaps one much like the one in
CustomNamedColorList but with an Image rather than a Boxview.

The Label at the top of the page shares the stackLayout with the Listview so that the Label
stays in place as the Listvieuw is scrolled. However, you might want such a header to scroll with the
contents of the Listview, and you might want to add a footer as well. The ListView has Header and
Footer properties of type object that you can set to a string or an object of any type (in which
case the header will display the results of that object's Tostring method) or to a binding.

Here's one approach: The BindingContext of the page is set to the SchoolviewModel as before,
but the BindingContext of the ListView is set to the StudentBody property. This means that the
ItemsSource property can reference the students collection in a binding, and the Header can be
bound to the school property:

<ContentPage .. >

<ContentPage.BindingContext>
<school:SchoolViewModel />
</ContentPage.BindingContext>

<ListView BindingContext="{Binding StudentBody}"
ItemsSource="{Binding Students}"
Header="{Binding School}">

</ListView>
</ContentPage>

That displays the text “School of Fine Art” in a header that scrolls with the Listview content.

If you'd like to format that header, you can do that as well. Set the HeaderTemplate property of
the ListView to a DataTemplate, and within the DataTemplate tags define a visual tree. The Bind-
ingContext for that visual tree is the object set to the Header property (in this example, the string
with the name of the school).

In the ListViewHeader program shown below, the Header property is bound to the School prop-
erty. Within the HeaderTemplate is a visual tree consisting solely of a Label. This Label has an
empty binding so the Text property of that Label is bound to the text set to the Header property:

<ContentPage xmIns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xam1"
xmlns:school="clr-namespace:School0fFineArt;assembly=School0fFineArt"
x:Class="ListViewHeader.ListViewHeaderPage">

<ContentPage.Padding>

<OnPlatform x:TypeArguments="Thickness"
i0s="0, 20, 0, 0" />
</ContentPage.Padding>

<ContentPage.BindingContext>

Chapter 19 Collection views

<school:SchoolViewModel />
</ContentPage.BindingContext>

<ListView BindingContext="{Binding StudentBody}"
ItemsSource="{Binding Students}"
Header="{Binding School}">

<ListView.HeaderTemplate>
<DataTemplate>
<Label Text="{Binding}"
FontSize="Large"
FontAttributes="Bold, Italic"
HorizontalTextAlignment="Center" />
</DataTemplate>
</ListView.HeaderTemplate>

<ListView.ItemTemplate>
<DataTemplate>
<ImageCell ImageSource="{Binding PhotoFilename}"
Text="{Binding FullName}"
Detail="{Binding GradePointAverage,

StringFormat="G.P.A. = {0:F2}'}" />

</DataTemplate>
</ListView.ItemTemplate>
</ListView>
</ContentPage>

The header shows up only on the Android platform:

585

Chapter 19 Collection views 586

L RCh U AL
School of Fine Art

Carrier = 3:16 PM

Q A?Ia‘m Harmelz

? .ﬁ_\\lan Brewer

Q A\Iex J Simmuns

? A:n_y E,‘ ﬂf\!berls

A:hy Strande

? .5Tdreqs Hanefeld Dziegiel
Q Arl'vind B. Rao

Q _Bfrbara_z:ighstli

? C!’!ad hf\swunger

’ Cliff Didcock

Cynthia Carey

Alan Brewer

Eliot J. Graff
PA. =224
Endre Bognar
PA 5
Guy Gilbert
F ;

g Isabelle Scemla

Selection and the binding context

The studentBody class doesn't have a property for the selected student. If it did, you could create a
data binding between the selectedItem property of the Listview and that selected-student prop-
erty in StudentBody. As usual with MVVM, the property of the view is the data-binding target and the
property in the ViewModel is the data-binding source.

However, if you want a detailed view of a student directly, without the intermediary of a View-
Model, then the selectedItem property of the Listvie